
OMG Unified Modeling Language
Specification

A

Version 1.1, March 1998

Copyright 1997, Hewlett-Packard Company
Copyright 1997, IBM Corporation
Copyright 1997, ICON Computing
Copyright 1997, i-Logix
Copyright 1997, IntelliCorp.
Copyright 1997, MCI Systemhouse Corporation
Copyright 1997, Microsoft Corporation
Copyright 1997, ObjecTime Limited
Copyright 1997, Oracle Corporation
Copyright 1997, Platinum Technology, Inc.
Copyright 1997, Ptech Inc.
Copyright 1997, Rational Software Corporation
Copyright 1997, Reich Technologies
Copyright 1997, Softeam
Copyright 1997, Sterling Software
Copyright 1997, Taskon A/S
Copyright 1997, Unisys Corporation

Rational Software Corporation, Microsoft Corporation, Hewlett-Packard Company, Oracle Corporation, Sterling Soft-
ware, MCI Systemhouse Corporation, Unisys Corporation, ICON Computing, IntelliCorp, i-Logix, IBM Corporation,
ObjecTime Limited, Platinum Technology, Inc., Ptech, Inc., Taskon A/S, Reich Technologies, and Softeam hereby grant
to the Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this
document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having con-
formed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this specifica-
tion in any companies’ products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, RATIONAL SOFTWARE CORPORATION, MICROSOFT CORPORATION,
HEWLETT-PACKARD COMPANY, ORACLE CORPORATION, STERLING SOFTWARE, MCI SYSTEMHOUSE
CORPORATION, UNISYS CORPORATION, ICON COMPUTING, INTELLICORP, I-LOGIX, IBM CORPORATION,
OBJECTIME LIMITED, PLATINUM TECHNOLOGY, INC., PTECH, INC., TAKSON A/S, REICH TECHNOLOGIES,
AND SOFTEAM MAKE NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE. The aforementioned copyright holders shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its desig-
nees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software
to use certification marks, trademarks or other special designations to indicate compliance with these materials.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical, includ-
ing photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright
owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object
Management Group.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

 OMG-UML V1.2 March 1998 xxiii

Preface

0.1 About the Unified Modeling Language (UML)

The Unified Modeling Language (UML) provides system architects working on Object
Analysis and Design with one consistent language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modeling.

This specification represents the state-of-the-art convergence of best practices in the
object-technology industry. UML is the proper successor to the object modeling
languages of three previously leading object-oriented methods (Booch, OMT, and
OOSE). The UML is the union of these modeling languages and more, since it includes
additional expressiveness to handle modeling problems that these methods did not
fully address.

One of the primary goals of UML is to advance the state of the industry by enabling
OO visual modeling tool interoperability. However, in order to enable meaningful
exchange of model information between tools, agreement on semantics and notation is
required. UML meets the following requirements:

• Formal definition of a common OA&D meta-model to represent the semantics of
OA&D models, which include static models, behavioral models, usage models, and
architectural models.

• IDL specifications for mechanisms for model interchange between OA&D tools.
This document includes a set of IDL interfaces that support dynamic construction
and traversal of a user model.

• A human-readable notation for representing OA&D models. This document defines
the UML notation, an elegant graphic syntax for consistently expressing the UML’s
rich semantics. Notation is an essential part of OA&D modeling and the UML.

xxiv OMG-UML V1.2 March 1998

0.2 About the Object Management Group (OMG)

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org

OMG’s adoption of the UML specification reduces the degree of confusion within the
industry surrounding modeling languages. It settles unproductive arguments about
method notations and model interchange mechanisms and allows the industry to focus
on higher leverage, more productive activities. Additionally, it enables semantic
interchange between visual modeling tools.

0.3 About This Document

This document is intended primarily as a precise and self-consistent definition of the
UML’s semantics and notation. The primary audience of this document consists of the
Object Management Group, standards organizations, book authors, trainers, and tool
builders. The authors assume familiarity with object-oriented analysis and design
methods. The document is not written as an introductory text on building object
models for complex systems, although it could be used in conjunction with other
materials or instruction. The document will become more approachable to a broader
audience as additional books, training courses, and tools that apply to UML become
available.

OMG-UML V1.2 About This Document March 1998 xxv

The Unified Modeling Language specification defines compliance to the UML, covers
the architectural alignment with other technologies, and is comprised of the following
topics:

UML Summary (Chapter 1) - provides an introduction to the UML, discussing
motivation and history.

UML Semantics (Chapter 2) - defines the right semantics of the Unified Modeling
Language. The UML is layered architecturally and organized by package. Within each
package, the model elements are defined in the following terms:

UML Notation Guide (Chapter 3) - represents the graphic syntax for expressing the
semantics described by the UML metamodel. Consequently, the UML Notation
Guide’s chapters should be read in conjunction with the UML Semantics chapters.

UML Extensions (Chapter 4) - contains the UML Extension for Objectory Process for
Software Engineering and UML Extension for Business Modeling.

OA&D CORBAfacility Interface Definition (Chapter 5) - contains the UML-consistent
interoperability defined in terms of CORBA IDL.

In addition, you will find an appendix of Standard Elements and an appendix that
contains the Object Contraint Language (OCL) syntax, semantics, and grammar. All
OCL features are described in terms of concepts from the UML Semantics chapter.

0.3.1 Dependencies Between Sections

UML Semantics (Chapter 2) can stand on its own, relative to the others, with the
exception of the OCL Specification. The semantics and the OCL are interdependent.
The semantics and notation are nearly independent. What this means is that you can
certainly specify and understand each one in isolation, but the one affects the other. For
example, knowing what kinds of things a developer or modeler finds important to
visualize impacts what kind of underlying semantics are needed. For example,
modeling patterns is something that in our experience we find to be valuable for

1. Abstract syntax UML class diagrams are used to present the UML
metamodel, its concepts (metaclasses), relationships,
and constraints. Definitions of the concepts are
included.

2. Well-formedness rules The rules and constraints on valid models are defined.
The rules are expressed English prose and in a precise
Object Constraint Language (OCL). OCL is a
specification language that uses simple logic for
specifying invariant properties of systems comprising
sets and relationships between sets.

3. Semantics The semantics of model usage are described in
English prose.

xxvi OMG-UML V1.2 March 1998

systems of scale; this is why the UML metamodel has collaborations as a first-class
citizen. If one does not consider what is important to be visualized, you end up with a
less rich metamodel.

The UML Notation Guide and OA&D CORBAfacility Interface Definition both depend
on the semantics. We consider it advantageous to separate the UML definition and the
facility interface. Having these as separate standards will permit their evolution in the
most flexible way, even though they are not completely independent.

The specifications in the UML Extension documents depend on both the notation and
semantics sections.

0.4 Compliance to the UML

The UML and corresponding facility interface definition are comprehensive. However,
these specifications are packaged so that subsets of the UML and facility can be
implemented without breaking the integrity of the language. The UML Semantics is
packaged as follows:

Figure 0-1 UML Class Diagram Showing Package Structure

This packaging shows the semantic dependencies between the UML model elements in
the different packages. The IDL in the facility is packaged almost identically. The
notation is also “packaged” along the lines of diagram type. Compliance of the UML is
thus defined along the lines of semantics, notation, and IDL.

Foundation

Model
Management

Auxiliary
Elements

Core Extension
Mechanisms

Data
Types

Behavioral Elements

Use Cases State
Machines

Collaborations

Common
Behavior

OMG-UML V1.2 Compliance to the UML March 1998 xxvii

Even if the compliance points are decomposed into more fundamental units, vendors
implementing UML may choose not to fully implement this packaging of definitions,
while still faithfully implementing some of the UML definitions. However, vendors
who want to precisely declare their compliance to UML should refer to the precise
language defined herein, and not loosely say they are “UML compliant.”

0.4.1 Compliance to the UML Semantics

The basic units of compliance are the packages defined in the UML metamodel. The
full metamodel includes the corresponding semantic rigor defined in the Semantics
section.

The class diagram illustrates the package dependencies, which are also summarized in
the table below.

Complying with a package requires complying with the prerequisite package.

The semantics are defined in an implementation language-independent way. An
implementation of the semantics, without consistent interface and implementation
choices, does not guarantee tool interoperability. See the OA&D CORBAfacility
Interface Definition (chapter 16).

In addition to the above packages, compliance to a given metamodel package must
load or know about the predefined UML standard elements (i.e., values for all
predefined stereotypes, tags, and constraints). These are defined throughout the
semantics and notation documents and summarized in the UML Standard Elements
appendix. The predefined constraint values must be enforced consistent with their
definitions. Having tools know about the standard elements is necessary for the full
language and to avoid the definition of user-defined elements that conflict with the
standard UML elements. Compliance to the UML Extensions is defined separate from
the UML Semantics, so not all tools need to know about the UML Extensions a priori.

Table 0-1 Metamodel Packages

Package Prerequisite Packages

DataTypes

Core DataTypes

Auxiliary Elements Core, DataTypes

Common Behavior Core, DataTypes

State Machines Common Behavior, Core, DataTypes

Collaboration Common Behavior, Core, DataTypes

Use Cases Collaboration, Common Behavior, Core,
DataTypes

Model Management Core, DataTypes

Extension Mechanisms Core, DataTypes

xxviii OMG-UML V1.2 March 1998

For any implementation of UML, it is optional that the tool implement the Object
Constraint Language. A vendor conforming to OCL support must support the
following:

• Validate and store syntactically correct OCL expressions as values for the UML
data types BooleanExpression, Expression, ObjectSetExpression, TimeExpression,
and ProcedureExpression.

• Be able to perform a full type check on the object constraint expression. This check
will test whether all features used in the expression are actually defined in the UML
model and used correctly.

All tools conforming to the UML semantics are expected to conform to the following
aspects of the semantics:

• its abstract syntax (i.e., the concepts, valid relationships, and constraints expressed
in the corresponding class diagrams),

• well-formedness rules, and

• semantics.

However, vendors are expected to apply some discretion on how strictly the well-
formedness rules are enforced; tools should be able to report on well-formedness
violations, but not necessarily force all models to be well formed. Incomplete models
are common during certain phases of the development lifecycle, so they should be
permitted. See the OA&D CORBAfacility Interface Definition (chapter16) for its
treatment of well-formedness exception handling, as an example of a technique to
report well-formedness violations.

0.4.2 Compliance to the UML Notation

The UML notation is an essential element of the UML to enable communication
between team members. Compliance to the notation is optional, but the semantics are
not very meaningful without a consistent way of expressing them.

Notation compliance is defined along the lines of the UML Diagrams types: use case,
class, statechart, activity, sequence, collaboration, component, and deployment
diagrams.

If the notation is implemented, a tool must enforce the underlying semantics and
maintain consistency between diagrams if the diagrams share the same underlying
model. By this definition, a simple "drawing tool" cannot be compliant to the UML
notation.

There are many optional notation adornments. For example, a richly adorned class icon
may include an embedded stereotype icon, a list of properties (tagged values and
metamodel attributes), constraint expressions, attributes with visibilities indicated, and
operations with full signatures. Complying with class diagram support implies the
ability to support all of the associated adornments.

Compliance to the notation in the UML Extensions is described separately.

OMG-UML V1.2 Compliance to the UML March 1998 xxix

0.4.3 Compliance to the UML Extensions

Vendors should specify whether they support each of the UML Extensions or not.
Compliance to an extension means knowledge and enforcement of the semantics and
corresponding notation.

0.4.4 Compliance to the OA&D CORBAfacility Interface Definitions

The IDL modules defined in the OA&D CORBAfacility parallel the packages in the
semantic metamodel. The exception to this is that DataTypes and Extension
mechanisms have been merged in with the core for the facility. Except for this, a
CORBAfacility implementing the interface modules have the same compliance point
options as described in “Compliance to the UML Notation” listed above.

0.4.5 Summary of Compliance Points

Table 0-2 Summary of Compliance Points

Compliance Point Valid Options

Core no/incomplete, complete, complete including IDL

Auxiliary Elements no/incomplete, complete, complete including IDL

Common Behavior no/incomplete, complete, complete including IDL

State Machines no/incomplete, complete, complete including IDL

Collaboration no/incomplete, complete, complete including IDL

Use Cases no/incomplete, complete, complete including IDL

Model Management no/incomplete, complete, complete including IDL

Extension Mechanisms no/incomplete, complete, complete including IDL

OCL no/incomplete, complete

Use Case diagram no/incomplete, complete

Class diagram no/incomplete, complete

Statechart diagram no/incomplete, complete

Activity diagram no/incomplete, complete

Sequence diagram no/incomplete, complete

Collaboration diagram no/incomplete, complete

Component diagram no/incomplete, complete

Deployment diagram no/incomplete, complete

UML Extension: Business
Engineering

no/incomplete, complete

UML Extension: Objectory
Process for Software
Engineering

no/incomplete, complete

xxx OMG-UML V1.2 March 1998

0.5 Acknowledgements

The UML was crafted through the dedicated efforts of individuals and companies who
find UML strategic to their future. This section acknowledges the efforts of these
individuals who contributed to defining UML.

UML 1.1 Core Team

• Hewlett-Packard Company: Martin Griss

• IBM Corporation: Steve Cook, Jos Warmer

• ICON Computing: Desmond D’Souza

• I-Logix: Eran Gery, David Harel

• MCI Systemhouse Corporation: Cris Kobryn, Joaquin Miller

• IntelliCorp and James Martin & Co.: James Odell

• ObjecTime Limited: John Hogg, Bran Selic

• Oracle Corporation: Guus Ramackers

• PLATINUM Technology Inc.: Dilhar DeSilva

• Rational Software: Grady Booch, Ed Eykholt (project lead), Ivar Jacobson, Gunnar
Overgaard, Karin Palmkvist, Jim Rumbaugh

• Taskon A/S: Trygve Reenskaug

• Sterling Software: John Cheesman, Keith Short

• Unisys Corporation: Sridhar Iyengar, GK Khalsa

UML 1.1 Semantics Task Force

During the final submission phase, a team was formed to focus on improving the
formality of the UML 1.0 semantics, as well as incorporating additional ideas from the
partners. Under the leadership of Cris Kobryn, this team was very instrumental in
reconciling diverse viewpoints into a consistent set of semantics, as expressed in the
revised UML Semantics. Other members of this team were Dilhar DeSilva, Martin
Griss, Sridhar Iyengar, Eran Gery, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Bran Selic, and Jos Warmer. Booch, Jacobson, and Rumbaugh provided
their expertise to the team, as well.

Contributors and Supporters

We also acknowledge the contributions, influence, and support of the following
individuals.

Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave Bernstein, Philip A. Bernstein,
Michael Blaha, Conrad Bock, Mike Bradley, Ray Buhr, Gary Cernosek, James Cerrato,
Michael Jesse Chonoles, Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman,
Ward Cunningham, Raj Datta, Mike Devlin, Philippe Desfray, Bruce Douglass, Staffan
Ehnebom, Maria Ericsson, Johannes Ernst, Don Firesmith, Martin Fowler, Adam
Frankl, Eric Gamma, Dipayan Gangopadhyay, Garth Gullekson, Rick Hargrove, Tim
Harrison, Richard Helm, Brian Henderson-Sellers, Michael Hirsch, Bob Hodges,

OMG-UML V1.2 References March 1998 xxxi

Glenn Hollowell, Yves Holvoet, Jon Hopkins, John Hsia, Ralph Johnson, Anneke
Kleppe, Philippe Kruchten, Paul Kyzivat, Martin Lang, Grant Larsen, Reed Letsinger,
Mary Loomis, Jeff MacKay, Robert Martin, Terrie McDaniel, Jim McGee, Bertrand
Meyer, Mike Meier, Randy Messer, Greg Meyers, Fred Mol, Luis Montero, Paul
Moskowitz, Andy Moss, Jan Pachl, Paul Patrick, Woody Pidcock, Bill Premerlani, Jeff
Price, Jerri Pries, Terry Quatrani, Mats Rahm, George Reich, Rich Reitman, Rudolf M.
Riess, Erick Rivas, Kenny Rubin, Jim Rye, Danny Sabbah, Tom Schultz, Ed Seidewitz,
Gregson Siu, Jeff Sutherland, Dan Tasker, Dave Tropeano, Andy Trice, Dan Uhlar,
John Vlissides, Larry Wall, Paul Ward, Alan Wills, Rebecca Wirfs-Brock, Bryan
Wood, Ed Yourdon, and Steve Zeigler.

0.6 References

[Bock/Odell 94] C. Bock and J. Odell, "A Foundation For Composition,"
Journal of Object-oriented Programming, October 1994.

[Booch et al.] Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified
Modeling Language User Guide, ISBN: 0-201-57168-4,
Addison Wesley, est. publication December 1997. See
www.awl.com/cp/uml/uml.html.

[Cook 94] S. Cook and J. Daniels, Designing Object Systems: Object-
oriented Modelling with Syntropy, Prentice-Hall Object-
Oriented Series, 1994.

[D’Souza 97a] D. D’Souza and A. Wills, "Input for the OMG Submission,"
www.iconcomp.com/catalysis

[D’Souza 97b] D. D’Souza and A. Wills, "Catalysis: Component and
Framework based development"
www.iconcomp.com/catalysis

[Fowler 97] M. Fowler with K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, ISBN 0-201-32563-2,
Addison-Wesely, 1997.
http://www.awl.com/cp/uml/uml.html

[Griss 96] M. Griss, Domain Engineering And Variability In The
Reuse-Driven Software Engineering Business. Object
Magazine. Dec 1996. (See www.hpl.hp.com/reuse)

[Harel 87] D. Harel, "Statecharts: A Visual Formalism for Complex
Systems," Science of Computer Programming 8 (1987),
231-274.

[Harel 96a] D. Harel and E. Gery, "Executable Object Modeling with
Statecharts," Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE
Press, March, 1996, pp. 246-257.

[Harel 96b] D. Harel and A. Naamad, "The STATEMATE Semantics of
Statecharts," ACM Trans. Soft. Eng. Method 5:4 (Oct.
1996).

xxxii OMG-UML V1.2 March 1998

[Jacobson et al.] Ivar Jacobson, Grady Booch, and Jim Rumbaugh, The
Objectory Software Development Process, ISBN: 0-201-
57169-2, Addison Wesley est. publication December 1997.
See www.awl.com/cp/uml/uml.html and the "Rational
Objectory Process" on www.rational.com.

[Malan 96] R. Malan, D. Coleman, R. Letsinger et al, The Next
Generation of Fusion, Fusion Newsletter, Oct 1996. (See
www.hpl.hp.com/fusion.)

[Martin/Odell 95] J. Martin and J. Odell, Object-oriented Methods, A
Foundation, ISBN: 0-13-630856-2, Prentice Hall, 1995

[Ramackers 95] Ramackers, G. and Clegg, D., "Object Business Modelling,
requirements and approach" in Sutherland, J. and Patel, D.
(eds.), Proceedings of the OOPSLA95 workshop on
Business Object Design and Implementation, Springer
Verlag, publication pending.

[Ramackers 96] Ramackers, G. and Clegg, D., "Extended Use Cases and
Business Objects for BPR," ObjectWorld UK ‘96, London,
June 18-21, 1996.

[Rumbaugh et al.] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, Unified
Modeling Language Reference Manual, ISBN: 0-201-
30998-X, Addison Wesley, est. publication December 1997.
See www.awl.com/cp/uml/uml.html.

