
Grade Central
A Campus Grading Tool

Final Design Document

March 9, 2001

1 System Diagram
Each component is labeled with its level rank.

6

5

2

1 1 1 1 1 11
Template
Archive

Database

Session Manager

4

Web Server

Session

2 3Request
Dispatcher

Access
Profile

HTML
Generator

Request
Parser

Request Handler

2 2 2User Request
Handler

Grade Entry
Handler

Grade Calc.
Handler

Database
Interface

Authentication
Module

Component Descriptions

Session Manager

This server has a list ofSessionobjects. When a request comes in, via port 80, from a particular user for
the first time, it verifies the user using a third party authenticator which may be Kerberos, or a password
file validation system. If the user is properly authenticated, the SM then creates aSessionobject for that
user and put it in itsSessionList. When subsequent messages come in, it looks for the session for that
user. TheSessionListwill go through garbage collection at regular intervals to eliminate stale sessions.

In the first phase implementation, this component will be single threaded. If success is found and time
allows, this will be changed to a multi-threaded approach.

Session Class

The first job of this object is to use theRequest Parserto decipher the CGI request from the user. The
response is in the form of an OpCode. Once it knows the desired action, it much check to see if the user
has the privilege to take such an action.

This session object has anAccess Profileobject in it. This object maintains the list of privileges that this
user has for specific classes – ie. Prof of Course XX345, or TA for course YY873. This object will
check the OpCode for the class in question.

Each session object also contains aRequest Dispatcher. The dispatcher uses the OpCode previously
returned from theRequest Parserand decides which component method in the RequestHandler to call.
When the Request Handler method returns, the Dispatcher calls the HTML generator and sends it the
Datablock in order to make the next page output. The page returned from the HTLM generator is
returned to theSession Manager.

Public Methods
Constructor(string userName)
ProcessRequest(string Request) – returns an HTML string

Request Parser

This string parsing module breaks down the CGI request in order to pinpoint the desired operation. It
returns an OpCode which is defined in a table to specify a particular operation.

Public Methods
parseRequest(string Request, int &OpCode, string &course, vector & paramPairs)

– returns a bool and &

Access Profile

This class obtains user information from the database. It stores the courses and privileges of the
particular user.

Public Methods
Constructor(string userName) – Obtains initial list of privileges
hasAuthority(string course, int OpCode) – returns a boolean value

User Request Handler

This module handles all administrative changes to the database. This includes user and course changes
and additions. Each of these methods make calls to the database.

Public Methods
AddUser(string course, vector paramPairs) returns boolean
AddCourse(string course, vector paramPairs) returns boolean
AddStudent(string course, vector paramPairs) returns boolean
AddProfessor(string course, vector paramPairs) returns Boolean
MakeTA(string course, vector paramPairs) returns boolean
EditUser(string course, vector paramPairs) returns Datablock
EditCourse(string course, vector paramPairs) returns Datablock
EditStudent(string course, vector paramPairs) returns Datablock
EditProfessor(string course, vector paramPairs) returns Datablock
RemoveUser(string course, vector paramPairs) returns boolean
RemoveCourse(string course, vector paramPairs) returns boolean
RemoveStudent(string course, vector paramPairs) returns boolean
RemoveProfessor(string course, vector paramPairs) returns Boolean
RemoveUser(string course, vector paramPairs) returns Boolean
RemoveTA(string course, vector paramPairs) returns Boolean
ViewClassList(string course, vector paramPairs) returns Boolean

Grade Entry Handler

This module handles all grade information. This includes assignment and grade changes and additions.
Each of these methods make calls to the database.

Public Methods
AddAssignment(string course, vector paramPairs) returns Datablock
AddCourseGrades(string course, vector paramPairs) returns Datablock
WeightAssignments(string course, vector ¶mPairs) returns Datablock
EditAssignments(string course, vector & paramPairs) return Datablock
ViewCourseGrades(string course, vector ¶mPairs) return Datablock
EditCourseGrades(string course, vector ¶mPairs) return Datablock

Grade Calculation Handler

This module handles all grade calculations. This includes averaging a particular assignment, averaging a
student’s grades, and creating a histogram for an aassignment.