 [UML Web Sites] www.rational.com/uml
uml.systemhouse.mci.com

 OMG-UML V1.1 March 1998 i

Table of Contents

Table of Contents . i

Preface . xxiii

0.1 About the Unified Modeling Language (UML) xxiii

0.2 About the Object Management Group (OMG) xxiv

0.3 About This Document . xxiv
0.3.1 Dependencies Between Sections. xxv

0.4 Compliance to the UML. xxvi
0.4.1 Compliance to the UML Semantics xxvii
0.4.2 Compliance to the UML Notation xxviii
0.4.3 Compliance to the UML Extensions xxix
0.4.4 Compliance to the OA&D CORBAfacility Interface

Definitions . xxix
0.4.5 Summary of Compliance Points xxix

0.5 Acknowledgements . xxx

0.6 References . xxx

1. UML Summary . 1-1
Contents 1-1

1.1 Overview . 1-1

1.2 Primary Artifacts of the UML . 1-2
1.2.1 UML-defining Artifacts 1-2
1.2.2 Development Project Artifacts 1-2

1.3 Motivation to Define the UML. 1-3
1.3.1 Why We Model. 1-3
1.3.2 Industry Trends in Software 1-3

ii OMG-UML V1.1 March 1998

Contents

1.3.3 Prior to Industry Convergence 1-4

1.4 Goals of the UML . 1-4

1.5 Scope of the UML . 1-6
1.5.1 Outside the Scope of the UML 1-7

Programming Languages 1-7
Tools 1-7
Process 1-8

1.5.2 Comparing UML to Other Modeling Languages 1-8
1.5.3 Features of the UML . 1-9

1.6 UML - Past, Present, and Future . 1-11
1.6.1 UML 0.8 - 0.91. 1-11

Precursors to UML 1-11
Booch, Rumbaugh, and Jacobson Join Forces 1-11

1.6.2 UML Partners . 1-12
1.6.3 UML - Present and Future 1-13

Standardization of the UML 1-13
Industrialization 1-14
Future UML Evolution 1-14

2. UML Semantics . 2-1
Contents 2-1

2.1 Introduction . 2-2
2.1.1 Purpose and Scope . 2-2
2.1.2 Approach . 2-2

2.2 Language Architecture . 2-4
2.2.1 Four-Layer Metamodel Architecture 2-4
2.2.2 Package Structure . 2-5

2.3 Language Formalism . 2-7
2.3.1 Levels of Formalism. 2-7
2.3.2 Package Specification Structure 2-8

Abstract Syntax 2-8
Well-Formedness Rules 2-9
Semantics 2-9
Standard Elements 2-9
Notes 2-9

2.3.3 Use of a Constraint Language. 2-10
2.3.4 Use of Natural Language 2-10
2.3.5 Naming Conventions and Typography 2-10

2.4 Overview . 2-11

2.5 Core . 2-12
2.5.1 Overview . 2-12
2.5.2 Abstract Syntax . 2-12

Association 2-14
AssociationClass 2-15

OMG-UML V1.1 March 1998 iii

Contents

AssociationEnd 2-15
Attribute 2-17
BehavioralFeature 2-18
Class 2-19
Classifier 2-20
Constraint 2-20
DataType 2-21
Dependency 2-21
Element 2-21
ElementOwnership 2-21
Feature 2-22
GeneralizableElement 2-22
Generalization 2-23
Interface 2-24
Method 2-24
ModelElement 2-25
Namespace 2-26
Operation 2-26
Parameter 2-27
StructuralFeature 2-28

2.5.3 Well-Formedness Rules 2-28
Association 2-28
AssociationClass 2-28
AssociationEnd 2-29
Attribute 2-29
BehavioralFeature 2-29
Class 2-30
Classifier 2-31
Constraint 2-33
DataType 2-33
Dependency 2-33
Element 2-33
ElementOwnership 2-33
Feature 2-33
GeneralizableElement 2-33
Generalization 2-34
Interface 2-34
Method 2-35
ModelElement 2-35
Namespace 2-35
Operation 2-36
Parameter 2-36
StructuralFeature 2-37

2.5.4 Semantics . 2-37
Inheritance 2-37
Instantiation 2-38
Class 2-39
Interface 2-41
Association 2-42
AssociationClass 2-43
Miscellaneous 2-44

2.5.5 Standard Elements . 2-45
2.5.6 Notes . 2-45

iv OMG-UML V1.1 March 1998

Contents

2.6 Auxiliary Elements . 2-46
2.6.1 Overview . 2-46
2.6.2 Abstract Syntax . 2-46

Binding 2-48
Comment 2-49
Component 2-49
Dependency (from Core) 2-49
ModelElement (from Core) 2-50
Node 2-51
Presentation 2-51
Refinement 2-51
Trace 2-52
Usage 2-52
ViewElement 2-52

2.6.3 Well-Formedness Rules 2-53
Binding 2-53
Comment 2-53
Component 2-53
Dependency 2-53
ModelElement 2-53
Node 2-54
Presentation 2-54
Refinement 2-54
Trace 2-54
Usage 2-54
ViewElement 2-54

2.6.4 Semantics . 2-55
Template 2-55
ViewElement 2-55

2.6.5 Standard Elements . 2-56

2.7 Extension Mechanisms . 2-56
2.7.1 Overview . 2-56
2.7.2 Abstract Syntax . 2-58

Constraint 2-59
ModelElement (as extended) 2-60
Stereotype 2-61
TaggedValue 2-62

2.7.3 Well-Formedness Rules 2-62
Constraint 2-62
Stereotype 2-63
ModelElement 2-63
TaggedValue 2-64

2.7.4 Semantics . 2-64
2.7.5 Standard Elements . 2-65
2.7.6 Notes . 2-65

2.8 Data Types . 2-65
2.8.1 Overview . 2-65
2.8.2 Abstract Syntax . 2-65

AggregationKind 2-67

OMG-UML V1.1 March 1998 v

Contents

Boolean 2-67
BooleanExpression 2-67
ChangeableKind 2-67
Enumeration 2-67
EnumerationLiteral 2-67
Expression 2-67
Geometry 2-67
GraphicMarker 2-67
Integer 2-68
Mapping 2-68
MessageDirectionKind 2-68
Multiplicity 2-68
MultiplicityRange 2-68
Name 2-68
ObjectSetExpression 2-68
OperationDirectionKind 2-68
ParameterDirectionKind 2-69
Primitive 2-69
ProcedureExpression 2-69
PseudostateKind 2-69
ScopeKind 2-69
String 2-69
Structure 2-69
SynchronousKind 2-69
Time 2-69
TimeExpression 2-70
Uninterpreted 2-70
VisibilityKind 2-70

2.9 Overview . 2-70

2.10 Common Behavior . 2-71
2.10.1 Overview . 2-71
2.10.2 Abstract Syntax . 2-71

Action 2-74
ActionSequence 2-75
Argument 2-75
AttributeLink 2-75
CallAction 2-76
CreateAction 2-76
DestroyAction 2-76
DataValue 2-77
Exception 2-77
Instance 2-77
Link 2-78
LinkEnd 2-78
LinkObject 2-78
LocalInvocation 2-79
MessageInstance 2-79
Object 2-79
Reception 2-79
Request 2-80
ReturnAction 2-80
SendAction 2-80
Signal 2-81

vi OMG-UML V1.1 March 1998

Contents

TerminateAction 2-81
UninterpretedAction 2-81

2.10.3 Well-Formedness Rules 2-81
AttributeLink 2-81
CallAction 2-82
CreateAction 2-82
DestroyAction 2-82
DataValue 2-82
 Instance 2-82
Link 2-83
LinkEnd 2-84
LinkObject 2-84
MessageInstance 2-84
Object 2-84
 Signal 2-84
Reception 2-84
Request 2-84
SendAction 2-85
TerminateAction 2-85

2.10.4 Semantics . 2-85
Object and DataValue 2-85
Link 2-86
Request, Signal, Exception and Message Instance
2-86
Action 2-87

2.10.5 Standard Elements . 2-88

2.11 Collaborations . 2-88
2.11.1 Overview . 2-88
2.11.2 Abstract Syntax . 2-89

AssociationEndRole 2-89
AssociationRole 2-90
ClassifierRole 2-90
Collaboration 2-91
Interaction 2-92
Message 2-92

2.11.3 Well-Formedness Rules 2-92
AssociationEndRole 2-92
AssociationRole 2-93
ClassifierRole 2-93
Collaboration 2-93
Interaction 2-94
Message 2-94

2.11.4 Semantics . 2-95
Collaboration 2-95
Interaction 2-97

2.11.5 Standard Elements . 2-98
2.11.6 Notes . 2-98

2.12 Use Cases . 2-98
2.12.1 Overview . 2-98
2.12.2 Abstract Syntax . 2-99

OMG-UML V1.1 March 1998 vii

Contents

Actor 2-99
UseCase 2-100
UseCaseInstance 2-100

2.12.3 Well-FormednessRules 2-100
Actor 2-101
UseCase 2-101
UseCaseInstance 2-102

2.12.4 Semantics . 2-102
Actor 2-102
UseCase 2-103

2.12.5 Standard Elements . 2-106
2.12.6 Notes . 2-106

2.13 State Machines . 2-107
2.13.1 Overview . 2-107
2.13.2 Abstract Syntax . 2-107

CallEvent 2-108
ChangeEvent 2-109
CompositeState 2-109
Event 2-110
Guard 2-110
PseudoState 2-111
SignalEvent 2-111
SimpleState 2-111
State 2-111
StateMachine 2-112
StateVertex 2-113
SubmachineState 2-113
TimeEvent 2-114
Transition 2-114

2.13.3 Well-FormednessRules 2-115
CompositeState 2-115
Guard 2-115
LocalInvocation 2-115
PseudoState 2-115
StateMachine 2-116
Transition 2-117

2.13.4 Semantics . 2-118
StateMachine 2-119
State 2-122
CompositeState 2-122
Pseudostate 2-123
SubmachineState 2-124
Transitions 2-125
(Compound) Transition execution 2-126

2.13.5 Standard Elements . 2-127
2.13.6 Notes . 2-127

Example: Modeling Class Behavior 2-127
Example: State machine refinement 2-128
Subtyping 2-129
(Strict) Inheritance 2-130
General Refinement 2-130

viii OMG-UML V1.1 March 1998

Contents

Classical statecharts 2-131
2.13.7 Activity Models . 2-131

ActivityModel 2-133
ActionState 2-134
ActivityState 2-134
ClassifierInState 2-135
ObjectFlowState 2-135
Partition 2-136
PseudoState 2-136
ActivityModel 2-136
ActionState 2-137
ObjectFlowState 2-137
PseudoState 2-137
ActivityModel 2-138
ActionState 2-138
ObjectFlowState 2-138

2.14 Model Management . 2-139
2.14.1 Overview . 2-139
2.14.2 Abstract Syntax . 2-140

ElementReference 2-140
Model 2-141
Package 2-141
Subsystem 2-142

2.14.3 Well-Formedness Rules 2-142
ElementReference 2-142
Model 2-143
Package 2-143

2.14.4 Semantics . 2-146
Package 2-146
Subsystem 2-148
Model 2-150

2.14.5 Standard Elements . 2-150
2.14.6 Notes . 2-151

3. UML Notation Guide . 3-1
Contents 3-1

3.1 Introduction . 3-5

3.2 Graphs and Their Contents. 3-6

3.3 Drawing Paths . 3-7

3.4 Invisible Hyperlinks and the Role of Tools 3-7

3.5 Background Information . 3-8
3.5.1 Presentation Options. 3-8

3.6 String . 3-8
3.6.1 Semantics . 3-8
3.6.2 Notation . 3-8
3.6.3 Presentation Options. 3-9
3.6.4 Example . 3-9

OMG-UML V1.1 March 1998 ix

Contents

3.6.5 Mapping . 3-9

3.7 Name . 3-9
3.7.1 Semantics . 3-9
3.7.2 Notation . 3-9
3.7.3 Example . 3-10
3.7.4 Mapping . 3-10

3.8 Label . 3-10
3.8.1 Semantics . 3-10
3.8.2 Notation . 3-10
3.8.3 Presentation Options. 3-11
3.8.4 Example . 3-11

3.9 Keywords . 3-11

3.10 Expression . 3-11
3.10.1 Semantics . 3-11
3.10.2 Notation . 3-12
3.10.3 Example . 3-12
3.10.4 Mapping . 3-12
3.10.5 OCL Expressions . 3-12
3.10.6 Selected OCL Notation. 3-13
3.10.7 Example . 3-13

3.11 Note . 3-13
3.11.1 Semantics . 3-13
3.11.2 Notation . 3-13
3.11.3 Presentation Options. 3-14
3.11.4 Example . 3-14
3.11.5 Mapping . 3-14

3.12 Type-Instance Correspondence . 3-14

3.13 Packages and Model Organization 3-15
3.13.1 Semantics . 3-15
3.13.2 Notation . 3-16
3.13.3 Presentation Options. 3-16
3.13.4 Style Guidelines . 3-17
3.13.5 Example . 3-17
3.13.6 Mapping . 3-17

3.14 Constraint and Comment . 3-18
3.14.1 Semantics . 3-18
3.14.2 Notation . 3-18
3.14.3 Example . 3-19
3.14.4 Mapping . 3-20

x OMG-UML V1.1 March 1998

Contents

3.15 Element Properties . 3-20
3.15.1 Semantics . 3-20
3.15.2 Notation . 3-21
3.15.3 Presentation Options. 3-21
3.15.4 Style Guidelines . 3-21
3.15.5 Example . 3-21
3.15.6 Mapping . 3-21

3.16 Stereotypes . 3-22
3.16.1 Semantics . 3-22
3.16.2 Notation . 3-22
3.16.3 Example . 3-23
3.16.4 Mapping . 3-23

3.17 Class Diagram . 3-25
3.17.1 Semantics . 3-25
3.17.2 Notation . 3-25
3.17.3 Mapping . 3-25

3.18 Object Diagram . 3-26

3.19 Classifier . 3-26

3.20 Class. 3-26
3.20.1 Semantics . 3-26
3.20.2 Basic Notation . 3-26

References 3-27
3.20.3 Presentation Options. 3-27
3.20.4 Style Guidelines . 3-27
3.20.5 Example . 3-28
3.20.6 Mapping . 3-28

3.21 Name Compartment . 3-28
3.21.1 Notation . 3-28
3.21.2 Mapping . 3-29

3.22 List Compartment . 3-29
3.22.1 Notation . 3-29

Group properties 3-30
Compartment name 3-30

3.22.2 Presentation Options. 3-30
3.22.3 Example . 3-31
3.22.4 Mapping . 3-32

3.23 Attribute . 3-32
3.23.1 Semantics . 3-32
3.23.2 Notation . 3-33
3.23.3 Presentation Options. 3-34

OMG-UML V1.1 March 1998 xi

Contents

3.23.4 Style Guidelines . 3-34
3.23.5 Example . 3-34
3.23.6 Mapping . 3-35

3.24 Operation . 3-35
3.24.1 Operation . 3-35
3.24.2 Notation . 3-35
3.24.3 Presentation Options. 3-37
3.24.4 Style Guidelines . 3-37
3.24.5 Example . 3-37
3.24.6 Mapping . 3-37
3.24.7 Signal Reception. 3-38

3.25 Type Vs. Implementation Class . 3-38
3.25.1 Semantics . 3-38
3.25.2 Notation . 3-38
3.25.3 Example . 3-39
3.25.4 Mapping . 3-39

3.26 Interfaces . 3-39
3.26.1 Semantics . 3-39
3.26.2 Notation . 3-40
3.26.3 Example . 3-41
3.26.4 Mapping . 3-41

3.27 Parameterized Class (Template) . 3-41
3.27.1 Semantics . 3-41
3.27.2 Notation . 3-42
3.27.3 Presentation Options. 3-42
3.27.4 Example . 3-43
3.27.5 Mapping . 3-43

3.28 Bound Element. 3-43
3.28.1 Semantics . 3-43
3.28.2 Notation . 3-43
3.28.3 Style Guidelines . 3-44
3.28.4 Example . 3-44
3.28.5 Mapping . 3-44

3.29 Utility . 3-45
3.29.1 Semantics . 3-45
3.29.2 Notation . 3-45
3.29.3 Example . 3-45
3.29.4 Mapping . 3-45

3.30 Metaclass . 3-45
3.30.1 Semantics . 3-45

xii OMG-UML V1.1 March 1998

Contents

3.30.2 Notation . 3-46
3.30.3 Mapping . 3-46

3.31 Class Pathnames. 3-46
3.31.1 Notation . 3-46
3.31.2 Example . 3-46
3.31.3 Mapping . 3-47

3.32 Importing a Package. 3-47
3.32.1 Semantics . 3-47
3.32.2 Notation . 3-47
3.32.3 Example . 3-48
3.32.4 Mapping . 3-48

3.33 Object. 3-48
3.33.1 Semantics . 3-48
3.33.2 Notation . 3-48
3.33.3 Presentation Options. 3-49
3.33.4 Style Guidelines . 3-50
3.33.5 Variations . 3-50
3.33.6 Example . 3-50
3.33.7 Mapping . 3-50

3.34 Composite Object. 3-51
3.34.1 Semantics . 3-51
3.34.2 Notation . 3-51
3.34.3 Example . 3-51
3.34.4 Mapping . 3-52

3.35 Association. 3-52

3.36 Binary Association . 3-52
3.36.1 Semantics . 3-52
3.36.2 Notation . 3-52

association name 3-52
association class symbol 3-53

3.36.3 Presentation Options. 3-53
3.36.4 Style Guidelines . 3-53
3.36.5 Options . 3-53

Or-association 3-53
3.36.6 Example . 3-54
3.36.7 Mapping . 3-54

3.37 Association End . 3-55
3.37.1 Semantics . 3-55
3.37.2 Notation . 3-55

multiplicity 3-55
ordering 3-55

OMG-UML V1.1 March 1998 xiii

Contents

qualifier 3-56
navigability 3-56
aggregation indicator 3-56
rolename 3-56
interface specifier 3-56
changeability 3-57
visibility 3-57

3.37.3 Presentation Options. 3-57
3.37.4 Style Guidelines . 3-58
3.37.5 Example . 3-58
3.37.6 Mapping . 3-58

3.38 Multiplicity . 3-59
3.38.1 Semantics . 3-59
3.38.2 Notation . 3-59
3.38.3 Style Guidelines . 3-59
3.38.4 Example . 3-60
3.38.5 Mapping . 3-60

3.39 Qualifier . 3-60
3.39.1 Semantics . 3-60
3.39.2 Notation . 3-60
3.39.3 Presentation Options. 3-61
3.39.4 Style Guidelines . 3-61
3.39.5 Example . 3-61
3.39.6 Mapping . 3-61

3.40 Association Class . 3-62
3.40.1 Semantics . 3-62
3.40.2 Notation . 3-62
3.40.3 Presentation Options. 3-62
3.40.4 Style Guidelines . 3-62
3.40.5 Example . 3-63
3.40.6 Mapping . 3-63

3.41 N-ary Association . 3-63
3.41.1 Semantics . 3-63
3.41.2 Notation . 3-64
3.41.3 Style Guidelines . 3-64
3.41.4 Example . 3-64
3.41.5 Mapping . 3-65

3.42 Composition . 3-65
3.42.1 Semantics . 3-65
3.42.2 Notation . 3-65
3.42.3 Design Guidelines . 3-66
3.42.4 Example . 3-67

xiv OMG-UML V1.1 March 1998

Contents

3.42.5 Mapping . 3-68

3.43 Links . 3-68
3.43.1 Semantics . 3-68
3.43.2 Notation . 3-68

Implementation stereotypes 3-68
N-ary link 3-69

3.43.3 Example . 3-69
3.43.4 Mapping . 3-69

3.44 Generalization . 3-70
3.44.1 Semantics . 3-70
3.44.2 Notation . 3-70
3.44.3 Presentation Options. 3-70
3.44.4 Details . 3-70
3.44.5 Example . 3-72
3.44.6 Mapping . 3-73

3.45 Dependency . 3-74
3.45.1 Semantics . 3-74
3.45.2 Notation . 3-74
3.45.3 Presentation Options. 3-75
3.45.4 Example . 3-75
3.45.5 Mapping . 3-76

3.46 Derived Element . 3-76
3.46.1 Semantics . 3-76
3.46.2 Notation . 3-76
3.46.3 Style Guidelines . 3-76
3.46.4 Example . 3-77
3.46.5 Mapping . 3-77

3.47 Use Case Diagram . 3-77
3.47.1 Semantics . 3-77
3.47.2 Notation . 3-78
3.47.3 Example . 3-78
3.47.4 Mapping . 3-78

3.48 Use Case . 3-79
3.48.1 Semantics . 3-79
3.48.2 Notation . 3-79
3.48.3 Presentation Options. 3-79
3.48.4 Style Guidelines . 3-79
3.48.5 Mapping . 3-79

3.49 Actor . 3-79
3.49.1 Semantics . 3-79

OMG-UML V1.1 March 1998 xv

Contents

3.49.2 Notation . 3-79
3.49.3 Style Guidelines . 3-80
3.49.4 Mapping . 3-80

3.50 Use Case Relationships . 3-80
3.50.1 Semantics . 3-80
3.50.2 Notation . 3-80
3.50.3 Example . 3-81
3.50.4 Mapping . 3-81

3.51 Kinds of Interaction Diagrams . 3-81

3.52 Sequence Diagram . 3-82
3.52.1 Semantics . 3-82
3.52.2 Notation . 3-82
3.52.3 Presentation Options. 3-82
3.52.4 Example . 3-83
3.52.5 Mapping . 3-85

Sequence diagram 3-85

3.53 Object Lifeline . 3-86
3.53.1 Semantics . 3-86
3.53.2 Notation . 3-86
3.53.3 Example . 3-86
3.53.4 Mapping . 3-86

3.54 Activation. 3-87
3.54.1 Semantics . 3-87
3.54.2 Notation . 3-87
3.54.3 Example . 3-87
3.54.4 Mapping . 3-87

3.55 Message . 3-87
3.55.1 Semantics . 3-87
3.55.2 Notation . 3-88
3.55.3 Presentation options . 3-88
3.55.4 Mapping . 3-89

3.56 Transition Times . 3-89
3.56.1 Semantics . 3-89
3.56.2 Notation . 3-89
3.56.3 Example . 3-90
3.56.4 Mapping . 3-90

3.57 Collaboration . 3-90
3.57.1 Semantics . 3-90
3.57.2 Notation . 3-91

3.58 Collaboration Diagram. 3-91

xvi OMG-UML V1.1 March 1998

Contents

3.58.1 Semantics . 3-91
3.58.2 Notation . 3-91
3.58.3 Example . 3-92
3.58.4 Mapping . 3-93

3.59 Pattern Structure. 3-93
3.59.1 Semantics . 3-93
3.59.2 Notation . 3-93
3.59.3 Mapping . 3-94

3.60 Collaboration Contents. 3-94
3.60.1 Semantics . 3-94
3.60.2 Notation . 3-95

Methods 3-95
Classes 3-95

3.61 Interactions. 3-96
3.61.1 Semantics . 3-96
3.61.2 Notation . 3-96
3.61.3 Example . 3-96

3.62 Collaboration Roles . 3-96
3.62.1 Semantics . 3-96
3.62.2 Notation . 3-97
3.62.3 Presentation options . 3-97
3.62.4 Example . 3-97
3.62.5 Mapping . 3-97

3.63 Multiobject . 3-98
3.63.1 Semantics . 3-98
3.63.2 Notation . 3-98
3.63.3 Example . 3-99
3.63.4 Mapping . 3-99

3.64 Active object . 3-99
3.64.1 Semantics . 3-99
3.64.2 Notation . 3-99
3.64.3 Example . 3-100
3.64.4 Mapping . 3-100

3.65 Message flows . 3-101
3.65.1 Semantics . 3-101
3.65.2 Notation . 3-101

Control flow type 3-101
Message label 3-101
Predecessor 3-102
Sequence expression 3-102
Signature 3-103

OMG-UML V1.1 March 1998 xvii

Contents

3.65.3 Presentation Options. 3-104
3.65.4 Example . 3-104
3.65.5 Mapping . 3-104

3.66 Creation/Destruction Markers . 3-105
3.66.1 Semantics . 3-105
3.66.2 Notation . 3-105
3.66.3 Presentation options . 3-105
3.66.4 Example . 3-105
3.66.5 Mapping . 3-105

3.67 Statechart Diagram. 3-106
3.67.1 Semantics . 3-106
3.67.2 Notation . 3-106
3.67.3 Mapping . 3-107

3.68 States . 3-107
3.68.1 Semantics . 3-107
3.68.2 Notation . 3-108
3.68.3 Example . 3-109
3.68.4 Mapping . 3-109

3.69 Composite States . 3-109
3.69.1 Semantics . 3-109
3.69.2 Notation . 3-110
3.69.3 Example . 3-110
3.69.4 Mapping . 3-111

3.70 Events. 3-111
3.70.1 Semantics . 3-111
3.70.2 Notation . 3-112
3.70.3 Example . 3-113
3.70.4 Mapping . 3-113

3.71 Simple Transitions . 3-114
3.71.1 Semantics . 3-114
3.71.2 Notation . 3-114

Branches 3-115
Transition times 3-115

3.71.3 Example . 3-115
3.71.4 Mapping . 3-115

3.72 Complex Transitions . 3-116
3.72.1 Semantics . 3-116
3.72.2 Notation . 3-116
3.72.3 Example . 3-116
3.72.4 Mapping . 3-116

xviii OMG-UML V1.1 March 1998

Contents

3.73 Transitions to Nested States . 3-117
3.73.1 Semantics . 3-117
3.73.2 Notation . 3-117
3.73.3 Presentation options . 3-118

Stubbed transitions 3-118
3.73.4 Example . 3-118
3.73.5 Mapping . 3-119

3.74 Sending Messages . 3-120
3.74.1 Semantics . 3-120
3.74.2 Notation . 3-120
3.74.3 Example . 3-121
3.74.4 Mapping . 3-122

3.75 Internal Transitions . 3-123
3.75.1 Semantics . 3-123
3.75.2 Notation . 3-123
3.75.3 Mapping . 3-123

3.76 Activity Diagram . 3-124
3.76.1 Semantics . 3-124
3.76.2 Notation . 3-124
3.76.3 Example . 3-125
3.76.4 Mapping . 3-126

3.77 Action state . 3-126
3.77.1 Semantics . 3-126
3.77.2 Notation . 3-126
3.77.3 Presentation options . 3-126
3.77.4 Example . 3-126
3.77.5 Mapping . 3-127

3.78 Decisions . 3-127
3.78.1 Semantics . 3-127
3.78.2 Notation . 3-127
3.78.3 Example . 3-127
3.78.4 Mapping . 3-128

3.79 Swimlanes . 3-128
3.79.1 Semantics . 3-128
3.79.2 Notation . 3-128
3.79.3 Example . 3-129
3.79.4 Mapping . 3-129

3.80 Action-Object Flow Relationships 3-130
3.80.1 Semantics . 3-130
3.80.2 Notation . 3-130

OMG-UML V1.1 March 1998 xix

Contents

Object responsible for an action 3-130
Object flow 3-130
Object in state 3-130

3.80.3 Example . 3-131
3.80.4 Mapping . 3-131

3.81 Control Icons . 3-132
3.81.1 Stereotypes . 3-132

Signal receipt 3-132
Signal sending 3-132
Deferred events 3-133

3.81.2 Mapping . 3-134

3.82 Component Diagram . 3-135
3.82.1 Semantics . 3-135
3.82.2 Notation . 3-135
3.82.3 Example . 3-136
3.82.4 Mapping . 3-136

3.83 Deployment Diagrams . 3-136
3.83.1 Semantics . 3-136
3.83.2 Notation . 3-136
3.83.3 Example . 3-137
3.83.4 Mapping . 3-137

3.84 Nodes . 3-138
3.84.1 Semantics . 3-138
3.84.2 Notation . 3-138
3.84.3 Example . 3-138
3.84.4 Mapping . 3-139

3.85 Components . 3-139
3.85.1 Semantics . 3-139
3.85.2 Notation . 3-140
3.85.3 Example . 3-140
3.85.4 Mapping . 3-140

3.86 Location of Components and Objects within Objects 3-141
3.86.1 Semantics . 3-141
3.86.2 Notation . 3-141
3.86.3 Example . 3-141
3.86.4 Mapping . 3-141

4. UML Extensions . 4-1
 Contents 4-1

4.1 Overview . 4-2

4.2 Introduction . 4-2

4.3 Summary of Extension . 4-2

xx OMG-UML V1.1 March 1998

Contents

4.3.1 TaggedValues . 4-3
4.3.2 Constraints . 4-3
4.3.3 Prerequisite Extensions 4-3

4.4 Stereotypes and Notation . 4-3
4.4.1 Model, Package, and Subsystem Stereotypes . . 4-3

Use Case 4-4
Analysis 4-4
Design 4-4
Implementation 4-4
Notation 4-5

4.4.2 Class Stereotypes . 4-5
Entity 4-5
Control 4-6
Boundary 4-6
Notation 4-6

4.4.3 Association Stereotypes 4-6
Communicates 4-6
Subscribes 4-7
Notation 4-7

4.5 Well-Formedness Rules . 4-7
4.5.1 Generalization . 4-7
4.5.2 Association . 4-7

4.6 Introduction . 4-8

4.7 Summary of Extension . 4-8
4.7.1 Stereotypes . 4-8
4.7.2 Tagged Values. 4-9
4.7.3 Constraints . 4-9
4.7.4 Prerequisite Extensions 4-9

4.8 Stereotypes and Notation . 4-9
4.8.1 Model, Package, and Subsystem Stereotypes . . 4-9

Use Case 4-9
Object 4-9
Organization Unit 4-10
Work Unit 4-10
Notation 4-10

4.8.2 Class Stereotypes . 4-10
Worker 4-10
Case Worker 4-10
Internal Worker 4-11
Entity 4-11
Notation 4-11
Example of Alternate Notations 4-11

4.8.3 Association Stereotypes 4-12
Communicates 4-12
Subscribes 4-12
Notation 4-12

4.9 Well-Formedness Rules . 4-12

OMG-UML V1.1 March 1998 xxi

Contents

4.9.1 Generalization . 4-13
4.9.2 Association . 4-13

5. OA&D CORBAfacility Interface
Definition . 5-1

Contents 5-1

5.1 Service Description . 5-2
5.1.1 Tool Sharing Options . 5-3

General-purpose Repository 5-3
Model Transfer 5-3
Model Access 5-3

5.2 Mapping of UML Semantics to Facility Interfaces 5-4
5.2.1 Transformation of UML Semantics Metamodel into

Interfaces Metamodel . 5-4
Transformation for Association Classes 5-5
MOF Generic Interfaces 5-6
DataTypes for Interface 5-6

5.2.2 Mapping of Interface Model into MOF 5-7
5.2.3 Mapping from MOF to IDL 5-9

5.3 Facility Implementation Requirements 5-9

5.4 IDL Modules . 5-10
5.4.1 Reflective . 5-10
5.4.2 UMLModelManagement 5-63
5.4.3 UMLAuxiliaryElements 5-69
5.4.4 UMLCollaborations . 5-80
5.4.5 UMLCommonBehavior 5-101
5.4.6 UMLStateMachines . 5-134
5.4.7 UMLUseCases . 5-168

Appendix A. UML Standard Elements . A-1

Appendix B. Object Constraint Language B-1
Missing Rolenames B-11
Navigation over Associations with Multiplicity
Zero or One B-11
Combining Properties B-12
Shorthand for Collect B-21
OclType B-24
OclAny B-24
OclExpression B-25
Real B-26
Integer B-27
String B-28
Boolean B-29
Enumeration B-30
Collection B-30
Set B-32
Bag B-34

xxii OMG-UML V1.1 March 1998

Contents

Sequence B-36

Index . Index-1

 OMG-UML V1.2 May 1998 1-1

UML Summary 1

The UML Summary provides an introduction to the UML, discussing its motivation
and history.

Contents

This chapter contains the following topics.

1.1 Overview

The Unified Modeling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modeling and other non-software systems. The UML represents a collection of best
engineering practices that have proven successful in the modeling of large and
complex systems.

Topic Page

“Overview” 1-1

“Primary Artifacts of the UML” 1-2

“Motivation to Define the UML” 1-3

“Goals of the UML” 1-4

“Scope of the UML” 1-6

“UML - Past, Present, and Future” 1-11

1-2 OMG-UML V1.2 May 1998

1

1.2 Primary Artifacts of the UML

What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

1.2.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling Language
itself, this document consists of the UML Semantics, UML Notation Guide, and UML
Extensions sections.

1.2.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon
how a problem is attacked and how a corresponding solution is shaped. Abstraction,
the focus on relevant details while ignoring others, is a key to learning and
communicating. Because of this:

• Every complex system is best approached through a small set of nearly independent
views of a model. No single view is sufficient.

• Every model may be expressed at different levels of fidelity.

• The best models are connected to reality.

 In terms of the views of a model, the UML defines the following graphical diagrams:

• use case diagram

• class diagram

• behavior diagrams:

• statechart diagram

• activity diagram

• interaction diagrams:

•· sequence diagram

•· collaboration diagram

• implementation diagrams:

• component diagram

• deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the
canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or
development. The underlying model integrates these perspectives so that a self-
consistent system can be analyzed and built. These diagrams, along with supporting
documentation, are the primary artifacts that a modeler sees, although the UML and
supporting tools will provide for a number of derivative views. These diagrams are
further described in the UML Notation Guide (Section 3).

OMG-UML V1.2 Motivation to Define the UML May 1998 1-3

1

A frequently asked question has been, "Why doesn’t UML support data-flow
diagrams?" Simply put, data-flow and other diagram types that were not included in
the UML do not fit as cleanly into a consistent object-oriented paradigm. Activity
diagrams accomplish much of what people want from DFDs, and then some. Activity
diagrams are also useful for modeling workflow.

1.3 Motivation to Define the UML

This section describes several factors motivating the UML and includes why modeling
is essential, it highlights a few key trends in the software industry, and describes the
issues caused by divergence of modeling approaches.

1.3.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction
or renovation is as essential as having a blueprint for large building. Good models are
essential for communication among project teams and to assure architectural
soundness. We build models of complex systems because we cannot comprehend any
such system in its entirety. As the complexity of systems increase, so does the
importance of good modeling techniques. There are many additional factors of a
project’s success, but having a rigorous modeling language standard is one essential
factor. A modeling language must include:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become
essential. The UML is a well-defined and widely accepted response to that need. It is
the visual modeling language of choice for building object-oriented and component-
based systems.

1.3.2 Industry Trends in Software

As the strategic value of software increases for many companies, the industry looks for
techniques to automate the production of software. We look for techniques to improve
quality and reduce cost and time-to-market. These techniques include component
technology, visual programming, patterns, and frameworks. We also seek techniques
to manage the complexity of systems as they increase in scope and scale. In particular,
we recognize the need to solve recurring architectural problems, such as physical
distribution, concurrency, replication, security, load balancing, and fault tolerance.
Development for the worldwide web makes some things simpler, but exacerbates these
architectural problems.

Complexity will vary by application domain and process phase. One of the key
motivations in the minds of the UML developers was to create a set of semantics and
notation that adequately addresses all scales of architectural complexity, across all
domains.

1-4 OMG-UML V1.2 May 1998

1

1.3.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose
from among many similar modeling languages with minor difference in overall
expressive power. Most of the modeling languages shared a set of commonly accepted
concepts that are expressed slightly differently in various languages. This lack of
agreement discouraged new users from entering the OO market and from doing OO
modeling, without greatly expanding the power of modeling. Users longed for the
industry to adopt one, or a very few, broadly supported modeling languages suitable
for general-purpose usage.

Some vendors were discouraged from entering the OO modeling area because of the
need to support many similar, but slightly different, modeling languages. In particular,
the supply of add-on tools has been depressed because small vendors cannot afford to
support many different formats from many different front-end modeling tools. It is
important to the entire OO industry to encourage broadly based tools and vendors, as
well as niche products that cater to the needs of specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many
companies producing or using OO technology to endorse and support the development
of the UML.

While the UML does not guarantee project success, it does improve many things. For
example, it significantly lowers the perpetual cost of training and retooling when
changing between projects or organizations. It provides the opportunity for new
integration between tools, processes, and domains. But most importantly, it enables
developers to focus on delivering business value and gives them a paradigm to
accomplish this.

1.4 Goals of the UML

The primary design goals of the UML are as follows:

• Provide users with a ready-to-use, expressive visual modeling language to develop
and exchange meaningful models.

• Provide extensibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the OO tools market.

• Support higher-level development concepts such as collaborations, frameworks,
patterns, and components.

• Integrate best practices.

These goals are discussed in detail below.

OMG-UML V1.2 Goals of the UML May 1998 1-5

1

Provide users with a ready-to-use, expressive visual modeling language to
develop and exchange meaningful models

It is important that the OOAD standard supports a modeling language that can be used
"out of the box" to do normal general-purpose modeling tasks. If the standard merely
provides a meta-meta-description that requires tailoring to a particular set of modeling
concepts, then it will not achieve the purpose of allowing users to exchange models
without losing information or without imposing excessive work to map their models to
a very abstract form. The UML consolidates a set of core modeling concepts that are
generally accepted across many current methods and modeling tools. These concepts
are needed in many or most large applications, although not every concept is needed in
every part of every application. Specifying a meta-meta-level format for the concepts
is not sufficient for model users, because the concepts must be made concrete for real
modeling to occur. If the concepts in different application areas were substantially
different, then such an approach might work, but the core concepts needed by most
application areas are similar and should be supported directly by the standard without
the need for another layer.

Provide extensibility and specialization mechanisms to extend the core
concepts

OMG expects that the UML will be tailored as new needs are discovered and for
specific domains. At the same time, we do not want to force the common core concepts
to be redefined or re-implemented for each tailored area. Therefore, we believe that the
extension mechanisms should support deviations from the common case, rather than
being required to implement the core OOA&D concepts themselves. The core concepts
should not be changed more than necessary. Users need to be able to

• build models using core concepts without using extension mechanisms for most
normal applications,

• add new concepts and notations for issues not covered by the core,

• choose among variant interpretations of existing concepts, when there is no clear
consensus, and

• specialize the concepts, notations, and constraints for particular application
domains.

Be independent of particular programming languages and development
processes

The UML must and can support all reasonable programming languages. It also must
and can support various methods and processes of building models. The UML can
support multiple programming languages and development methods without excessive
difficulty.

Provide a formal basis for understanding the modeling language

Because users will use formality to help understand the language, it must be both
precise and approachable; a lack of either dimension damages its usefulness. The
formalisms must not require excessive levels of indirection or layering, use of low-
level mathematical notations distant from the modeling domain, such as set-theoretic
notation, or operational definitions that are equivalent to programming an

1-6 OMG-UML V1.2 May 1998

1

implementation. The UML provides a formal definition of the static format of the
model using a metamodel expressed in UML class diagrams. This is a popular and
widely accepted formal approach for specifying the format of a model and directly
leads to the implementation of interchange formats. UML expresses well-formedness
constraints in precise natural language plus Object Constraint Language expressions.
UML expresses the operational meaning of most constructs in precise natural
language. The fully formal approach taken to specify languages such as Algol-68 was
not approachable enough for most practical usage.

Encourage the growth of the OO tools market

By enabling vendors to support a standard modeling language used by most users and
tools, the industry benefits. While vendors still can add value in their tool
implementations, enabling interoperability is essential. Interoperability requires that
models can be exchanged among users and tools without loss of information. This can
only occur if the tools agree on the format and meaning of all of the relevant concepts.
Using a higher meta-level is no solution unless the mapping to the user-level concepts
is included in the standard.

Support higher-level development concepts such as collaborations,
frameworks, patterns, and components

Clearly defined semantics of these concepts is essential to reap the full benefit of OO
and reuse. Defining these within the holistic context of a modeling language is a
unique contribution of the UML.

Integrate best practices

A key motivation behind the development of the UML has been to integrate the best
practices in the industry, encompassing widely varying views based on levels of
abstraction, domains, architectures, life cycle stages, implementation technologies, etc.
The UML is indeed such an integration of best practices.

1.5 Scope of the UML

The Unified Modeling Language (UML) is a language for specifying, constructing,
visualizing, and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch,
OMT, and OOSE. The result is a single, common, and widely usable modeling
language for users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with
existing methods. As an example, the UML authors targeted the modeling of
concurrent, distributed systems to assure the UML adequately addresses these
domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a
standard process. Although the UML must be applied in the context of a process, it is
our experience that different organizations and problem domains require different
processes. (For example, the development process for shrink-wrapped software is an

OMG-UML V1.2 Scope of the UML May 1998 1-7

1

interesting one, but building shrink-wrapped software is vastly different from building
hard-real-time avionics systems upon which lives depend.) Therefore, the efforts
concentrated first on a common metamodel (which unifies semantics) and second on a
common notation (which provides a human rendering of these semantics). The UML
authors promote a development process that is use-case driven, architecture centric,
and iterative and incremental.

The UML specifies a modeling language that incorporates the object-oriented
community’s consensus on core modeling concepts. It allows deviations to be
expressed in terms of its extension mechanisms. The Unified Modeling Language
provides the following:

• Sufficient semantics and notation to address a wide variety of contemporary
modeling issues in a direct and economical fashion.

• Sufficient semantics to address certain expected future modeling issues, specifically
related to component technology, distributed computing, frameworks, and
executability.

• Extensibility mechanisms so individual projects can extend the metamodel for their
application at low cost. We don’t want users to adjust the UML metamodel itself.

• Extensibility mechanisms so that future modeling approaches could be grown on
top of the UML.

• Sufficient semantics to facilitate model interchange among a variety of tools.

• Sufficient semantics to specify the interface to repositories for the sharing and
storage of model artifacts.

1.5.1 Outside the Scope of the UML

Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming
language, in the sense of having all the necessary visual and semantic support to
replace programming languages. The UML is a language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system, but it does
draw the line as you move toward code. For example, complex branches and joins are
better expressed in a textual programming language. The UML does have a tight
mapping to a family of OO languages so that you can get the best of both worlds.

Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and
their interoperability are very dependent on a solid semantic and notation definition,
such as the UML provides. The UML defines a semantic metamodel, not a tool
interface, storage, or run-time model, although these should be fairly close to one
another.