Public Methods
AverageAssignment(string course, vector paramPairs) returns Datablock
AverageStudent(string course, vector paramPairs) returns Datablock
CreateHistogram(string course, vector ¶mPairs) returns Datablock

HTML Generator
This class uses the parts of pages in the template library to construct a web page
given the information from Request Handler.

Public Methods
void parseTemplates();

//returns the page with the specified filename:
HTMLPage pageWithName(String filename);

//alternately, returns the initialized page with the specified filename:
HTMLPage pageWithNameAndParem(String filename,

Template Library
This library contains parts of pages that have been designed. IT may contain a few headers, or footers, or
pieces of body, which the HTML generator then strings together – filing in any information.

Database Interface –
This handles all reading from and writing to the database. It takes for input, and
returns for output, Datablocks. This component handles all input to and output from the database. It
serves as an abstraction from the actual database. Other functions that use the need not use SQL to
access data.

Public Methods
Update Database:
makeNewCourse(course code, professor name)
removeCourse(course code)
setProfessor(course code, professor name)
setSchema(course code, schema)
addStudent(student name, course code, grade option)
removeStudent(student name, course)
setGradeOption(course code, student name, grade option)
addTA(ta name, course code)
removeTA(ta name, course code)
addStudentToTAGroup(student name, ta name)
removeStudentFromTAGroup(student name, ta name)
addAsgnToTA(course code, asgn name, ta name)
removeAsgnFromTA(course code, asgn name, ta name)
addTypeToTA(course code, type name, ta name)
removeTypeFromTA(course code, type name, ta name)
addAllToTA(course code, ta name)
removeAllFromTA(course code, ta name)
addAssignment(course code, asgn name, type name, weight, total possible)
removeAssignment(course code, asgn name)
setAssignmentType(course code, asgn name, type name)
setAssignmentWeight(course code, asgn name, weight)
setAssignmentTotal(course code, asgn name, total possible)
addType(course code, type name, weight, distribution)

removeType(course code, type name)
Update Database (cont):
setTypeWeight(course code, type name, weight)
setTypeDistribution(course code, type name, distribution)
addGrade(course code, asgn name, student name, grade, lateness, comment)
setGrade(course code, asgn name, student name, grade)
setLateness(course code, asgn name, student name, lateness)
setComment(course code, asgn name, student name, comment)
setFinalGrade(course code, student name, grade)

Request Data:
getProfessor(course code) {returns professor name}
getSchema(course code) {returns grading schema}
getGradeOption(student name, course code) {returns grade option}
getTAofStudent(course code, student name) {returns ta name}
getAssignmentType(course code, asgn name) {returns type name}
getAssignmentWeight(course code, asgn name) {returns assignment weight}
getAssignmentTotal(course code, asgn name) {returns total possible}
getTypeWeight(course code, type name) {returns type weight}
getTypeDistribution(course code, type name) {returns distribution}
getGradeValue(course code, asgn name, student name) {returns grade}
getGradeLateness(course code, asgn name, student name) {returns lateness}
getGradeComment(course code, asgn name, student name) {returns comment}
getFinalGrade(course code, student name) {returns final grade}
getAllStudents(course code) {returns list(student name)}
getAllTAs(course code) {returns list(ta name)}
getAllAssignments(course code) {returns list(assignment name)}
getAllTypes(course code) {returns list(type name)}
getStudentsInGroup(course code, ta name) {returns list(student name)}
getAssignmentsAuthorizedForTA(course code, ta name) {returns list(assignment name)}
getAuthorizedTAsForAssignment(course code, asgn name) {returns list(ta name)}
getDefaultTAsForType(course code, type name) {returns list(ta name)}
getAllAssignmentsOfType(course code, type name) {returns list(assignment name)}
getAllRoles(user name) {returns list(course, authority)}
getTAsOfAllStudents(course code) {returns list(student name, ta name)}
getAllGradesOnAssignment(course code, asgn name)
{returns list(student name, grade, lateness, comment)}
getAllGradesOf Student(course code, student name)
{returns list(assignment name, grade, lateness, comment)}
getAllFinalGradesInCourse(course code) {returns list(student name, grade)}
getFinalGradesInAllCourses(student name) {returns list(course code, grade)}

Web Server
This is a server, listening on port 80, for requests to come in. When they do, it passes along the requests
to theSession Manager.