1-8 OMG-UML V1.2 May 1998

1

The UML documents do include some tips to tool vendors on implementation choices,
but do not address everything needed. For example, they don’t address topics like
diagram coloring, user navigation, animation, storage/implementation models, or other
features.

Process

Many organizations will use the UML as a common language for its project artifacts,
but will use the same UML diagram types in the context of different processes. The
UML is intentionally process independent, and defining a standard process was not a
goal of the UML or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well-
defined and well-managed process is often a key discriminator between
hyperproductive projects and unsuccessful ones. The reliance upon heroic
programming is not a sustainable business practice. A process

• provides guidance as to the order of a team’s activities,

• specifies what artifacts should be developed,

• directs the tasks of individual developers and the team as a whole, and

• offers criteria for monitoring and measuring a project’s products and activities.

Processes by their very nature must be tailored to the organization, culture, and
problem domain at hand. What works in one context (shrink-wrapped software
development, for example) would be a disaster in another (hard-real-time, human-rated
systems, for example). The selection of a particular process will vary greatly,
depending on such things as problem domain, implementation technology, and skills of
the team.

Booch, OMT, OOSE, and many other methods have well-defined processes, and the
UML can support most methods. There has been some convergence on development
process practices, but there is not yet consensus for standardization. What will likely
result is general agreement on best practices and potentially the embracing of a process
framework, within which individual processes can be instantiated. Although the UML
does not mandate a process, its developers have recognized the value of a use-case
driven, architecture-centric, iterative, and incremental process, so were careful to
enable (but not require) this with the UML.

1.5.2 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure
from Booch, OMT, or OOSE, but rather the legitimate successor to all three. This
means that if you are a Booch, OMT, or OOSE user today, your training, experience,
and tools will be preserved, because the Unified Modeling Language is a natural
evolutionary step. The UML will be equally easy to adopt for users of many other
methods, but their authors must decide for themselves whether to embrace the UML
concepts and notation underneath their methods.

OMG-UML V1.2 Scope of the UML May 1998 1-9

1

The Unified Modeling Language is more expressive yet cleaner and more uniform than
Booch, OMT, OOSE, and other methods. This means that there is value in moving to
the Unified Modeling Language, because it will allow projects to model things they
could not have done before. Users of most other methods and modeling languages will
gain value by moving to the UML, since it removes the unnecessary differences in
notation and terminology that obscure the underlying similarities of most of these
approaches.

With respect to other visual modeling languages, including entity-relationship
modeling, BPR flow charts, and state-driven languages, the UML should provide
improved expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should
not take much relearning and will bring a clarification of the underlying semantics. If
the unification goals have been achieved, UML will be an obvious choice when
beginning new projects, especially as the availability of tools, books, and training
becomes widespread. Many visual modeling tools support existing notations, such as
Booch, OMT, OOSE, or others, as views of an underlying model; when these tools add
support for UML (as some already have) users will enjoy the benefit of switching their
current models to the UML notation without loss of information.

Existing users of any OO method can expect a fairly quick learning curve to achieve
the same expressiveness as they previously knew. One can quickly learn and use the
basics productively. More advanced techniques, such as the use of stereotypes and
properties, will require some study since they enable very expressive and precise
models needed only when the problem at hand requires them.

1.5.3 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of
existing Booch, OMT, and OOSE that didn’t work in practice, to add elements from
other methods that were more effective, and to invent new only when an existing
solution was not available. Because the UML authors were in effect designing a
language (albeit a graphical one), they had to strike a proper balance between
minimalism (everything is text and boxes) and over-engineering (having an icon for
every conceivable modeling element). To that end, they were very careful about
adding new things, because they didn’t want to make the UML unnecessarily complex.
Along the way, however, some things were found that were advantageous to add
because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including

• extensibility mechanisms (stereotypes, tagged values, and constraints),

• threads and processes,

• distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),

• patterns/collaborations,

• activity diagrams (for business process modeling),

• refinement (to handle relationships between levels of abstraction),

1-10 OMG-UML V1.2 May 1998

1

• interfaces and components, and

• a constraint language.

Many of these ideas were present in various individual methods and theories but UML
brings them together into a coherent whole. In addition to these major changes, there
are many other localized improvements over the Booch, OMT, and OOSE semantics
and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods,
and many other sources. These various sources incorporated many different elements
from many authors, including non-OO influences. The UML notation is a melding of
graphical syntax from various sources, with a number of symbols removed (because
they were confusing, superfluous, or little used) and with a few new symbols added.
The ideas in the UML come from the community of ideas developed by many different
people in the object-oriented field. The UML developers did not invent most of these
ideas; rather, their role was to select and integrate the best ideas from OO and
computer-science practices. The actual genealogy of the notation and underlying
detailed semantics is complicated, so it is discussed here only to provide context, not
to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other OO
methods. Extensions (e.g., stereotypes and their corresponding icons) can be defined
for various diagrams to support other modeling styles. Stereotypes, constraints, and
taggedValues are concepts added in UML that did not previously exist in the major
modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with
minor modifications. The Activity diagram, which shares much of the same
underlying semantics, is similar to the work flow diagrams developed by many sources
including many pre-OO sources.

Sequence diagrams were found in a variety of OO methods under a variety of names
(interaction, message trace, and event trace) and date to pre-OO days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction
graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of
patterns.

The implementation diagrams (component and deployment diagrams) are derived from
Booch’s module and process diagrams, but they are now component-centered, rather
than module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the
metamodel. User-defined icons can be associated with given stereotypes for tailoring
the UML to specific processes.

OMG-UML V1.2 UML - Past, Present, and Future May 1998 1-11

1

Object Constraint Language is used by UML to specify the semantics and is provided
as a language for expressions during modeling. OCL is an expression language having
its root in the Syntropy method and has been influenced by expression languages in
other methods like Catalysis. The informal navigation from OMT has the same intent,
where OCL is formalized and more extensive.

Each of these concepts has further predecessors and many other influences. We realize
that any brief list of influences is incomplete and we recognize that the UML is the
product of a long history of ideas in the computer science and software engineering
area.

1.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are
incorporating the UML as a standard into their development process and products,
which cover disciplines such as business modeling, requirements management,
analysis & design, programming, and testing.

1.6.1 UML 0.8 - 0.91

Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970
and the late 1980s as various methodologists experimented with different approaches
to object-oriented analysis and design. Several other techniques influenced these
languages, including Entity-Relationship modeling, the Specification & Description
Language (SDL, circa 1976, CCITT), and other techniques. The number of identified
modeling languages increased from less than 10 to more than 50 during the period
between 1989-1994. Many users of OO methods had trouble finding complete
satisfaction in any one modeling language, fueling the "method wars." By the mid-
1990s, new iterations of these methods began to appear, most notably Booch ’93, the
continued evolution of OMT, and Fusion. These methods began to incorporate each
other’s techniques, and a few clearly prominent methods emerged, including the
OOSE, OMT-2, and Booch ’93 methods. Each of these was a complete method, and
was recognized as having certain strengths. In simple terms, OOSE was a use-case
oriented approach that provided excellent support business engineering and
requirements analysis. OMT-2 was especially expressive for analysis and data-
intensive information systems. Booch ’93 was particularly expressive during design
and construction phases of projects and popular for engineering-intensive applications.

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim
Rumbaugh of Rational Software Corporation began their work on unifying the Booch
and OMT (Object Modeling Technique) methods. Given that the Booch and OMT
methods were already independently growing together and were collectively
recognized as leading object-oriented methods worldwide, Booch and Rumbaugh
joined forces to forge a complete unification of their work. A draft version 0.8 of the

1-12 OMG-UML V1.2 May 1998

1

Unified Method, as it was then called, was released in October of 1995. In the Fall of
1995, Ivar Jacobson and his Objectory company joined Rational and this unification
effort, merging in the OOSE (Object-Oriented Software Engineering) method. The
Objectory name is now used within Rational primarily to describe its UML-compliant
process, the Rational Objectory Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim
Rumbaugh, and Ivar Jacobson were motivated to create a unified modeling language
for three reasons. First, these methods were already evolving toward each other
independently. It made sense to continue that evolution together rather than apart,
eliminating the potential for any unnecessary and gratuitous differences that would
further confuse users. Second, by unifying the semantics and notation, they could
bring some stability to the object-oriented marketplace, allowing projects to settle on
one mature modeling language and letting tool builders focus on delivering more
useful features. Third, they expected that their collaboration would yield
improvements in all three earlier methods, helping them to capture lessons learned and
to address problems that none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

1. Enable the modeling of systems (and not just software) using object-oriented
concepts

2. Establish an explicit coupling to conceptual as well as executable artifacts

3. Address the issues of scale inherent in complex, mission-critical systems

4. Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike
designing a programming language. There are tradeoffs. First, one must bound the
problem: Should the notation encompass requirement specification? (Yes, partially.)
Should the notation extend to the level of a visual programming language? (No.)
Second, one must strike a balance between expressiveness and simplicity: Too simple
a notation will limit the breadth of problems that can be solved; too complex a notation
will overwhelm the mortal developer. In the case of unifying existing methods, one
must also be sensitive to the installed base: Make too many changes, and you will
confuse existing users. Resist advancing the notation, and you will miss the
opportunity of engaging a much broader set of users. The UML definition strives to
make the best tradeoffs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9
and 0.91 documents in June and October of 1996. During 1996, the UML authors
invited and received feedback from the general community. They incorporated this
feedback, but it was clear that additional focused attention was still required.

1.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their
business. A Request for Proposal (RFP) issued by the Object Management Group
(OMG) provided the catalyst for these organizations to join forces around producing a

OMG-UML V1.2 UML - Past, Present, and Future May 1998 1-13

1

joint RFP response. Rational established the UML Partners consortium with several
organizations willing to dedicate resources to work toward a strong UML definition.
Those contributing most to the UML definition included: Digital Equipment Corp., HP,
i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle,
Rational Software, TI, and Unisys. This collaboration produced UML, a modeling
language that was well defined, expressive, powerful, and generally applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich
Technologies; and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the partners
produced the revised UML 1.1 response. The focus of the UML 1.1 release was to
improve the clarity of the UML 1.0 semantics and to incorporate contributions from
the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative
team effort. The UML Partners have worked hard as a team to define UML. While
each partner came in with their own perspective and areas of interest, the result has
benefited from each of them and from the diversity of their experiences. The UML
Partners contributed a variety of expert perspectives, including, but not limited to, the
following: OMG and RM-ODP technology perspectives, business modeling, constraint
language, state machine semantics, types, interfaces, components, collaborations,
refinement, frameworks, distribution, and metamodel.

1.6.3 UML - Present and Future

The UML is nonproprietary and open to all. It addresses the needs of user and
scientific communities, as established by experience with the underlying methods on
which it is based. Many methodologists, organizations, and tool vendors have
committed to use it. Since the UML builds upon similar semantics and notation from
Booch, OMT, OOSE, and other leading methods and has incorporated input from the
UML partners and feedback from the general public, widespread adoption of the UML
should be straightforward.

There are two aspects of "unified" that the UML achieves: First, it effectively ends
many of the differences, often inconsequential, between the modeling languages of
previous methods. Secondly, and perhaps more importantly, it unifies the perspectives
among many different kinds of systems (business versus software), development
phases (requirements analysis, design, and implementation), and internal concepts.

Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard,
since it is based on the modeling languages of leading OO methods. The UML is
ready for widespread use. This document is suitable as the primary source for authors
writing books and training materials, as well as developers implementing visual
modeling tools. Additional collateral, such as articles, training courses, examples, and
books, will soon make the UML very approachable for a wide audience.

1-14 OMG-UML V1.2 May 1998

1

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The
number of endorsing organizations is expected to grow significantly over time. These
organizations will continue to encourage the use of the Unified Modeling Language by
making the definition readily available and by encouraging other methodologists, tool
vendors, training organizations, and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the
increasing demand for supporting tools, books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future
improvements in modeling concepts. We have addressed many leading-edge
techniques, but expect additional techniques to influence future versions of the UML.
Many advanced techniques can be defined using UML as a base. The UML can be
extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including
those for visual modeling, simulation, and development environments. As interesting
tool integrations are developed, implementation standards based on the UML will
become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the
use of OO. Component-based development is an approach worth mentioning. It is
synergistic with traditional object-oriented techniques. While reuse based on
components is becoming increasingly widespread, this does not mean that component-
based techniques will replace object-oriented techniques. There are only subtle
differences between the semantics of components and classes.

 OMG-UML V1.2 May 1998 2-1

 UML Semantics 2

The UML Semantics section is primarily intended as a comprehensive and precise
specification of the UML’s semantic constructs.

Contents

This chapter contains the following sections.

Section Title Page

Part 1 - Background

“Introduction” 2-2

“Language Architecture” 2-4

“Language Formalism” 2-7

Part 2 - Foundation

“Overview” 2-11

“Core” 2-12

“Auxiliary Elements” 2-46

“Extension Mechanisms” 2-56

“Data Types” 2-65

Part 3 - Behavioral Elements

“Overview” 2-70

“Common Behavior” 2-71

“Collaborations” 2-88

“Use Cases” 2-98

2-2 OMG-UML V1.2 May 1998

2

Part 1 - Background

2.1 Introduction

2.1.1 Purpose and Scope

The primary audience for this detailed description consists of the OMG, other
standards organizations, tool builders, metamodelers, methodologists, and expert
modelers. The authors assume familiarity with metamodeling and advanced object
modeling. Readers looking for an introduction to the UML or object modeling should
consider another source.

Although the document is meant for advanced readers, it is also meant to be easily
understood by its intended audience. Consequently, it is structured and written to
increase readability. The structure of the document, like the language, builds on
previous concepts to refine and extend the semantics. In addition, the document is
written in a ‘semi-formal’ style that combines natural and formal languages in a
complementary manner.

This section specifies semantics for structural and behavioral object models. Structural
models (also known as static models) emphasize the structure of objects in a system,
including their classes, interfaces, attributes and relations. Behavioral models (also
known as dynamic models) emphasize the behavior of objects in a system, including
their methods, interactions, collaborations, and state histories.

This section provides complete semantics for all modeling notations described in the
UML Notation Guide (Chapter 3). This includes support for a wide range of diagram
techniques: class diagram, object diagram, use case diagram, sequence diagram,
collaboration diagram, state diagram, activity diagram, and deployment diagram. The
UML Notation Guide includes a summary of the semantics sections that are relevant to
each diagram technique.

2.1.2 Approach

This section emphasizes language architecture and formal rigor. The architecture of the
UML is based on a four-layer metamodel structure, which consists of the following
layers: user objects, model, metamodel, and meta-metamodel. This document is

“State Machines” 2-107

Part 4 - General Mechanisms

“Model Management” 2-140

Section Title Page

OMG-UML V1.2 Introduction March 1998 2-3

2

primarily concerned with the metamodel layer, which is an instance of the meta-
metamodel layer. For example, Class in the metamodel is an instance of MetaClass in
the meta-metamodel. The metamodel architecture of UML is discussed further in
“Language Architecture” on page 2-4.

The UML metamodel is a logical model and not a physical (or implementation) model.
The advantage of a logical metamodel is that it emphasizes declarative semantics, and
suppresses implementation details. Implementations that use the logical metamodel
must conform to its semantics, and must be able to import and export full as well as
partial models. However, tool vendors may construct the logical metamodel in various
ways, so they can tune their implementations for reliability and performance. The
disadvantage of a logical model is that it lacks the imperative semantics required for
accurate and efficient implementation. Consequently, the metamodel is accompanied
with implementation notes for tool builders.

UML is also structured within the metamodel layer. The language is decomposed into
several logical packages: Foundation, Behavioral Elements, and General Mechanisms.
These packages in turn are decomposed into subpackages. For example, the
Foundation package consists of the Core, Auxiliary Elements, Extension Mechanisms,
and Data Types subpackages. The structure of the language is fully described in
“Language Architecture” on page 2-4.

The metamodel is described in a semi-formal manner using these views:

• Abstract syntax

• Well-formedness rules

• Semantics

The abstract syntax is provided as a model described in a subset of UML, consisting of
a UML class diagram and a supporting natural language description. (In this way the
UML bootstraps itself in a manner similar to how a compiler is used to compile itself.)
The well-formedness rules are provided using a formal language (Object Constraint
Language) and natural language (English). Finally, the semantics are described
primarily in natural language, but may include some additional notation, depending on
the part of the model being described. The adaptation of formal techniques to specify
the language is fully described in “Language Formalism” on page 2-7.

In summary, the UML metamodel is described in a combination of graphic notation,
natural language and formal language. We recognize that there are theoretical limits to
what one can express about a metamodel using the metamodel itself. However, our
experience suggests that this combination strikes a reasonable balance between
expressiveness and readability.

2-4 OMG-UML V1.2 May 1998

2

2.2 Language Architecture

2.2.1 Four-Layer Metamodel Architecture

The UML metamodel is defined as one of the layers of a four-layer metamodeling
architecture. This architecture is a proven infrastructure for defining the precise
semantics required by complex models. There are several other advantages associated
with this approach:

• It validates core constructs by recursively applying them to successive metalayers.

• It provides an architectural basis for defining future UML metamodel extensions.

• It furnishes an architectural basis for aligning the UML metamodel with other
standards based on a four-layer metamodeling architecture (e.g., the OMG Meta-
Object Facility, CDIF).

The generally accepted conceptual framework for metamodeling is based on an
architecture with four layers:

• meta-metamodel

• metamodel

• model

• user objects

These functions of these layers are summarized in the following table.

The meta-metamodeling layer forms the foundation for the metamodeling architecture.
The primary responsibility of this layer is to define the language for specifying a
metamodel. A meta-metamodel defines a model at a higher level of abstraction than a

Table 2-1 Four Layer Metamodeling Architecture

Layer Description Example

meta-metamodel The infrastructure for a
metamodeling architecture.
Defines the language for
specifying metamodels.

MetaClass, MetaAttribute,
MetaOperation

metamodel An instance of a meta-
metamodel. Defines the
language for specifying a
model.

Class, Attribute, Operation,
Component

model An instance of a metamodel.
Defines a language to
describe an information
domain.

StockShare, askPrice,
sellLimitOrder,
StockQuoteServer

user objects (user data) An instance of a model.
Defines a specific
information domain.

<Acme_Software_Share_987
89>, 654.56,
sell_limit_order,
<Stock_Quote_Svr_32123>

OMG-UML V1.2 Language Architecture March 1998 2-5

2

metamodel, and is typically more compact than the metamodel that it describes. A
meta-metamodel can define multiple metamodels, and there can be multiple meta-
metamodels associated with each metamodel1.

While it is generally desirable that related metamodels and meta-metamodels share
common design philosophies and constructs, this is not a strict rule. Each layer needs
to maintain its own design integrity. Examples of meta-metaobjects in the meta-
metamodeling layer are: MetaClass, MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. The primary responsibility of the
metamodel layer is to define a language for specifying models. Metamodels are
typically more elaborate than the meta-metamodels that describe them, especially when
they define dynamic semantics. Examples of metaobjects in the metamodeling layer
are: Class, Attribute, Operation, and Component.

A model is an instance of a metamodel. The primary responsibility of the model layer
is to define a language that describes an information domain. Examples of objects in
the modeling layer are: StockShare, askPrice, sellLimitOrder, and StockQuoteServer.

User objects (a.k.a. user data) are an instance of a model. The primary responsibility of
the user objects layer is to describe a specific information domain. Examples of objects
in the user objects layer are: <Acme_Software_Share_98789>, 654.56,
sell_limit_order, and <Stock_Quote_Svr_32123>.

The UML metamodel has been architected so that it can be instantiated from the OMG
Meta Object Facility (MOF) meta-metamodel. The relationship of the UML metamodel
to the MOF meta-metamodel is described in “Architectural Alignment with Other
Technologies” in the Preface.

2.2.2 Package Structure

The UML metamodel is moderately complex. It is composed of approximately 90
metaclasses and over 100 metaassociations, and includes almost 50 stereotypes. The
complexity of the metamodel is managed by organizing it into logical packages. These
packages group metaclasses that show strong cohesion with each other and loose
coupling with metaclasses in other packages. The UML metamodel is decomposed into
the top-level packages shown in Figure 2-1 on page 2-6.

1. If there is not an explicit meta-metamodel, there is an implicit meta-metamodel associated
with every metamodel.

2-6 OMG-UML V1.2 May 1998

2

Figure 2-1 Top-Level Packages

The Foundation and Behavioral Elements packages are further decomposed as shown
in Figure 2-2 and Figure 2-3 on page 2-7.

Figure 2-2 Foundation Packages

Behavioral
Elements

Model
Management

Foundation

CoreAuxiliary
Elements

Data Types

Extension
Mechanisms

OMG-UML V1.2 Language Formalism March 1998 2-7

2

Figure 2-3 Behavioral Elements Packages

The functions and contents of these packages are described in this chapter’s Part 3,
Behavioral Elements.

2.3 Language Formalism

This section contains a description of the techniques used to describe UML. The
specification adapts formal techniques to improve precision while maintaining
readability. The technique describes the UML metamodel in three views using both
text and graphic presentations. The benefits of adapting formal techniques include:

• the correctness of the description is improved,

• ambiguities and inconsistencies are reduced,

• the architecture of the metamodel is validated by a complementary technique, and

• the readability of the description is increased.

It is important to note that the current description is not a completely formal
specification of the language because to do so would have added significant
complexity without clear benefit. In addition, the state of the practice in formal
specifications does not yet address some of the more difficult language issues that
UML introduces.

The structure of the language is nevertheless given a precise specification, which is
required for tool interoperability. The dynamic semantics are described using natural
language, although in a precise way so they can easily be understood. Currently, the
dynamic semantics are not considered essential for the development of tools; however,
this will probably change in the future.

Use Cases State MachinesCollaborations

Common
Behavior

2-8 OMG-UML V1.2 May 1998

2

2.3.1 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the
language and then to describe its static and dynamic semantics. The syntax defines
what constructs exist in the language and how the constructs are built up in terms of
other constructs. Sometimes, especially if the language has a graphic syntax, it is
important to define the syntax in a notation independent way (i.e., to define the
abstract syntax of the language). The concrete syntax is then defined by mapping the
notation onto the abstract syntax. The syntax is described in the Abstract Syntax
sections.

The static semantics of a language define how an instance of a construct should be
connected to other instances to be meaningful, and the dynamic semantics define the
meaning of a well-formed construct. The meaning of a description written in the
language is defined only if the description is well formed (i.e., if it fulfills the rules
defined in the static semantics). The static semantics are found in sections headed
Well-Formedness Rules. The dynamic semantics are described under the heading
Semantics. In some cases, parts of the static semantics are also explained in the
Semantics section for completeness.

The specification uses a combination of languages - a subset of UML, an object
constraint language, and precise natural language to describe the abstract syntax and
semantics of the full UML. The description is self-contained; no other sources of
information are needed to read the document2. Although this is a metacircular
description3, understanding this document is practical since only a small subset of
UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify
language constructs, using some of the capabilities of UML. The main language
constructs are reified into metaclasses in the metamodel. Other constructs, in essence
being variants of other ones, are defined as stereotypes of metaclasses in the
metamodel. This mechanism allows the semantics of the variant construct to be
significantly different from the base metaclass. Another more "lightweight" way of
defining variants is to use metaattributes. As an example, the aggregation construct is
specified by an attribute of the metaclass AssociationEnd, which is used to indicate if
an association is an ordinary aggregate, a composite aggregate, or a common
association.

2.3.2 Package Specification Structure

This section provides information for each package in the UML metamodel. Each
package has one or more of the following subsections.

2. Although a comprehension of the UML’s four-layer metamodel architecture and its under-
lying meta-metamodel is helpful, it is not essential to understand the UML semantics.

3. In order to understand the description of the UML semantics, you must understand some
UML semantics.

OMG-UML V1.2 Language Formalism March 1998 2-9

2

Abstract Syntax

The abstract syntax is presented in a diagram showing the metaclasses defining the
constructs and their relationships. The diagram also presents some of the well-
formedness rules, mainly the multiplicity requirements of the relationships, and
whether or not the instances of a particular sub-construct must be ordered. Finally, a
short informal description in natural language describing each construct is supplied.
The first paragraph of each of these descriptions is a general presentation of the
construct which sets the context, while the following paragraphs give the informal
definition of the metaclass specifying the construct in UML. For each metaclass, its
attributes are enumerated together with a short explanation. Furthermore, the opposite
role names of associations connected to the metaclass are also listed in the same way.

Well-Formedness Rules

The static semantics of each construct in UML, except for multiplicity and ordering
constraints, are defined as a set of invariants of an instance of the metaclass. These
invariants have to be satisfied for the construct to be meaningful. The rules thus
specify constraints over attributes and associations defined in the metamodel. Each
invariant is defined by an OCL expression together with an informal explanation of the
expression. In many cases, additional operations on the metaclasses are needed for the
OCL expressions. These are then defined in a separate subsection after the well-
formedness rules for the construct, using the same approach as the abstract syntax: an
informal explanation followed by the OCL expression defining the operation.

The statement ‘No extra well-formedness rules’ means that all current static semantics
are expressed in the superclasses together with the multiplicity and type information
expressed in the diagrams.

Semantics

The meanings of the constructs are defined using natural language. The constructs are
grouped into logical chunks that are defined together. Since only concrete metaclasses
have a true meaning in the language, only these are described in this section.

Standard Elements

Stereotypes of the metaclasses defined previously in the section are listed, with an
informal definition in natural language. Well-formedness rules, if any, for the
stereotypes are also defined in the same manner as in the Well-Formedness Rules
subsection.

Other kinds of standard elements (constraints and tagged-values) are listed, and are
defined in the Standard Elements appendix.

Notes

This subsection may contain rationales for metamodeling decisions, pragmatics for the
use of the constructs, and examples, all written in natural language.

2-10 OMG-UML V1.2 May 1998

2

2.3.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Object
Constraint Language Specification (Chapter 4), for expressing well-formedness rules.
The following conventions are used to promote readability:

• Self - which can be omitted as a reference to the metaclass defining the context of
the invariant, has been kept for clarity.

• In expressions where a collection is iterated, an iterator is used for clarity, even
when formally unnecessary. The type of the iterator is usually omitted, but included
when it adds to understanding.

• The ‘collect’ operation is left implicit where this is practical.

2.3.4 Use of Natural Language

We have striven to be precise in our use of natural language, in this case English. For
example, the description of UML semantics includes phrases such as "X provides the
ability to…" and "X is a Y." In each of these cases, the usual English meaning is
assumed, although a deeply formal description would demand a specification of the
semantics of even these simple phrases.

The following general rules apply:

• When referring to an instance of some metaclass, we often omit the word
"instance". For example, instead of saying "a Class instance" or "an Association
instance", we just say "a Class" or "an Association". By prefixing it with an "a" or
"an", assume that we mean "an instance of". In the same way, by saying something
like "Elements" we mean "a set (or the set) of instances of the metaclass Element".

• Every time a word coinciding with the name of some construct in UML is used, that
construct is referred.

• Terms including one of the prefixes sub, super, or meta are written as one word
(e.g., metamodel, subclass).

2.3.5 Naming Conventions and Typography

In the description of UML, the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel,
normal text is used.

• Metaclass names that consist of appended nouns/adjectives, initial embedded
capitals are used (e.g., ‘ModelElement,’ ‘StructuralFeature’).

• Names of metaassociations/association classes are written in the same manner as
metaclasses (e.g., ‘ElementReference’).

• Initial embedded capital is used for names that consist of appended nouns/adjectives
(e.g., ‘ownedElement,’ ‘allContents’).

• Boolean metaattribute names always start with ‘is’ (e.g., ‘isAbstract’).

OMG-UML V1.2 Overview March 1998 2-11

2

• While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the
exact names as they appear in the model are always used.

• Names of stereotypes are delimited by guillemets and begin with lowercase (e.g.,
«type»).

Part 2 - Foundation Packages
The Foundation package is the infrastructure for UML. The Foundation package is
decomposed into several subpackages: Core, Auxiliary Elements, Extension
Mechanisms, and Data Types.

2.4 Overview

Figure 2-4 illustrates the Foundation Packages. The Core package specifies the basic
concepts required for an elementary metamodel and defines an architectural backbone
for attaching additional language constructs, such as metaclasses, metaassociations,
and metaattributes. The Auxiliary Elements package defines additional constructs that
extend the Core to support advanced concepts such as dependencies, templates,
physical structures and view elements. The Extension Mechanisms package specifies
how model elements are customized and extended with new semantics. The Data
Types package defines basic data structures for the language.

Figure 2-4 Foundation Packages

CoreAuxiliary
Elements

Data Types

Extension
Mechanisms

2-12 OMG-UML V1.2 May 1998

2

2.5 Core

2.5.1 Overview

The Core package is the most fundamental of the subpackages that compose the UML
Foundation package. It defines the basic abstract and concrete constructs needed for
the development of object models. Abstract metamodel constructs are not instantiable
and are commonly used to reify key constructs, share structure, and organize the
model. Concrete metamodel constructs are instantiable and reflect the modeling
constructs used by object modelers (cf. metamodelers). Abstract constructs defined in
the Core include ModelElement, GeneralizableElement, and Classifier. Concrete
constructs specified in the Core include Class, Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and
defines an architectural backbone ("skeleton") for attaching additional language
constructs such as metaclasses, metaassociations, and metaattributes. Although the
Core package contains sufficient semantics to define the remainder of UML, it is not
the UML meta-metamodel. It is the underlying base for the Foundation package, which
in turn serves as the infrastructure for the rest of language. In other packages, the Core
is extended by adding metaclasses to the backbone using generalizations and
associations.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Core package.

2.5.2 Abstract Syntax

The abstract syntax for the Core package is expressed in graphic notation in the
following figures. Figure 2-5 on page 2-13 shows the model elements that form the
structural backbone of the metamodel. Figure 2-6 on page 2-14 shows the model
elements that define relationships.

OMG-UML V1.2 Core March 1998 2-13

2

Figure 2-5 Core Package - Backbone

DataType

Element

Generalizab leElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute
initialValue : Expression * Method

body : ProcedureExpression
specification

1
Operation

specification : Uninterpreted
isPolymorphic : Boolean
concurrency : CallConcurrencyKind

*1

ElementOwnership
vis ibility : Vis ibilityKind

Class
isActive : Boolean

namespace

0..1

Namespace

ownedElement

*

constraint*

Constraint
body : BooleanExpression

constrainedElement

1..* {ordered}

ModelElement
name : Name

0..1

*

*

1..*

Interface

0..1

BehavioralFeature
isQuery : Boolean

parameter*

{ordered}

feature
*{ordered}

Feature
ownerScope : ScopeKind
vis ibility : VisibilityKind

owner

1

feature
*

{ordered}

StructuralFeature
multiplicity : Multiplicity
changeab le : Changeab leKind
targetScope : ScopeKind

type
1

type1

*

Parameter
defaultValue : Expression
kind : ParameterDirectionKind

0..1

*

realization

*

Classifier

*

1

*1

1

*

*

*

specification

*

2-14 OMG-UML V1.2 May 1998

2

Figure 2-6 Core Package - Relationships

Association

An association defines a semantic relationship between classifiers. The instances of an
association are a set of tuples relating instances of the classifiers. Each tuple value may
appear at most once.

In the metamodel, an Association is a declaration of a semantic relationship between
Classifiers, such as Classes. An Association has at least two AssociationEnds. Each
end is connected to a Classifier - the same Classifier may be connected to more than
one AssociationEnds in the same Association. The Association represents a set of
connections among instances of the Classifiers. An instance of an Association is a
Link, which is a tuple of Instances drawn from the corresponding Classifiers.

Attributes

name The name of the Association which, in combination with its associated
Classifiers, must be unique within the enclosing namespace (usually a
Package).

{ordered}

AssociationClass

Class

generalization* subtype 1

supertype 1

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

specialization*

Generalization

discriminator : Name * 1

1*

Namespace

connection

2..* 1
Association

qualif ier * {ordered}

Attribute

associationEnd 0..1

type

1

associationEnd

*

*

AssociationEnd

isNavigable : Boolean
isOrdered : Boolean
aggregation : AggregationKind
multiplicity : Multiplicity
changeable : ChangeableKind
targetScope : ScopeKind

2..* 1

*

0..1

specif ication

*

Classifier

1 *

**

client *

requirement

*

supplier

*

ModelElement

name : Name

provis ion

*

Dependency

description : String

*

*

*

*

participant

OMG-UML V1.2 Core March 1998 2-15

2

Associations

AssociationClass

An association class is an association that is also a class. It not only connects a set of
classifiers but also defines a set of features that belong to the relationship itself and not
any of the classifiers.

In the metamodel an AssociationClass is a declaration of a semantic relationship
between Classifiers which has a set of features of its own. AssociationClass is a
subclass of both Association and Class (i.e., each AssociationClass is both an
Association and a Class); therefore, an AssociationClass has both AssociationEnds and
Features.

AssociationEnd

An association end is an endpoint of an association, which connects the association to
a classifier. Each association end is part of one association. The association-ends of
each association are ordered.

In the metamodel an AssociationEnd is part of an Association and specifies the
connection of an Association to a Classifier. It has a name and defines a set of
properties of the connection (e.g., which Classifier the Instances must conform to, their
multiplicity, and if they may be reached from another Instance via this connection).

In the following descriptions when referring to an association end for a binary
association, the source end is the other end. The target end is the one whose properties
are being discussed.

connection An Association consists of at least two AssociationEnds, each of which
represents a connection of the association to a Classifier. Each
AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is
defined by its AssociationEnds.

2-16 OMG-UML V1.2 May 1998

2

Attributes

aggregation When placed on a target end, specifies whether the target end is
an aggregation with respect to the source end. Only one end can
be an aggregation. Possibilities are:

• none - The end is not an aggregate.

• aggregate - The end is an aggregate; therefore, the other end is
a part and must have the aggregation value of none. The part
may be contained in other aggregates.

• composite - The end is a composite; therefore, the other end is
a part and must have the aggregation value of none. The part is
strongly owned by the composite and may not be part of any
other composite.

changeable When placed on a target end, specifies whether an instance of the
Association may be modified from the source end. Possibilities
are:

• none - No restrictions on modification.

• frozen - No links may be added after the creation of the source
object.

• addOnly - Links may be added at any time from the source
object, but once created a link may not be removed before at
least one participating object is destroyed.

isOrdered When placed on a target end, specifies whether the set of links
from the source instance to the target instance is ordered. The
ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the
objects or links themselves. A set of ordered links can be scanned
in order. The alternative is that the links form a set with no
inherent ordering.

isNavigable When placed on a target end, specifies whether traversal from a
source instance to its associated target instances is possible.
Specification of each direction across the Association is
independent.

multiplicity When placed on a target end, specifies the number of target
instances that may be associated with a single source instance
across the given Association.

OMG-UML V1.2 Core March 1998 2-17

2

Associations

Attribute

An attribute is a named slot within a classifier that describes a range of values that
instances of the classifier may hold.

In the metamodel an Attribute is a named piece of the declared state of a Classifier,
particularly the range of values that Instances of the Classifier may hold.

(The following list includes properties from StructuralFeature which has no other
subclasses in the current metamodel.)

name The role name of the end. When placed on a target end, provides
a name for traversing from a source instance across the
association to the target instance or set of target instances. It
represents a pseudo-attribute of the source classifier (i.e., it may
be used in the same way as an Attribute) and must be unique with
respect to Attributes and other pseudo-attributes of the source
Classifier.

targetScope Specifies whether the targets are ordinary Instances or are
Classifiers. Possibilities are:

• instance - Each line of the Association contains a reference to
an Instance of the target Classifier. This is the setting for a
normal Association.

• classifier - Each link of the Association contains a reference to
the target Classifier itself. This represents a way to store meta-
information.

qualifier An optional list of qualifier Attributes for the end. If the list is
empty, then the Association is not qualified.

specification Designates zero or more Classifiers that specify the Operations
that may be applied to an Instance accessed by the
AssociationEnd across the Association. These determine the
minimum interface that must be realized by the actual Classifier
attached to the end to support the intent of the Association. May
be an Interface or another Classifier.

type Designates the Classifier connected to the end of the Association.
It may not be an Interface because they have no physical
structure.

2-18 OMG-UML V1.2 May 1998

2

Attributes

Associations

BehavioralFeature

A behavioral feature refers to a dynamic feature of a model element, such as an
operation or method.

In the metamodel a BehavioralFeature specifies a behavioral aspect of a Classifier. All
different kinds of behavioral aspects of a Classifier, such as Operation and Method, are
subclasses of BehavioralFeature. BehavioralFeature is an abstract metaclass.

changeable Whether the value may be modified after the object is created.
Possibilities are:

• none - No restrictions on modification.

• frozen - The value may not be altered after the object is
instantiated and its values initialized. No additional values may
be added to a set.

• AddOnly - Meaningful only if the multiplicity is not fixed to a
single value. Additional values may be added to the set of
values, but once created a value may not be removed or
altered.

initial value An Expression specifying the value of the attribute upon
initialization. It is meant to be evaluated at the time the object is
initialized. (Note that an explicit constructor may supersede an
initial value.)

multiplicity The possible number of data values for the attribute that may be
held by an instance. The cardinality of the set of values is an
implicit part of the attribute. In the common case in which the
multiplicity is 1..1, then the attribute is a scalar (i.e., it holds
exactly one value).

type Designates the classifier whose instances are values of the
attribute. Must be a Class or DataType.

OMG-UML V1.2 Core March 1998 2-19

2

Attributes

Associations

Class

A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment.

In the metamodel a Class describes a set of Objects sharing a collection of Features,
including Operations, Attributes and Methods, that are common to the set of Objects.
Furthermore, a Class may realize zero or more Interfaces; this means that its full
descriptor (see “Inheritance” on page 2-37 for the definition) must contain every
Operation from every realized Interface (it may contain additional operations as well).

A Class defines the data structure of Objects, although some Classes may be abstract
(i.e., no Objects can be created directly from them). Each Object instantiated from a
Class contains its own set of values corresponding to the StructuralFeatures declared in
the full descriptor. Objects do not contain values corresponding to BehavioralFeatures
or class-scope Attributes; all Objects of a Class share the definitions of the
BehavioralFeatures from the Class, and they all have access to the single value stored
for each class-scope attribute.

Attributes

isQuery Specifies whether an execution of the Feature leaves the state of
the system unchanged. True indicates that the state is unchanged;
false indicates that side-effects may occur.

name The name of the Feature. The entire signature of the Feature
(name and parameter list) must be unique within its containing
Classifier.

parameters An ordered list of Parameters for the Operation. To call the
Operation, the caller must supply a list of values compatible with
the types of the Parameters.

isActive Specifies whether an Object of the Class maintains its own thread
of control. If true, then an Object has its own thread of control
and runs concurrently with other active Objects. If false, then
Operations run in the address space and under the control of the
active Object that controls the caller.

2-20 OMG-UML V1.2 May 1998

2

Classifier

A classifier is an element that describes behavioral and structural features; it comes in
several specific forms, including class, data type, interface, and others that are defined
in other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such as Attributes,
Methods, and Operations. It has a name, which is unique in the Namespace enclosing
the Classifier. Classifier is an abstract metaclass.

Associations

Constraint

A constraint is a semantic condition or restriction.

In the metamodel a Constraint is a BooleanExpression on an associated
ModelElement(s) which must be true for the model to be well formed. This restriction
can be stated in natural language, or in different kinds of languages with a well-defined
semantics. Certain Constraints are predefined in the UML, others may be user defined.
Note that a Constraint is an assertion, not an executable mechanism. It indicates a
restriction that must be enforced by correct design of a system.

Attributes

Associations

feature A list of Features, like Attribute, Operation, Method, owned by
the Classifier.

participant Inverse of specification on association to AssociationEnd.
Denotes that the Classifier participates in an Association.

realization Inverse of specification. A set of Classifiers that implement the
Operations of the Classifier. These may not include Interfaces.

specification A set of Classifiers that specify the Operations that the Classifier
must implement. The Classifier may implement more Operations
than contained in the set of Classifiers. The set may include
Interfaces, but is not restricted to them.

body A BooleanExpression that must be true when evaluated for an
instance of a system to be well-formed.

constrainedElement A ModelElement or list of ModelElements affected by the
Constraint.

OMG-UML V1.2 Core March 1998 2-21

2

DataType

A data type is a type whose values have no identity (i.e., they are pure values). Data
types include primitive built-in types (such as integer and string) as well as definable
enumeration types (such as the predefined enumeration type boolean whose literals are
false and true).

In the metamodel a DataType defines a special kind of type in which Operations are all
pure functions (i.e., they can return DataValues but they cannot change DataValues -
because they have no identity).

Dependency

A dependency states that the implementation or functioning of one or more elements
requires the presence of one or more other elements. All of the elements must exist at
the same level of meaning (i.e., they do not involve a shift in the level of abstraction or
realization).

In the metamodel, a Dependency is a directed relationship from a client (or clients) to
a supplier (or suppliers) stating that the client is dependent on the supplier (i.e., the
client element requires the presence and knowledge of the supplier element).

Dependencies may be stereotyped to differentiate various kinds of dependency.

Attributes

Associations

Element

An element is an atomic constituent of a model.