Authorization Module
This module, called by the Session Manager verifies the user by securely checking the password.
Kerberos may be used for this functionality.

2 Functional Specifications (with priorities)

This section lists all requirements of the system. The number after each item is its implementation priority
(see schedule; 1 = Feature Set 1, 2 = Feature Set 2, 3 = “Perhaps if we have extra time”).

2.1 User Interface Requirements

• Grade Central must have an intuitive GUI interface. (1)
o The flow of control of the user’s commands must be designed and tested such that at each

step, the user is presented with every action that logically follows from the action just taken,
and no illogical actions are presented.

o Grade entry screen shows small group of students at a time instead of 1 large scrolling table
of 100 students. (1)

o Allows for different grading schemes – numerical, letter grade, etc. (1)
(Note: “calculation” of letter grades assumes a 4.0 scale; professors may disregard the
calculation feature entirely and assign final grades based on own assessment.)

o If one assignment is deleted, a DISTRIBUTE button would evenly redistribute that
percentage among others. (3)

• The program must provide helpful documentation, accessible at any point. (1)
o A library of help documents, with a table of contents and index, will be stored as a set of

HTML pages on the server. (1)
o Access to these help files will be provided through a button or link present on every screen

with the same location and appearance. (1)
o The help library will be searchable by keyword. (3)

• The program must be web based to allow accessibility by different platforms and from any location
with a web hookup (1)

• The web interface must provide a secure connection with the back-end server (i.e. use HTTPS). (1)
• The model of interaction between the user and server must conform to users’ familiarity level with

similar systems, to facilitate learning to use this system. (1)
What this actually implies is the requirement that requests from the user be treated independently,
and that the back-end server make no assumptions about the state of the user’s display and/or actions
outside of the current request.

• Must comply with Netscape 4.0 HTML standards. (2)

2.2 Security Requirements

• User must log into system with a username and password (1)
• When authenticated, the user must only be allowed to access data that he/she has been authorized to

access (1)
• There are four types of access roles for viewing/entering data (1)

o Administrator
o Professor
o TA (Teaching Assistant)

• Security and access authority will only be granted by an Administrator (for Professors) or a
Professor (for a TA) (1)

• A timeout value will be assessed for grade entering, in case the user leaves the terminal unsecured.
(1)

• The actual username-password authentication mechanism will be hidden behind a façade interface,
to minimize dependency on any particular external authorization method. (1)

2.3 Database-Specific Requirements

The following information must be stored about each user:
• Username (1)
• Course Affiliation (1)
• User Type – Registrar, Professor, TA, Student (per course) (1)
• Enrollment Status(2) – Enrolled, Dropped, Auditing
• Last Name (1)
• First Name (1)
• Nickname (2)
• Email address (2)

2.4 User Actions: Functionality-Specific Requirements

• Administrator
o Create courses (2)
o Create users (2)
o Edit users’ course affiliations and any roles (1)
o Import class list data from file (3)
o Export grade data to file (3)

• Professor
o View all users affiliated with course (1)
o Add course affiliation and Student/TA roles to existing users (1)

(implicit in the “add student to course” action)
o Create users and assign them Student and/or TA roles (1)

(implicit in the “add student to course” action)
o Create class subgroups one level deep (3)

(e.g. lab groups)
o Create subgroup affiliations for users already affiliated with the class (3)
o Search for a user affiliated with a certain course

� By username (1)
� By first name (1)
� By last name (1)
� By role (2)
� By nickname (2)
� By email (2)
� Using wildcards (2)

o Add assignment to course (1)
o Set assignment weighting (1)
o Create assignment types (e.g. lab, homework) and assign group affiliations to individual

assignments (2)
o Set weights for types of assignments (2)
o Set weights per assignment within types (3)
o Enter grade per student per assignment, in batches (1)