In the metamodel, an Element is the top metaclass in the metaclass hierarchy. It has
two subclasses: ModelElement and ViewElement. Element is an abstract metaclass.

ElementOwnership

Element ownership has visibility in a namespace.

In the metamodel, ElementOwnership reifies the relationship between ModelElement
and Namespace denoting the ownership of a ModelElement by a Namespace and its
visibility outside the Namespace. See “ModelElement” on page 2-25.

description A text description of the dependency.

client The ModelElement or set of ModelElements that require the
presence of the supplier.

supplier The ModelElement or set of ModelElements whose presence is
required by the client.

2-22 OMG-UML V1.2 May 1998

2

Feature

A feature is a property, like operation or attribute, which is encapsulated within
another entity, such as an interface, a class, or a data type.

In the metamodel a Feature declares a behavioral or structural characteristic of an
Instance of a Classifier or of the Classifier itself. Feature is an abstract metaclass.

Attributes

Associations

GeneralizableElement

A generalizable element is a model element that may participate in a generalization
relationship.

In the metamodel, a GeneralizableElement can be a generalization of other
GeneralizableElements (i.e., all Features defined in and all ModelElements contained
in the ancestors are also present in the GeneralizableElement). GeneralizableElement is
an abstract metaclass.

name The name used to identify the Feature within the Classifier or
Instance. It must be unique across inheritance of names from
ancestors including names of outgoing AssociationEnds.

ownerScope Specifies whether Feature appears in each Instance of the
Classifier or whether there is just a single instance of the Feature
for the entire Classifier. Possibilities are:

• instance - Each Instance of the Classifier holds its own value
for the Feature.

• classifier - There is just one value of the Feature for the entire
Classifier.

visibility Specifies whether the Feature can be used by other Classifier.
Visibilities of nested Namespaces combine so that the most
restrictive visibility is the result. Possibilities:

• public - Any outside Classifier with visibility to the Classifier
can use the Feature.

• protected - Any descendent of the Classifier can use the
Feature.

• private - Only the Classifier itself can use the Feature.

owner The Classifier containing the Feature.

OMG-UML V1.2 Core March 1998 2-23

2

Attributes

Associations

Generalization

A generalization is a taxonomic relationship between a more general element and a
more specific element. The more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and may
contain additional information.

In the metamodel a Generalization is a directed inheritance relationship, uniting a
GeneralizableElement with a more general GeneralizableElement in a hierarchy.
Generalization is a subtyping relationship (i.e., an Instance of the more general
GeneralizableElement may be substituted by an Instance of the more specific
GeneralizableElement). See Inheritance for the consequences of Generalization
relationships.

isAbstract Specifies whether the GeneralizableElement is an incomplete
declaration or not. True indicates that the GeneralizableElement is
an incomplete declaration (abstract), false indicates that it is
complete (concrete). An abstract GeneralizableElement is not
instantiable since it does not contain all necessary information.

isLeaf Specifies whether the GeneralizableElement is a
GeneralizableElement with no descendents. True indicates that it
is and may not add descendents, false indicates that it may add
descendents (whether or not it actually has any descendents at the
moment).

isRoot Specifies whether the GeneralizableElement is a root
GeneralizableElement with no ancestors. True indicates that it is
and may not add ancestors, false indicates that it may add
ancestors (whether or not it actually has any ancestors at the
moment).

generalization Designates a Generalization whose supertype
GeneralizableElement is the immediate ancestor of the current
GeneralizableElement.

specialization Designates a Generalization whose subtype GeneralizableElement
is the immediate descendent of the current GeneralizableElement.

2-24 OMG-UML V1.2 May 1998

2

Attributes

Associations

Interface

An interface is a declaration of a collection of operations that may be used for defining
a service offered by an instance.

In the metamodel, an Interface contains a set of Operations that together define a
service offered by a Classifier realizing the Interface. A Classifier may offer several
services, which means that it may realize several Interfaces, and several Classifiers
may realize the same Interface.

Interfaces are GeneralizableElements. All Operations declared by an heir must either
be new Operations or specializations (restrictions) of Operations declared in its
ancestor(s).

Interfaces may not have Attributes, Associations, or Methods.

Method

A method is the implementation of an operation. It specifies the algorithm or
procedure that effects the results of an operation.

In the metamodel, a Method is a declaration of a named piece of behavior in a
Classifier and realizes one or a set of Operations of the Classifier.

discriminator Designates the partition to which the Generalization link belongs.
All of the Generalization links that share a given supertype
GeneralizableElement are divided into groups by their
discriminator names. Each group of links sharing a discriminator
name represents an orthogonal dimension of specialization of the
supertype GeneralizableElement. The discriminator need not be
unique. The empty string is considered just another name. If all of
the Generalization below a given GeneralizableElement have the
same name (including the empty name), then it is a plain set of
subelements. Otherwise the subelements form two or more
groups, each of which must be represented by one of its members
as an ancestor in a concrete descendent element.

supertype Designates a GeneralizableElement that is the generalized version
of the subtype GeneralizableElement.

subtype Designates a GeneralizableElement that is the specialized version
of the supertype GeneralizableElement.

OMG-UML V1.2 Core March 1998 2-25

2

Attributes

Associations

ModelElement

A model element is an element that is an abstraction drawn from the system being
modeled. Contrast with view element, which is an element whose purpose is to provide
a presentation of information for human comprehension.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all
modeling metaclasses in the UML. All other modeling metaclasses are either direct or
indirect subclasses of ModelElement. ModelElement is an abstract metaclass.

Attributes

Associations

body The implementation of the Method as a ProcedureExpression.

specification Designates an Operation that the Method implements. The
Operation must be owned by the Classifier that owns the Method
or be inherited by it. The signatures of the Operation and Method
must match.

name An identifier for the ModelElement within its containing
Namespace.

constraint A set of Constraints affecting the element.

provision Inverse of supplier. Designates a Dependency in which the
ModelElement is a supplier.

requirement Inverse of client. Designates a Dependency in which the
ModelElement is a client.

namespace Designates the Namespace that contains the ModelElement. Every
ModelElement except a root element must belong to exactly one
Namespace. The pathname of Namespace names starting from the
system provides a unique designation for every ModelElement.
The association attribute visibility specifies the visibility of the
element outside its namespace (see Visibility).

2-26 OMG-UML V1.2 May 1998

2

Namespace

A namespace is a part of a model in which each name has a unique meaning.

In the metamodel, a Namespace is a ModelElement that can own other
ModelElements, like Associations and Classifiers. The name of each owned
ModelElement must be unique within the Namespace. Moreover, each contained
ModelElement is owned by at most one Namespace. The concrete subclasses of
Namespace have additional constraints on which kind of elements may be contained.
Namespace is an abstract metaclass.

Associations

Operation

An operation is a service that can be requested from an object to effect behavior. An
operation has a signature, which describes the actual parameters that are possible
(including possible return values).

In the metamodel, an Operation is a BehavioralFeature that can be applied to the
Instances of the Classifier that contains the Operation.

Attributes

owned A set of ModelElements owned by the Namespace.

concurrency Specifies the semantics of concurrent calls to the same passive
instance (i.e., an Instance originating from a Classifier with
isActive=false). Active instances control access to their own
Operations so this property is usually (although not required in
UML) set to sequential. Possibilities include:

• sequential - Callers must coordinate so that only one call to an
Instance (on any sequential Operation) may be outstanding at
once. If simultaneous calls occur, then the semantics and
integrity of the system cannot be guaranteed.

• guarded - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any guarded Operation), but
only one is allowed to commence. The others are blocked until
the performance of the first Operation is complete. It is the
responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocks. Guarded Operations
must perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot
be claimed.

OMG-UML V1.2 Core March 1998 2-27

2

Parameter

A parameter is an unbound variable that can be changed, passed, or returned. A
parameter may include a name, type, and direction of communication. Parameters are
used in the specification of operations, messages and events, templates, etc.

In the metamodel, a Parameter is a declaration of an argument to be passed to, or
returned from, an Operation, a Signal, etc.

Attributes

• concurrent - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any concurrent Operations).
All of them may proceed concurrently with correct semantics.
Concurrent Operations must perform correctly in the case of a
simultaneous sequential or guarded Operation or concurrent
semantics cannot be claimed.

isPolymorphic Whether the implementation of the Operation may be overridden
by subclasses. If true, then Methods may be defined on
subclasses. If false, then the Method realizing the Operation in the
current Classifier is inherited unchanged by all descendents.

specification Description of the effects of performing an Operation, stated as
Uninterpreted.

defaultValue An Expression whose evaluation yields a value to be used when
no argument is supplied for the Parameter.

kind Specifies what kind of a Parameter is required. Possibilities are:

• in - An input Parameter (may not be modified).

• out - An output Parameter (may be modified to communicate
information to the caller).

• inout - An input Parameter that may be modified.

• return -A return value of a call.

name The name of the Parameter, which must be unique within its
containing Parameter list.

2-28 OMG-UML V1.2 May 1998

2

Associations

StructuralFeature

A structural feature refers to a static feature of a model element, such as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of an Instance of a
Classifier, such as an Attribute. For example, it specifies the multiplicity and
changeability of the StructuralFeature. StructuralFeature is an abstract metaclass.

See Attribute for the descriptions of the attributes and associations, as it is the only
subclass of StructuralFeature in the current metamodel.

2.5.3 Well-Formedness Rules

The following well-formedness rules apply to the Core package.

Association

[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1
= r2)

[2] At most one AssociationEnd may be an aggregation or composition.

self.allConnections->select(aggregation <> #none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd
may be an aggregation or composition.

[4] The connected Classifiers of the AssociationEnds should be included in the
Namespace of the Association.

self.allConnections->forAll (r |

self.namespace.allContents->includes (r.type))

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
Association.

allConnections : Set(AssociationEnd);

allConnections = self.connection

AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |

type Designates a Classifier to which an argument value must conform.

OMG-UML V1.2 Core March 1998 2-29

2

self.allFeatures->forAll(f |

f.oclIsKindOf(StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll(ar | ar.type <> self)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
AssociationClass, including all connections defined by its supertype (transitive clo-
sure).

allConnections : Set(AssociationEnd);

allConnections = self.connection->union(self.supertype->select

(s | s.oclIsKindOf(Association))->collect (a : Association |

a.allConnections))->asSet

AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType unless
the DataType is part of a composite aggregation.

not self.type.oclIsKindOf (Interface)

and

(self.type.oclIsKindOf (DataType) implies

self.association.connection->select (ae | ae <> self)->forAll (
ae |

ae.aggregation = #composite))

 [2] An Instance may not belong by composition to more than one composite
Instance.

self.aggregation = #composite implies self.multiplicity.max <= 1

Attribute

No extra well-formedness rules.

BehavioralFeature

[1] All Parameters should have a unique name.

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |

self.owner.namespace.allContents->includes (p.type))

2-30 OMG-UML V1.2 May 1998

2

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature
as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;

hasSameSignature (b) =

(self.name = b.name) and

(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type and

b.parameter->at(index).kind =

self.parameter->at(index).kind

)

Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing
Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |

self.allMethods->exists (m | m.specification->includes(op)))

[2] A Class can only contain Classes, Associations, Generalizations, UseCases, Con-
straints, Dependencies, Collaborations, and Interfaces as a Namespace.

self.allContents->forAll->(c |

c.oclIsKindOf(Class) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(Interface)

)

[3] For each Operation in an Interface provided by the Class, the Class must have a
matching Operation.

self.specification.allOperations->forAll (interOp |

self.allOperations->exists(op | op.hasSameSignature (interOp))
)

OMG-UML V1.2 Core March 1998 2-31

2

Classifier

[1] No BehavioralFeature of the same kind may have the same signature in a Classi-
fier.

self.feature->forAll(f, g |

(

(

(f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or

(f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or

(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))

) and

f.oclAsType(BehavioralFeature).hasSameSignature(g)

)

implies f = g)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p,
q |

p.name = q.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.oppositeEnds->forAll (p, q | p.name = q.name implies p = q)

[4] The name of an Attribute may not be the same as the name of an opposite Associ-
ationEnd or a ModelElement contained in the Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |

not self.allOppositeAssociationEnds->union (self.allContents)-
>collect (q |

q.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an
Attribute or a ModelElement contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |

not self.allAttributes->union (self.allContents)->collect (q |

q.name)->includes (o.name))

Additional operations

[1] The operation allFeatures results in a Set containing all Features of the Classifier
itself and all its inherited Features.

allFeatures : Set(Feature);

allFeatures = self.feature->union(

2-32 OMG-UML V1.2 May 1998

2

self.supertype.oclAsType(Classifier).allFeatures)

[2] The operation allOperations results in a Set containing all Operations of the Clas-
sifier itself and all its inherited Operations.

allOperations : Set(Operation);

allOperations = self.allFeatures->select(f |
f.oclIsKindOf(Operation))

[3] The operation allMethods results in a Set containing all Methods of the Classifie
itself and all its inherited Methods.

allMethods : set(Method);

allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

[4] The operation allAttributes results in a Set containing all Attributes of the Classi-
fier itself and all its inherited Attributes.

allAttributes : set(Attribute);

allAttributes = self.allFeatures->select(f |
f.oclIsKindOf(Attribute))

[5] The operation associations results in a Set containing all Associations of the Clas-
sifier itself.

associations : set(Association);

associations = self.associationEnd.association->asSet

[6] The operation allAssociations results in a Set containing all Associations of the
Classifier itself and all its inherited Associations.

allAssociations : set(Association);

allAssociations = self.associations->union (

self.supertype.oclAsType(Classifier).allAssociations)

[7] The operation oppositeAssociationEnds results in a set of all AssociationEnds
that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

oppositeAssociationEnds =

self.association->select (a | a.associationEnd->select (ae |

ae.type = self).size = 1)->collect (a |

a.associationEnd->select (ae | ae.type <> self))-
>union (

self.association->select (a | a.associationEnd->select (ae |

ae.type = self).size > 1)->collect (a |

a.associationEnd))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds,
including the inherited ones, that are opposite to the Classifier.

OMG-UML V1.2 Core March 1998 2-33

2

allOppositeAssociationEnds : Set (AssociationEnd);

allOppositeAssociationEnds = self.oppositeAssociationEnds->union (

self.supertype.allOppositeAssociationEnds)

Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

DataType

[1] A DataType can only contain Operations, which all must be queries.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) and
f.oclAsType(Operation).isQuery)

[2] A DataType cannot contain any other ModelElements.

self.allContents->isEmpty

Dependency

No extra well-formedness rules.

Element

No extra well-formedness rules.

ElementOwnership

No additional well-formedness rules.

Feature

No extra well-formedness rules.

GeneralizableElement

[1] A root cannot have any Generalizations.

self.isRoot implies self.generalization->isEmpty

[2] No GeneralizableElement can have a supertype Generalization to an element
which is a leaf.

self.supertype->forAll(s | not s.isLeaf)

[3] Circular inheritance is not allowed.

2-34 OMG-UML V1.2 May 1998

2

not self.allSupertypes->includes(self)

[4] The supertype must be included in the Namespace of the GeneralizableElement.

self.generalization->forAll(g |

self.namespace.allContents->includes(g.supertype))

Additional Operations

[1] The operation allContents returns a Set containing all ModelElements contained
in the GeneralizableElement together with the contents inherited from its supertypes.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.supertype.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

[2] The operation supertype returns a Set containing all direct supertypes.

supertype : Set(GeneralizableElement);

supertype = self.generalization.supertype

[3]The operation allSupertypes returns a Set containing all the GeneralizableElements
inherited by this GeneralizableElement (the transitive closure), excluding the Gener-
alizableElement itself.

allSupertypes : Set(GeneralizableElement);

allSupertypes = self.supertype->union(self.supertype.allSupertypes)

Generalization

[1] A GeneralizableElement may only be a subclass of GeneralizableElement of the
same kind.

self.subtype.oclType = self.supertype.oclType

Interface

[1] An Interface can only contain Operations.

self.allFeatures->forAll(f | f.oclIsKindOf(Operation))

[2] An Interface cannot contain any Classifiers.

self.allContents->isEmpty

[3] All Features defined in an Interface are public.

self.allFeatures->forAll (f | f.visibility = #public)

OMG-UML V1.2 Core March 1998 2-35

2

Method

[1] If one of the realized Operations is a query, then so is the Method.

self.specification->exists (op | op.isQuery) implies self.isQuery

[2] The signature of the Method should be the same as the signature of the realized
Operations.

self. specification->forAll (op | self.hasSameSignature (op))

[3] The visibility of the Method should be the same as for the realized Operations.

self. specification->forAll (op | self.visibility = op.visibility)

ModelElement

Additional Operations

[1] The operation supplier results in a Set containing all direct suppliers of the Mod-
elElement.

supplier : Set(ModelElement);

supplier = self.provision.supplier

[2] The operation allSuppliers results in a Set containing all the ModelElements that
are suppliers of this ModelElement, including the suppliers of these ModelElements.
This is the transitive closure.

allSuppliers : Set(ModelElement);

allSuppliers = self.supplier->union(self.supplier.allSuppliers)

[3] The operation model results in the Model to which a ModelElement belongs.

model : Set(Model);

model = self.namespace-
>union(self.namespace.allSurroundingNamespaces)

->select(ns|

ns.oclIsKindOf (Model))

Namespace

[1] If a contained element, which is not an Association or Generalization has a name,
then the name must be unique in the Namespace.

self.allContents->forAll(me1, me2 : ModelElement |

(not me1.oclIsKindOf (Association) and not me2.oclIsKindOf
(Association) and

me1.name <> ‘’ and me2.name <> ‘’ and me1.name = me2.name

) implies

me1 = me2)

2-36 OMG-UML V1.2 May 1998

2

[2] All Associations must have a unique combination of name and associated Classi-
fiers in the Namespace.

self.allContents->select(oclIsKindOf(Association))->

forAll(a1, a2 : Association |

(a1.name = a2.name and

a1.connection->size = a2.connection->size and

Sequence{1..a1.connection->size}->forAll(i |

a1.connection->at(i).type = a2.connection-
>at(i).type)

) implies

a1 = a2)

Additional operations

[1] The operation contents results in a Set containing all ModelElements contained
by the Namespace.

contents : Set(ModelElement)

contents = self.ownedElement

[2] The operation allContents results in a Set containing all ModelElements con-
tained by the Namespace.

allContents : Set(ModelElement);

allContents = self.contents

[3] The operation allVisibleElements results in a Set containing all ModelElements
visible outside of the Namespace.

allVisibleElements : Set(ModelElement)

allVisibleElements = self.allContents->select(e |

e.elementOwnership.visibility = #public)

[4] The operation allSurroundingNamespaces results in a Set containing all sur-
rounding Namespaces.

allSurroundingNamespaces : Set(Namespace)

allSurroundingNamespaces =

self.namespace->union(self.namespace.allSurroundingNamespaces)

Operation

No additional well-formedness rules.

Parameter

[1] An Interface cannot be used as the type of a parameter.

OMG-UML V1.2 Core March 1998 2-37

2

not self.type.oclIsKindOf(Interface)

StructuralFeature

[1] The connected type should be included in the current Namespace.

self.owner.namespace.allContents->includes(self.type)

2.5.4 Semantics

This section provides a description of the dynamic semantics of the elements in the
Core. It is structured based on the major constructs in the core, such as interface, class,
and association.

Inheritance

To understand inheritance it is first necessary to understand the concept of a full
descriptor and a segment descriptor. A full descriptor is the full description needed to
describe an object or other instance (see “Instantiation” on page 2-38). It contains a
description of all of the attributes, associations, and operations that the object contains.
In a pre-object-oriented language, the full descriptor of a data structure was declared
directly in its entirety. In an object-oriented language, the description of an object is
built out of incremental segments that are combined using inheritance to produce a full
descriptor for an object. The segments are the modeling elements that are actually
declared in a model. They include elements such as class and other generalizable
elements. Each generalizable element contains a list of features and other relationships
that it adds to what it inherits from its ancestors. The mechanism of inheritance defines
how full descriptors are produced from a set of segments connected by generalization.
The full descriptors are implicit, but they define the structure of actual instances.

Each kind of generalizable element has a set of inheritable features. For any model
element, these include constraints. For classifiers, these include features (attributes,
operations, signal takers, and methods) and participation in associations. The ancestors
of a generalizable element are its supertypes (if any) together with all of their ancestors
(with duplicates removed).

If a generalizable element has no supertype, then its full descriptor is the same as its
segment descriptor. If a generalizable element has one or more supertypes, then its full
descriptor contains the union of the features from its own segment descriptor and the
segment descriptors of all of its ancestors. For a classifier, no attribute, operation, or
signal with the same signature may be declared in more than one of the segments (in
other words, they may not be redefined). A method may be declared in more than one
segment. A method declared in any segment supersedes and replaces a method with the
same signature declared in any ancestor. If two or more methods nevertheless remain,
then they conflict and the model is ill-formed. The constraints on the full descriptor are
the union of the constraints on the segment itself and all of its ancestors. If any of them
are inconsistent, then the model is ill-formed.

2-38 OMG-UML V1.2 May 1998

2

In any full descriptor for a classifier, each method must have a corresponding
operation. In a concrete classifier, each operation in its full descriptor must have a
corresponding method in the full descriptor.

The purpose of the full descriptor is explained under “Instantiation” on page 2-38.

Instantiation

The purpose of a model is to describe the possible states of a system and their
behavior. The state of a system comprises objects, values, and links. Each object is
described by a full class descriptor. The class corresponding to this descriptor is the
direct class of the object. Similarly each link has a direct association and each value
has a direct data type. Each of these instances is said to be a direct instance of the
classifier from which its full descriptor was derived. An instance is an indirect instance
of the classifier or any of its ancestors.

The data content of an object comprises one value for each attribute in its full class
descriptor (and nothing more). The value must be consistent with the type of the
attribute. The data content of a link comprises a tuple containing a list of instances, one
that is an indirect instance of each participant classifier in the full association
descriptor. The instances and links must obey any constraints on the full descriptors of
which they are instances (including both explicit constraints and built-in constraints
such as multiplicity).

The state of a system is a valid system instance if every instance in it is a direct
instance of some element in the system model and if all of the constraints imposed by
the model are satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid system instances
that may occur as a result of both external and internal behavioral effects.

OMG-UML V1.2 Core March 1998 2-39

2

Class

Figure 2-7 Class Illustration

The purpose of a class is to declare a collection of methods, operations, and attributes
that fully describe the structure and behavior of objects. All objects instantiated from a
class will have attribute values matching the attributes of the full class descriptor and
support the operations found in the full class descriptor. Some classes may not be
directly instantiated. These classes are said to be abstract and exist only for other
classes to inherit and reuse the features declared by them. No object may be a direct
instance of an abstract class, although an object may be an indirect instance of one
through a subclass that is non-abstract.

When a class is instantiated to create a new object, a new instance is created, which is
initialized containing an attribute value for each attribute found in the full class
descriptor. The object is also initialized with a connection to the list of methods in the
full class descriptor.

Note – An actual implementation behaves as if there were a full class descriptor, but
many clever optimizations are possible in practice.

Finally, the identity of the new object is returned to the creator. The identity of every
instance in a well-formed system is unique and automatic.

A class can have generalizations to other classes. This means that the full class
descriptor of a class is derived by inheritance from its own segment declaration and
those of its ancestors. Generalization between classes implies substitutability (i.e., an
instance of a class may be used whenever an instance of a superclass is expected). If
the class is specified as a root, it cannot be a subclass of other classes. Similarly, if it
is specified as a leaf, no other class can be a subclass of the class.

Interface M odelElem ent

Generalization

Association

AssociationEnd

2..*

1

2..*

1

Attr ibute Method Operation

Class*

*

*

* **

* 1* 1

**

**

** ** **

2-40 OMG-UML V1.2 May 1998

2

Each attribute declared in a class has a visibility and a type. The visibility defines if
the attribute is publicly available to any class, if it is only available inside the class and
its subclasses (protected), or if it can only be used inside the class (private). The
targetScope of the attribute declares whether its value should be an instance (of a
subtype) of that type or if it should be (a subtype of) the type itself. There are two
alternatives for the ownerScope of an attribute:

• it may state that each object created by the class (or by its subclasses) has its own
value of the attribute, or

• that the value is owned by the class itself.

An attribute also declares how many attribute values should be connected to each
owner (multiplicity), what the initial values should be, and if these attribute values
may be changed to:

• none - no constraints exists,

• frozen - the value cannot be replaced or added to once it has been initialized, or

• addOnly - new values may be added to a set but not removed or altered.

For each operation, the operation name, the types of the parameters, and the return
type(s) are specified, as well as its visibility (see above). An operation may also
include a specification of the effects of its invocation. The specification can be done in
several different ways (e.g., with pre- and post-conditions, pseudo-code, or just plain
text). Each operation declares if it is applicable to the instances, the class, or to the
class itself (ownerScope). Furthermore, the operation states whether or not its
application will modify the state of the object (isQuery). The operation also states
whether or not the operation may be realized by a different method in a subclass
(isPolymorphic). An operation may have a set of extension points specifying where
additional behavior may be inserted into the operation. A method realizing an
operation has the same signature as the operation and a body implementing the
specification of the operation. Methods in descendents override and replace methods
inherited from ancestors (see Inheritance). Each method implements an operation
declared in the class or inherited from an ancestor. The same operation may not be
declared more than once in a full class descriptor. The specification of the method
must match the specification of its matching operation, as defined above for
operations. Furthermore, if the isQuery attribute of an operation is true, then it must
also be true in any realizing method. However, if it is false in the operation, it may still
be true if the method (isQuery=false) does not require that the operation modify the
state. The concept of visibility is not relevant for methods.

Classes may have associations to each other. This implies that objects created by the
associated classes are semantically connected (i.e., that links exist between the objects,
according to the requirements of the associations). See Association on the next page.
Associations are inherited by subclasses.

A class may realize a set of interfaces. This means that each operation found in the full
descriptor for any realized interface must be present in the full class descriptor with the
same specification. The relationship between interface and class is not necessarily one-
to-one; a class may offer several interfaces and one interface may be offered by more
than one class. The same operation may be defined in multiple interfaces that a class

OMG-UML V1.2 Core March 1998 2-41

2

supports; if their specifications are identical then there is no conflict; otherwise, the
model is ill-formed. Moreover, a class may contain additional operations besides those
found in its interfaces.

A class acts as the namespace for attributes, outgoing role names on associations, and
operations. Furthermore, since a class acts as a namespace for contained classes,
interfaces, and associations (elements defined within its scope, they do not imply
aggregation), the contained classifiers can be used as ordinary classifiers in the
container class. However, the contents cannot be referenced by anyone outside the
container class. If a class inherits another class, the visibility of the contents as it is
defined in the superclass guides if the contained elements are visible in the subclass. If
the visibility of an element is public or protected, then it is also visible in the subclass;
however, if the visibility is private, then the element is not visible and therefore not
available in the subclass.

Interface

Figure 2-8 Interface Illustration

The purpose of an interface is to collect a set of operations that constitute a coherent
service offered by classifiers. Interfaces provide a way to partition and characterize
groups of operations. An interface is only a collection of operations with a name. It
cannot be directly instantiated. Instantiable classifiers, such as class or use case, may
use interfaces for specifying different services offered by their instances. Several
classifiers may realize the same interface. All of them must contain at least the
operations matching those contained in the interface. The specification of an operation
contains the signature of the operation (i.e., its name, the types of the parameters and
the return type). An interface does not imply any internal structure of the realizing
classifier. For example, it does not define which algorithm to use for realizing an
operation. An operation may, however, include a specification of the effects of its
invocation. The specification can be done in several different ways (e.g., with pre and
post-conditions, pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier declaring it or to
the classifier itself (e.g., a constructor on a class (ownerScope)). Furthermore, the
operation states whether or not its application will modify the state of the instance
(isQuery). The operation also states whether or not all the classes must have the same
realization of the operation (isPolymorphic).

*

Operation

*

Generalization Interface

*
*

**

2-42 OMG-UML V1.2 May 1998

2

An interface can be a subtype of other interfaces denoted by generalizations. This
means that a classifier offering the interface must provide not only the operations
declared in the interface but also those declared in the ancestors of the interface. If the
interface is specified as a root, it cannot be a subtype of other interfaces. Similarly, if
it is specified as a leaf, no other interface can be a subtype of the interface.

Association

Figure 2-9 Association Illustration

An association declares a connection (link) between instances of the associated
classifiers (e.g., classes). It consists of at least two association-ends, each specifying a
connected classifier and a set of properties which must be fulfilled for the relationship
to be valid. The multiplicity property of an association-end specifies how many
instances of the classifier at a given end (the one bearing the multiplicity value) may
be associated with a single instance of the classifier at the other end. A multiplicity is
a range of nonnegative integers. The association-end also states whether or not the
connection may be traversed towards the instance playing that role in the connection
(isNavigable). For instance, if the instance is directly reachable via the association. An
association-end also specifies whether or not an instance playing that role in a
connection may be replaced by another instance. It may state

• that no constraints exists (none),

• that the link cannot be modified once it has been initialized (frozen), or

• that new links of the association may be added but not removed or altered
(addOnly).

These constraints do not affect the modifiability of the objects themselves that are
attached to the links. Moreover, the targetScope specifies if the association-end should
be connected to an instance of (a subtype of) the classifier, or (a subtype of) the
classifier itself. The isOrdered attribute of association-end states if the instances related
to a single instance at the other end have an ordering that must be preserved. The order
of insertion of new links must be specified by operations that add or modify links.
Note that sorting is a performance optimization and is not an example of a logically
ordered association, because the ordering information in a sort does not add any
information.

An association may represent an aggregation (i.e., a whole/part relationship). In this
case, the association-end attached to the whole element is designated, and the other
association-end of the association represents the parts of the aggregation. Only binary
associations may be aggregations. Composite aggregation is a strong form of
aggregation which requires that a part instance be included in at most one composite at
a time, although the owner may be changed over time. Furthermore, a composite
implies propagation semantics (i.e., some of the dynamic semantics of the whole is

Asso ciatio n AssociationEnd

2..*1 2..*

C lassifier

* 1* 11

OMG-UML V1.2 Core March 1998 2-43

2

propagated to its parts). For example, if the whole is copied or deleted, then so are the
parts as well. A shared aggregation denotes weak ownership (i.e., the part may be
included in several aggregates) and its owner may also change over time. However, the
semantics of a shared aggregation does not imply deletion of the parts when one of its
containers is deleted. Both kinds of aggregations define a transitive, antisymmetric
relationship (i.e., the instances form a directed, non-cyclic graph). Composition
instances form a strict tree (or rather a forest).

A qualifier declares a partition of the set of associated instances with respect to an
instance at the qualified end (the qualified instance is at the end to which the qualifier
is attached). A qualifier instance comprises one value for each qualifier attribute.
Given a qualified object and a qualifier instance, the number of objects at the other end
of the association is constrained by the declared multiplicity. In the common case in
which the multiplicity is 0..1, the qualifier value is unique with respect to the qualified
object, and designates at most one associated object. In the general case of multiplicity
0..*, the set of associated instances is partitioned into subsets, each selected by a given
qualifier instance. In the case of multiplicity 1 or 0..1, the qualifier has both semantic
and implementation consequences. In the case of multiplicity 0..*, it has no real
semantic consequences but suggests an implementation that facilities easy access of
sets of associated instances linked by a given qualifier value.

Note that the multiplicity of a qualifier is given assuming that the qualifier value is
supplied. The "raw" multiplicity without the qualifier is assumed to be 0..*. This is not
fully general but it is almost always adequate, as a situation in which the raw
multiplicity is 1 would best be modeled without a qualifier.

Note also that a qualified multiplicity whose lower bound is zero indicates that a given
qualifier value may be absent, while a lower bound of 1 indicates that any possible
qualifier value must be present. The latter is reasonable only for qualifiers with a finite
number of values (such as enumerated values or integer ranges) that represent full
tables indexed by some finite range of values.

AssociationClass

Figure 2-10 AssociationClass Illustration

An association may be refined to have its own set of features (i.e., features that do not
belong to any of the connected classifiers) but rather to the association itself. Such an
association is called an association class. It will be both an association, connecting a

AssociationClass

ClassAssociation

2-44 OMG-UML V1.2 May 1998

2

set of classifiers, and a class, and as such have features and be included in other
associations. The semantics of such an association is a combination of the semantics of
an ordinary association and of a class.

Miscellaneous

Figure 2-11 Miscellaneous Illustration

A constraint is a Boolean expression over one or several elements which must always
be true. A constraint can be specified in several different ways (e.g., using natural
language or a constraint language).

A dependency specifies that the semantics of a set of model elements requires the
presence of another set of model elements. This implies that if the source is somehow
modified, the dependents probably must be modified. The reason for the dependency
can be specified in several different ways (e.g., using natural language or an algorithm)
but is often implicit.

A special kind of classifier, similar to class, is data type; however, the instances of a
data type are primitive values (i.e., non-objects). For example, the integers and strings
are usually treated as primitive values. A primitive value does not have an identity, so
two occurrences of the same value cannot be differentiated. Usually, it is used for
specification of the type of an attribute. An enumeration type is a user-definable type
comprising a finite number of values.

Constraint

constrainedElement

provider

ModelElement

1..*0..*

Dependency
0..*

1..*

dependent1..*

0..*

1..*0..*
0..*

1..*

1..*

0..*

OMG-UML V1.2 Core March 1998 2-45

2

2.5.5 Standard Elements

The predefined stereotypes, constraints, and tagged values for the Core package are
listed in Table 2-2 and defined in Appendix A - UML Standard Elements.

2.5.6 Notes

In UML, Associations can be of three different kinds: 1) ordinary association, 2)
composite aggregate, and 3) shared aggregate. Since the aggregate construct can have
several different meanings depending on the application area, UML gives a more
precise meaning to two of these constructs (i.e., association and composite aggregate)
and leaves the shared aggregate more loosely defined in between.

Operation is a conceptual construct, while Method is the implementation construct.
Their common features, such as having a signature, are expressed in the
BehavioralFeature metaclass, and the specific semantics of the Operation. The Method
constructs are defined in the corresponding subclasses of BehavioralFeature.

Table 2-2 Core - Standard Elements

Model Element Stereotypes Constraints Tagged Values

Association implicit
or

Attribute persistence

BehavioralFeature «create»
«destroy»

Class «implementationClass»
«type»

Classifier «metaclass»
«powertype»
«process»
«stereotype»
«thread»
«utility»

location
persistence
responsibility
semantics

Constraint «invariant»
«postcondition»
«precondition»

Element documentation

Generalization «extends»
«inherits»
«private»
«subclass»
«subtype»
«uses»

complete
disjoint
incomplete
overlapping

Operation semantics

2-46 OMG-UML V1.2 May 1998

2

A Usage or Binding dependency can be established only between elements in the same
model, since the semantics of a model cannot be dependent on the semantics of another
model. If a connection is to be established between elements in different models, a
Trace or Refinement should be used.

The AssociationClass construct can be expressed in a few different ways in the
metamodel (e.g., as a subclass of Class, as a subclass of Association, or as a subclass
of Classifier). Since an AssociationClass is a construct being both an association
(having a set of association-ends) and a class (declaring a set of features), the most
accurate way of expressing it is as a subclass of both Association and Class. In this
way, AssociationClass will have all the properties of the other two constructs.
Moreover, if new kinds of associations containing features (e.g., AssociationDataType)
are to be included in UML, these are easily added as subclasses of Association and the
other Classifier.

Note – The terms subtype and subclass are synonyms and mean that an instance of a
classifier being a subtype of another classifier can always be used where an instance of
the latter classifier is expected.

2.6 Auxiliary Elements

2.6.1 Overview

The Auxiliary Elements package is the subpackage that defines additional constructs
that extend the Core. Auxiliary Elements provide infrastructure for dependencies,
templates, physical structures, and view elements.

2.6.2 Abstract Syntax

The abstract syntax for the Auxiliary Elements package is expressed in graphic
notation in the following figures.

OMG-UML V1.2 Auxiliary Elements March 1998 2-47

2

Figure 2-12 Auxiliary Elements - Dependencies and Templates

* *

Refinement
mapping : Mapping

Usage

0..1

Binding

argument 1..* {ordered}

ModelElement
(from Core)

0..1

1..*

Trace

Auxiliary Elements: Dependencies

owningDependency

0..1

subDependency

*

template 0..1

templateParameter

*

requirement

*

Dependency
(from Core)

0..1

*

client

*

ModelElement
(from Core)

0..1
*

2-48 OMG-UML V1.2 May 1998

2

Figure 2-13 Auxiliary Elements - Physical Structures and View Elements

The following metaclasses are contained in the Auxiliary Elements package.

Binding

A binding is a relationship between a template and a model element generated from the
template. It includes a list of arguments matching the template parameters. The
template is a form that is cloned and modified by substitution to yield an implicit
model fragment that behaves as if it were a direct part of the model.

component

Presentation
geometry : Geometry
style : GraphicMarker

Auxiliary Elements:
Physical Structures and View Elements

Comment

Classifier
(from Core)

deployment

*Node *

view

* ViewElement

model

*

implementation
*

Component* *

*

ModelElement
(from Core)

** Presentation

*

*

OMG-UML V1.2 Auxiliary Elements March 1998 2-49

2

In the metamodel, a Binding is a Dependency where the supplier is the template and
the client is the instantiation of the template that performs the substitution of
parameters of a template. A Binding has a list of arguments that replace the parameters
of the supplier to yield the client. The client is fully specified by the binding of the
supplier’s parameters and does not add any information of its own.

Associations

Comment

A comment is an annotation attached to a model element or a set of model elements.

In the metamodel, a Comment is a subclass of ViewElement. It is associated with a set
of ModelElements.

Component

A component is a reusable part that provides the physical packaging of model
elements.

In the metamodel, a Component is a subclass of Classifier. It provides the physical
packaging of its associated specification elements.

Associations

Dependency (from Core)

A dependency indicates a semantic relationship among model elements themselves
(rather than instances of them) in which a change to one element may affect or require
changes to other elements.

In the metamodel, a Dependency is a directed relationship from a client (or clients) to
a supplier (or suppliers) stating that the client is dependent on the supplier (i.e., a
change to the supplier may affect the client). The relationship is directed, although the
direction may be ignored for certain subtypes of Dependency (such as Trace).

To enable grouping of dependencies that belong together, a dependency can serve as a
container for a group of Dependencies. This is useful, because often dependencies are
between groups of elements (such as Packages, Models, Classifiers, etc.). For example,
the dependency of one package on another can be expanded into a set of dependencies
among elements within the two packages.

argument An ordered list of arguments. Each argument replaces the corresponding
supplier parameter in the supplier definition, and the result represents the
definition of the client as if it had been defined directly.

deployment The set of Nodes the Component is residing on.

2-50 OMG-UML V1.2 May 1998

2

Associations

ModelElement (from Core)

A model element is an element that is an abstraction drawn from the system being
modeled. Contrast with view element, which is an element whose purpose is to provide
a presentation of information for human comprehension.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all
modeling metaclasses in the UML. All other modeling metaclasses are either direct or
indirect subclasses of ModelElement.

Each ModelElement can be regarded as a template. A template has a set of
templateParameters that denotes which of the parts of a ModelElement are the template
parameters. A ModelElement is a template when there is at least one template
parameter. If it is not a template, a ModelElement cannot have template parameters.
However, such embedded parameters are not usually complete and need not satisfy
well-formedness rules. It is the arguments supplied when the template is instantiated
that must be well-formed.

Partially instantiated templates are allowed. This is the case when there are arguments
provided for some, but not all templateParameters. A partially instantiated template is
still a template, since it still has parameters.

Associations

client The element that is affected by the supplier element. In some
cases (such as Trace) the direction is unimportant and serves only
to distinguish the two elements.

owningDependency The inverse of subDependency.

subDependency A set of more specific dependencies that elaborate a more general
dependency.

supplier Inverse of client. Designates the element that is unaffected by a
change. In a two-way relationship (such as some Refinements)
this should be the more general element.

templateParameter An ordered list of parameters. Each parameter designates a
ModelElement within the scope of the overall ModelElement. The
designated ModelElement may be a placeholder for a real
ModelElement to be substituted. In particular, the template
parameter element will lack structure. For example, a parameter
that is a Class lacks Features; they are found in the actual
argument.

OMG-UML V1.2 Auxiliary Elements March 1998 2-51

2

Node

A node is a run-time physical object that represents a computational resource,
generally having at least a memory and often processing capability as well, and upon
which components may be deployed.

In the metamodel, a Node is a subclass of Classifier. It is associated with a set of
Components residing on the Node.

Associations

Presentation

A presentation is the relationship between a view element and a model element (or
possibly a set of each). The details are dependent on the implementation of a graphic
editor tool.

In the metamodel, Presentation reifies the relationship between ModelElement and
ViewElement and provides the placement and the style of presentation to be used when
presenting the ModelElements.

Attributes

Refinement

A refinement is a relationship between model elements at different semantics levels,
such as analysis and design.