� Simultaneously enter lateness and text comment per student per assignment (2)
� After all numerical grades for a particular assignment are entered, software displays a

histogram and allows the professor to assign ranges for A, A-, etc. (3.9)
o Tell system to calculate grade average for each user (1)
o Tell system to calculate grade average (across course) for each assignment (2)

o Edit final letter grade for each student (2)
o Email to all students that grading is done (3.9)
o Export an archival copy of grade-book for future reference. (3)

• TA
o View all users affiliated with course (1)
o Search for a user affiliated with a certain course

� By username (1)
� By first name (1)
� By last name (1)
� By role (2)
� By nickname (2)
� By email (2)
� Using wildcards (2)

o Enter grade per student per assignment, in batches (1)
� Simultaneously enter lateness and text comment per student per assignment (2)

o Tell system to calculate grade average for each user (1)
o Tell system to calculate grade average (across course) for each assignment (2)

• Student
o View assignment grades for a particular class (1)
o View final grades of all classes at end of term (1)

3 Performance and Reliability Requirements

• During normal operation, response time for any key click must be within 10 seconds. The use of
frames may aid in speeding up web transfers.

• During peak operation, response time must be within 20 seconds.
• Grade information stored on server must be available at all hours.
• Databases must be backed up daily – using a snapshot method as to avoid inaccessibility. (rely on

existing system backups for development process)

4 Testing Strategy

The primary purpose of testing is to detect any deficiencies in the project so that the final product will be of
the highest quality. In order to accomplish this, the project team must aggressively integrate testing into all
aspects of the project. Changhee Pyo and Imeh Williams will coordinate testing efforts and work with
fellow group members during component, integration, and user testing.

4.1 Component Testing

A bottom-up testing style will be used for component testing, because it complements the implementation
process; components with a lower dependency are implemented before components with a higher
dependency. For example, the database interface/database and HTML generator will be implemented and
tested first since they are not dependent on any other component. The goal of component testing is to ensure
that each individual component is functional according project guidelines. Each testable component will
have accompanying test programs written with the help of the individual implementing the component.
Whenever the implementer reaches amilestone with his/her component, test code will automatically test the

functionality and provide a progress report for the implementer. The primary responsibility of the
implementer is to help develop test data and provide information about scenarios that might undermine the
component's functionality. The following is a summary of how the various components might be tested:

Database Interface: The database managers will provide a database with fake data for test purposes. First,
the test program will make sure that data is properly stored and retrieved from the database, by simulating
hundreds of calls to the database interface using valid data. Once the basic functionality has been verified,
more calls to the database interface will be tested using bad input, duplicate data, and invalid data requests.

HTML Generator: The testing of this component will focus on the ability to display varying amounts of
data. Each template will be tested using data sets of size 1 to N, where N is large. The UI designers, the
implementer, and the tester will determine if the HTML generated displays information correctly in an
aesthetically pleasing manner. The generated HTML will be viewed using with many various systems
(Unix, PC, Mac), web browsers (Internet Explorer, Netscape), and monitor resolutions to ensure that the
html generator works properly.

Logical Components: The logical components consist of the user request handler, grade calculation handler,
and grade entry handler. A test program will verify the administrative functionality of the components by
comparing data sets with contents of the database to ensure that students, classes, and TAs were entered or
removed from the system properly. The grade computations performed by the grade calculator will verified
by comparing output from the component with predetermined grade calculations.

Access Profile: This component will be tested by simulating operations performed by users with different
permissions. The first segment of the testing will make sure that each user can access the necessary
information specified by their permission. The second part of the testing will attempt to access information
and perform operations outside of the user's jurisdiction. Special attention will be paid to individuals with
different roles. For example, the test program will check to see if a student who is also a TA can access
grade data from another course using their TA permissions or if a TA can manipulate grades of assignments
of which he/she is not responsible.

Security: A random word generator could be used to break into the system by attempting to determine
passwords.

Web Server: This component will be tested using stress tests to determine if it can withstand multiple users
accessing the server simultaneously and whether or not requests were fulfilled correctly and in a timely
manner.

All components should compile without any error or warning messages. In cases where a component is
dependent on incomplete components, dummy values will be returned from the incomplete component.

4.2 Integration Testing
Before the integration testing can go (relatively) smoothly, each component should pass its component test.
If a component fails some or all of the component test, the bug(s) will be recorded and project members will
be made aware of the problem (and expected to fix it ASAP, as it will delay successful integration testing).
Integration testing should occur after each component is added to the final system. Partial integration testing
will enable the team to track down bugs more efficiently because the problem can be isolated to a few
components. Once the system has passed the various partial integration tests final testing can be conducted.
If at all possible, all testing should be automatic, because automatic testing is robust than manual testing.
However, it is very important that both programmers and testers be on hand and fully informed of the
progress of the test programs, as it is easier to find and fix bugs when you observe the misbehavior of the
program yourself, rather than hear about it from somebody else.

4.3 User Testing
Initial user testing of the UI designs will occur very early in the schedule. The UI designers will explain the
purpose of the software to professors, students, and TAs on a one-on-one basis, and revise their design
based on the users’ reactions to screen mock-ups and UI flow-of-control descriptions. This is not intended to
be a time-intensive process, but rather a second round of requirements gathering which focuses on the users’
interaction with the UI.
After integration testing, user tests will be conducted. A group of approximately 10 to 20 students, TAs, and
faculty from different departments at Brown will be gathered. The users will be given project documentation
and asked to use the program. After using the software, study participants will be asked to evaluate the
software using a survey. The following are a general set of questions that might be on the survey:

• Did you find any bugs while using the software?
• Did you have any difficulties using the software? Why?
• Is the documentation easy to follow? Why?
• Is the documentation useful? Why?
• Is the user interface appealing? Why?
• Would you use this software in the future?
• What do you like the most about this software?
• What do you like the least about this software?
• Are there any features that we should add?
• General Suggestion/ Comments

It will be important that each unit be tested thoroughly before integration.

4.4 Security

• Continue multiple attempts to log on as a different user. Be sure that server is never fooled
• Attempt to access grade information for which access should not be granted.

4.5 User Interface
• A number of users must be brought in to test each feature offered on the interfaces. All form entries

must be tested thoroughly to ensure that data must not be re-entered if the server runs into an error.

4.6 Grade Calculations
• Use many different grading strategies.
• Try numerous weighting methods
• Set weights to add up to > 100% or < 100%

4.7 Server Performance
• Write an automated testing application which will simulate up to 100 users entering information

simultaneously, and up to 300 users viewing information at the same time.
• Push server to see the maximum number of users possible before system crash.

5 Hardware and Operating System Specifications

5.1 System Limitations
• The system must run on a Sun workstations
• The workstation must be running Solaris

5.2 Implementation Limitations
• Code must be written using the C++ language
• All HTML used must be generated by this code.

5.3 Portability
• Design must be portable such that it could be run on a Windows system, for instance.

6 Other Specifications

6.1 Documentation
• A manual must be written which explains the workings and the maintenance needed on the server.
• An extensive on-line help facility must be created for users toaccess while using the system.

o On-line help windows must be a separate browsing window to minimize information loss
from main window.

6.2 External Dependencies
• The Registrar database is the system’s only truly risky external dependency. Because actual

integration with the Registrar’s system is highly unlikely, the interaction has been abstracted a little
bit. All access to and from the Registrar will be in the form of import/export files. This does not
preclude future integration with the Registrar. Because the priority levels are so low for this
integration, however, the risk is minimized.

• The system is probably going to depend on a Kerberos server for password authentication. The
motivation for the façade between the authentication mechanism and the rest of the system is to
protect the rest of the system from unnecessary delays should our first attempts at Kerberos
authentication prove to be a bust. In the event that Kerberos authentication is unsuccessful, the
security person will replace the mechanism behind the façade with a working mechanism (our own
password database or file). The motivation for attempting to work with Kerberos, which we feel
makes it worth investigating, is the ease of use for the Brown user (one password, many services). If
it works, then we won’t have to populate a user password database. If it doesn’t work, we’ve
minimized the risk by using the façade pattern.

• The use of a third-party SQL/C++ interface, MySQL++, may also be considered an external
dependency. MySQL++ was selected based on:

o The opinions of our peers who have used it, and chose it over PostGreSQL
o The accolades it has received from “reader’s choice” contests and its recognition by Oracle
o The fact that it has been ported to Windows development environments, which lays the

groundwork for a Windows port of our system.

7 Group Organization & Roles

Project Manager – Charles Thompson

This person oversees the project as a whole. This person will manage the project schedule, resolve
conflicts, schedule meetings, keep in contact will all members of the team. Will assist in moderate
coding.

Architect – Curran Nachbar

This member is in charge of the design of the project. S/he will make the design decisions which
will shape the product. Will assist in moderate coding.

UI Designer – Scott Nisenfeld

This individual or individuals have the charge of designing the look and feel of the user interface.
The UI designers will also help to design and implement the CGI Generator.

Documentation/Librarian – Joe Wilkicki, Michelle Nguyen

This person is responsible for managing the versions revision tools used, and keeping versions
information clean. Also in his/her purview is the responsibility for the documentation for product
administration, and for the user help screens. This person will work with the UI designers in
creating these screens.

Tool Supporter – Joe Wilkicki

This person will assist in choosing compilers, and libraries, building makefiles, setting up the
revisions control software. This person will also help to troubleshoot problems with these tools.
This person will also lead in coding the CGI Generator and Session Manager.

Database Designer – Erika Hart

This person is the one in charge of designing, overseeing and managing the databases. S/he will
also help to implement DB Controller modules. When database modules are completed, this
person will go on to help with coding other modules such as the Web server.

8 Task Breakdown & Schedule

In a separate file, sched.pdf, we have laid out all the tasks involved with making this project work. Included
on this schedule are provisions for planning, testing, implementing, integrating, and documentation. Each of
these areas is color coded for easier readability. Following is the assignment of tasks as it corresponds to the
schedule.

Task Team Member

Request Dispatcher Greg
User Request Handler Hui-Yuan
Grade Entry Handler Hui-Yuan
Grade Calculation Handler Changhee
DBI – Database Erika
Tools/ Web Server Joe
Session Manager / Kerberos Greg
Session Class Joe
Request Parser Curran
Access Profile Class Charles
HTML Generator Eduardo
Template Archive /UI Scott
Documentation/Help Screens Joe, Michelle
Testing Imeh, Changhee

Culture

In order for this type of group to stay a cohesive unit, a number of standards must be in place. These
standards ensure that members are communicating effectively, and allow a smooth operation.

Communication
All primary communication will be through email. It is expected that everyone will check the email at least
twice per day. The newsgroup may be used to archive information, but no urgent messages will be sent to
the newsgroup.

As time is so important in this type of project, it is important that email messages that ask for specific
answers must be answered as soon as they are received. If the answer requires more time for thought or
investigation, then an acknowledgement message should be sent at that time with an expected time of reply.

Meetings will be kept to a minimum to allow group members to spend their time on their project. On the
whole, email will be used for most major communication. We all should expect, however, that there may be
one meeting set up each week.

Workload
The enclosed schedule is a tight one. It will require that every team member be committed to getting his/her
tasks done. If a member foresees having difficulty in completing a project, he/she must tell the project
manager as soon as possible. The schedule is not meant to take over the lives of the member, it is meant to
keep the whole group on track in producing an excellent piece of software.

Progress
Each week, by Thursday morning, team members are to send to the project lead a short summary of their
progress. This summary must include milestones reached, problems encountered, solutions to those prolems,
and any problems foreseen in the next stage of development.

Activities
No group task is complete without the glue that keeps groups together – food and fun. Once per week, the
group members will have a gathering in which the objective is to relax. Team members are encouraged to
make suggestions about interesting activities in which the group can participate.