In the metamodel, a Refinement is a Dependency where the clients are derived from
the suppliers. The derivation cannot necessarily be described by an algorithm; human
decisions may be required to produce the clients. The details of specifying the
derivation are beyond the scope of UML but can be indicated with constraints.
Refinement can be used to model stepwise refinement, optimizations, transformations,
templates, model synthesis, framework composition, etc.

component The set of Components residing on the Node.

geometry A description of the geometry of the ViewElement image.

style A description of the graphic markers pertaining to the
ViewElement image, such as color, texture, font, line width,
shading, etc.

2-52 OMG-UML V1.2 May 1998

2

Attributes

Trace

A trace is a conceptual connection between two elements or sets of elements that
represent a single concept at different semantic levels or from different points of view;
however, there is no specific mapping between the elements. The construct is mainly a
tool for tracing of requirements. It is also useful for the modeler to keep track of
changes to different models.

In the metamodel, a Trace is a Dependency between ModelElements in different
Models abstracting the same part of the system being modeled. Traces denote
dependencies at specification level, rather than runtime dependencies; therefore, traces
do not express information on the system as such, but rather on the Models of the
system. The directionality of the dependency can usually be ignored.

Usage

A usage is a relationship in which one element requires another element (or set of
elements) for its full implementation or operation. The relationship is not a mere
historical artifact, but an ongoing need; therefore, two elements related by usage must
be in the same model.

In the metamodel, a Usage is a Dependency in which the client requires the presence
of the supplier. How the client uses the supplier, such as a class calling an operation of
another class, a method having an argument of another class, and a method from a
class instantiating another class, is defined in the description of the Usage.

ViewElement

A view element is a textual or graphical presentation of one or more model elements.

In the metamodel, a ViewElement is an Element which presents a set of
ModelElements to a reader. It is the base for all metaclasses in the UML used for
presentation. All other metaclasses with this purpose are either direct or indirect
subclasses of ViewElement. ViewElement is an abstract metaclass. The subclasses of
this class are proper to a graphic editor tool and are not specified here.

mapping A description of the mapping between the two elements. The
mapping is an expression whose syntax is beyond the scope of
UML. For exchange purposes, it should be represented as a string.

OMG-UML V1.2 Auxiliary Elements March 1998 2-53

2

2.6.3 Well-Formedness Rules

The following well-formedness rules apply to the Auxiliary Elements package.

Binding

[1]The argument ModelElement must conform to the parameter ModelElement in a
Binding. In an instantiation it must be of the same kind.

-- not described in OCL

Comment

No extra well-formedness rules.

Component

No extra well-formedness rules.

Dependency

No extra well-formedness rules.

Additional operations

[1]A Dependency is a composite dependency if it contains other dependencies.

isComposite : Boolean;

isComposite = (self.subDependency->size >= 1);

ModelElement

A model element owns everything connected to it by composition relationships.

A template is a model element with at least one template parameter.

That part of the model owned by a template is not subject to all well-formedness
rules. A template is not directly usable in a well-formed model. The results of binding
a template are subject to well-formedness rules.

Additional operations

[1] A ModelElement is a template when it has parameters.

isTemplate : Boolean;

isTemplate = (self.templateParameter->notEmpty)

[2] A ModelElement is an instantiated template when it is related to a template by a
Binding relationship.

isInstantiated : Boolean;

2-54 OMG-UML V1.2 May 1998

2

isInstantiated = self.requirement->select(oclIsKindOf(Binding))-
>notEmpty

 [3] The templateArguments are the arguments of an instantiated template, which
substitute for template parameters.

templateArguments : Set(ModelElement);

templateArguments = self.requirement->

select(oclIsKindOf(Binding)).oclAsType(Binding).argument

Node

No extra well-formedness rules.

Presentation

No extra well-formedness rules.

Refinement

No extra well-formedness rules.

Trace

[1] A Trace connects two sets of ModelElements from two different Models in the
same System.

self.client->forAll(e1, e2 | e1.model = e2.model) and

self.supplier->forAll(e1, e2 | e1.model = e2.model) and

self.client->asSequence->at (1).model <>

self.supplier->asSequence->at (1).model and

self.client->asSequence->at (1).model.namespace =

self.supplier->asSequence->at (1).model.namespace

Usage

No extra well-formedness rules.

ViewElement

No extra well-formedness rules.

OMG-UML V1.2 Auxiliary Elements March 1998 2-55

2

2.6.4 Semantics

Whenever the supplier element of a dependency changes, the client element is
potentially invalidated. After such invalidation, a check should be performed followed
by possible changes to the derived client element. Such a check should be performed
after which action can be taken to change the derived element to validate it again. The
semantics of this validation and change is outside the scope of UML.

Template

An important dynamic consequence is that any model element that is a template cannot
be instantiated. Only a fully instantiated model element can have instances. This
applies specifically to classifier templates.

Also a template is a form, not a final model element. As such, it is not subject to
normal well-formedness rules because it is intentionally incomplete. Only when a
template is bound with arguments can the result be fully subject to well-formedness
rules.

A further consequence is that a template must own a fragment of the model that is not
part of the final effective model. When a template is bound, the model fragment that it
owns is implicitly duplicated, the parameters are replaced by the arguments, and the
result is implicitly added to the effective model, as if the effective model had been
modeled directly.

ViewElement

The responsibility of view element is to provide a textual and graphical projection of a
collection of model elements. In this context, projection means that the view element
represents a human readable notation for the corresponding model elements. The
notation for UML can be found in a separate document.

View elements and model elements must be kept in agreement, but the mechanisms for
doing this are design issues for model editing tools.

2-56 OMG-UML V1.2 May 1998

2

2.6.5 Standard Elements

The predefined stereotypes, constraints and tagged values for the Auxiliary Elements
package are listed in Table 2-3 and defined in Appendix A - UML Standard Elements.

2.7 Extension Mechanisms

2.7.1 Overview

The Extension Mechanisms package is the subpackage that specifies how model
elements are customized and extended with new semantics. It defines the semantics for
stereotypes, constraints, and tagged values.

The UML provides a rich set of modeling concepts and notations that have been
carefully designed to meet the needs of typical software modeling projects. However,
users may sometimes require additional features and/or notations beyond those defined
in the UML standard. In addition, users often need to attach non-semantic information
to models. These needs are met in UML by three built-in extension mechanisms that
enable new kinds of modeling elements to be added to the modeler’s repertoire as well
as to attach free-form information to modeling elements. These three extension
mechanisms can be used separately or together to define new modeling elements that
can have distinct semantics, characteristics, and notation relative to the built in UML
modeling elements specified by the UML metamodel. Concrete constructs defined in
Extension Mechanisms include Constraint, Stereotype, and TaggedValue.

The UML extension mechanisms are intended for several purposes:

• To add new modeling elements for use in creating UML models.

Table 2-3 Auxiliary Elements - Standard Elements

Model Element Stereotypes Constraints Tagged Values

Comment «requirement»

Component «document»
«executable»
«file»
«library»
«table»

location

Dependency «becomes»
«call»
«copy»
«derived»
«friend»
«import»
«instance»
«metaclass»
«powertype»
«send»

Refinement «deletion»

OMG-UML V1.2 Extension Mechanisms March 1998 2-57

2

• To define standard items that are not considered interesting or complex enough to
be defined directly as UML metamodel elements.

• To define process-specific or implementation language-specific extensions.

• To attach arbitrary semantic and non-semantic information to model elements.

Although it is beyond the scope and intent of this document, it is also possible to
extend the UML metamodel by explicitly adding new metaclasses and other meta
constructs. This capability depends on unique features of certain UML-compatible
modeling tools, or direct use of a meta-metamodel facility, such as the CORBA Meta
Object Facility (MOF).

The most important of the built-in extension mechanisms is based on the concept of
Stereotype. Stereotypes provide a way of classifying model elements at the object
model level and facilitate the addition of "virtual" UML metaclasses with new
metaattributes and semantics. The other built in extension mechanisms are based on
the notion of property lists consisting of tags and values, and constraints. These allow
users to attach additional properties and semantics directly to individual model
elements, as well as to model elements classified by a Stereotype.

A stereotype is a UML model element that is used to classify (or mark) other UML
elements so that they behave in some respects as if they were instances of new
"virtual" or "pseudo" metamodel classes whose form is based on existing "base"
classes. Stereotypes augment the classification mechanism based on the built in UML
metamodel class hierarchy; therefore, names of new stereotypes must not clash with
the names of predefined metamodel elements or other stereotypes. Any model element
can be marked by at most one stereotype, but any stereotype can be constructed as a
specialization of numerous other stereotypes.

A stereotype may introduce additional values, additional constraints, and a new
graphical representation. All model elements that are classified by a particular
stereotype ("stereotyped") receive these values, constraints, and representation. By
allowing stereotypes to have associated graphical representations users can introduce
new ways of graphically distinguishing model elements classified by a particular
stereotype.

A stereotype shares the attributes, associations, and operations of its base class but it
may have additional well-formedness constraints as well as a different meaning and
attached values. The intent is that a tool or repository be able to manipulate a
stereotyped element the same as the ordinary element for most editing and storage
purposes, while differentiating it for certain semantic operations, such as well-
formedness checking, code generation, or report writing.

Any modeling element may have arbitrary attached information in the form of a
property list consisting of tag-value pairs. A tag is a name string that is unique for a
given element that selects an associated arbitrary value. Values may be arbitrary but for
uniform information exchange they should be represented as strings. The tag represents
the name of an arbitrary property with the given value. Tags may be used to represent
management information (author, due date, status), code generation information
(optimizationLevel, containerClass), or additional semantic information required by a
given stereotype.

2-58 OMG-UML V1.2 May 1998

2

It is possible to specify a list of tags (with default values, if desired) that are required
by a particular stereotype. Such required tags serve as "pseudoattributes" of the
stereotype to supplement the real attributes supplied by the base element class. The
values permitted to such tags can also be constrained.

It is not necessary to stereotype a model element in order to give it individually distinct
constraints or tagged values. Constraints can be directly attached to a model element
(stereotyped or not) to change its semantics. Likewise, a property list consisting of tag-
value pairs can be directly attached to any model element. The tagged values of a
property list allow characteristics to be assigned to model elements on a flexible,
individual basis. Tags are user-definable, certain ones are predefined and are listed in
the Standard Elements appendix.

Constraints or tagged values associated with a particular stereotype are used to extend
the semantics of model elements classified by that stereotype. The constraints must be
observed by all model elements marked with that stereotype.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Extension Mechanisms package.

2.7.2 Abstract Syntax

The abstract syntax for the Extension Mechanisms package is expressed in graphic
notation in Figure 2-14 on page 2-58.

Figure 2-14 Extension Mechanisms

0..1

*

Extension Mechanisms

GeneralizableElement

(from Core)

requiredTag *

0..1

stereotype

0..1

extendedElement

* 0..1

taggedValue

*

TaggedValue
tag : Name
value : Uninterpreted

stereotypeConstraint *

constrainedStereotype

0..1Stereotype
icon : Geometry
baseClass : Name

*

0..1

constrainedElement
1..* {ordered}

ModelElement
(from Core) 0..1 *

constraint
*

Constraint

(from Core)

*

0..1

1..*

*

OMG-UML V1.2 Extension Mechanisms March 1998 2-59

2

Constraint

The constraint concept allows new semantics to be specified linguistically for a model
element. The specification is written as an expression in a designated constraint
language. The language can be specially designed for writing constraints (such as
OCL), a programming language, mathematical notation, or natural language. If
constraints are to be enforced by a model editor tool, then the tool must understand the
syntax and semantics of the constraint language. Because the choice of language is
arbitrary, constraints are an extension mechanism.

In the metamodel, a Constraint directly attached to a ModelElement describes semantic
restrictions that this ModelElement must obey. Also, any Constraints attached to a
Stereotype apply to each ModelElement that bears the given Stereotype.

Attributes

Associations

Any particular constraint has either a constrainedElement link or a
constrainedStereotype link but not both.

ModelElement (as extended)

Any model element may have arbitrary tagged values and constraints (subject to these
making sense). A model element may have at most one stereotype whose base class
must match the UML class of the modeling element (such as Class, Association,
Dependency, etc.). The presence of a stereotype may impose implicit constraints on the
modeling element and may require the presence of specific tagged values.

body A boolean expression defining the constraint. Expressions are
written as strings in a designated language. For the model to be
well formed, the expression must always yield a true value when
evaluated for instances of the constrained elements at any time
when the system is stable (i.e., not during the execution of an
atomic operation).

constrainedElement An ordered list of elements subject to the constraint. The
constraint applies to their instances.

constrainedStereotype An ordered list of stereotypes subject to the constraint. The
constraint applies to instances of elements classified by the
stereotypes.

2-60 OMG-UML V1.2 May 1998

2

Associations

Stereotype

The stereotype concept provides a way of classifying (marking) elements so that they
behave in some respects as if they were instances of new "virtual" metamodel
constructs. Instances have the same structure (attributes, associations, operations) as a
similar non-stereotyped instance of the same kind. The stereotype may specify
additional constraints and required tagged values that apply to instances. In addition, a
stereotype may be used to indicate a difference in meaning or usage between two
elements with identical structure.

In the metamodel, the Stereotype metaclass is a subtype of GeneralizableElement.
TaggedValues and Constraints attached to a Stereotype apply to all ModelElements
classified by that Stereotype. A stereotype may also specify a geometrical icon to be
used for presenting elements with the stereotype.

Stereotypes are GeneralizableElements. If a stereotype is a subtype of another
stereotype, then it inherits all of the constraints and tagged values from its stereotype
supertype and it must apply to the same kind of base class. A stereotype keeps track of
the base class to which it may be applied.

Attributes

constraint A constraint that must be satisfied for instances of the model
element. A model element may have a set of constraints. The
constraint is to be evaluated when the system is stable (i.e., not in
the middle of an atomic operation).

stereotype Designates at most one stereotype that further qualifies the UML
class (the base class) of the modeling element. The stereotype
does not alter the structure of the base class but it may specify
additional constraints and tagged values. All constraints and
tagged values on a stereotype apply to the model elements that are
classified by the stereotype. The stereotype acts as a "pseudo
metaclass" describing the model element.

taggedValue An arbitrary property attached to the model element. The tag is
the name of the property and the value is an arbitrary value. The
interpretation of the tagged value is outside the scope of the UML
metamodel. A model element may have a set of tagged values, but
a single model element may have at most one tagged value with a
given tag name. If the model element has a stereotype, then it may
specify that certain tags must be present, providing default values.

baseClass Species the name of a UML modeling element to which the
stereotype applies, such as Class, Association, Refinement,
Constraint, etc. This is the name of a metaclass, that is, a class
from the UML metamodel itself rather than a user model class.

OMG-UML V1.2 Extension Mechanisms March 1998 2-61

2

Associations

TaggedValue

A tagged value is a (Tag, Value) pair that permits arbitrary information to be attached
to any model element. A tag is an arbitrary name, some tag names are predefined as
Standard Elements. At most, one tagged value pair with a given tag name may be
attached to a given model element. In other words, there is a lookup table of values
selected by tag strings that may be attached to any model element.

The interpretation of a tag is (intentionally) beyond the scope of UML, it must be
determined by user or tool convention. It is expected that various model analysis tools
will define tags to supply information needed for their operation beyond the basic
semantics of UML. Such information could include code generation options, model
management information, or user-specified additional semantics.

icon The geometrical description for an icon to be used to present an
image of a model element classified by the stereotype.

extendedElement Designates the model elements affected by the stereotype. Each
one must be a model element of the kind specified by the
baseClass attribute.

stereotypeConstraint Designates constraints that apply to elements bearing the
stereotype.

requiredTag Specifies a set of tagged values, each of which specifies a tag that
an element classified by the stereotype is required to have. The
value part indicates the default value for the tag-value, that is, the
tag-value that an element will be presumed to have if it is not
overridden by an explicit tagged value on the element bearing the
stereotype. If the value is unspecified, then the element must
explicitly specify a tagged value with the given tag.

2-62 OMG-UML V1.2 May 1998

2

Attributes

Associations

2.7.3 Well-Formedness Rules

The following well-formedness rules apply to the Extension Mechanisms package.

Constraint

[1] A Constraint attached to a Stereotype must not conflict with Constraints on any
inherited Stereotype, or associated with the baseClass.

-- cannot be specified with OCL

[2] A Constraint attached to a stereotyped ModelElement must not conflict with any
constraints on the attached classifying Stereotype, nor with the Class (the baseClass)
of the ModelElement.

-- cannot be specified with OCL

[3] A Constraint attached to a Stereotype will apply to all ModelElements classified
by that Stereotype and must not conflict with any constraints on the attached classify-
ing Stereotype, nor with the Class (the baseClass) of the ModelElement.

-- cannot be specified with OCL

Stereotype

[1] Stereotype names must not clash with any baseClass names.

Stereotype.oclAllInstances->forAll(st | st.baseClass <> self.name)

tag A name that indicates an extensible property to be attached to
ModelElements. There is a single, flat space of tag names. UML
does not define a mechanism for name registry but model editing
tools are expected to provide this kind of service. A model
element may have at most one tagged value with a given name. A
tag is, in effect, a pseudoattribute that may be attached to model
elements.

value An arbitrary value. The value must be expressible as a string for
uniform manipulation. The range of permissible values depends
on the interpretation applied to the tag by the user or tool; its
specification is outside the scope of UML.

taggedValue A TaggedValue that is attached to a ModelElement.

requiredTag ATaggedValue that is attached to a Stereotype. A particular
TaggedValue can be attached to either a ModelElement or a
Stereotype, but not both.

OMG-UML V1.2 Extension Mechanisms March 1998 2-63

2

[2] Stereotype names must not clash with the names of any inherited Stereotype.

self.allSupertypes->forAll(st : Stereotype | st.name <> self.name)

[3] Stereotype names must not clash in the (M2) meta-class namespace, nor with the
names of any inherited Stereotype, nor with any baseClass names.

-- M2 level not accessible

[4] The baseClass name must be provided; icon is optional and is specified in an
implementation specific way.

self.baseClass <> ’’

[5] Tag names attached to a Stereotype must not clash with M2 meta-attribute
namespace of the appropriate baseClass element, nor with Tag names of any inherited
Stereotype.

-- M2 level not accessible

ModelElement

[1] Tags associated with a ModelElement (directly via a property list or indirectly via
a Stereotype) must not clash with any metaattributes associated with the Model Ele-
ment.

-- not specified in OCL

[2] A model element must have at most one tagged value with a given tag name.

self.taggedValue->forAll(t1, t2 : TaggedValue |

t1.tag = t2.tag implies t1 = t2)

[3] (Required tags because of stereotypes) If T in modelElement.stereotype.required
Tag.such that T.value = unspecified, then the modelElement must have a tagged value
with name = T.name.

self.stereotype.requiredTag->forAll(tag |

tag.value = Undefined implies self.taggedValue->exists(t |

t.tag = tag.tag))

TaggedValue

No extra well-formedness rules.

2.7.4 Semantics

Constraints, stereotypes, and tagged values apply to model elements, not to instances.
They represent extensions to the modeling language itself, not extensions to the run-
time environment. They affect the structure and semantics of models. These concepts
represent metalevel extensions to UML. However, they do not contain the full power
of a heavyweight metamodel extension language and they are designed such that tools
need not implement metalevel semantics to implement them.

2-64 OMG-UML V1.2 May 1998

2

Within a model, any user-level model element may have a set of constraints and a set
of tagged values. The constraints specify restrictions on the instantiation of the model.
An instance of a user-level model element must satisfy all of the constraints on its
model element for the model to be well-formed. Evaluation of constraints is to be
performed when the system is "stable," that is, after the completion of any internal
operations when it is waiting for external events. Constraints are written in a
designated constraint language, such as OCL, C++, or natural language. The
interpretation of the constraints must be specified by the constraint language.

A user-level model element may have at most one tagged value with a given tag name.
Each tag name represents a user-defined property applicable to model elements with a
unique value for any single model element. The meaning of a tag is outside the scope
of UML and must be determined by convention among users and model analysis tools.

It is intended that both constraints and tagged values be represented as strings so that
they can be edited, stored, and transferred by tools that may not understand their
semantics. The idea is that the understanding of the semantics can be localized into a
few modules that make use of the values. For example, a code generator could use
tagged values to tailor the code generation process and a process planning tool could
use tagged values to denote model element ownership and status. Other modules would
simply preserve the uninterpreted values (as strings) unchanged.

A stereotype refers to a baseClass, which is a class in the UML metamodel (not a user-
level modeling element) such as Class, Association, Refinement, etc. A stereotype may
be a subtype of one or more existing stereotypes (which must all refer the same
baseClass, or baseClasses that derive from the same baseClass), in which case it
inherits their constraints and required tags and may add additional ones of its own. As
appropriate, a stereotype may add new constraints, a new icon for visual display, and a
list of default tagged values.

If a user-level model element is classified by an attached stereotype, then the UML
base class of the model element must match the base class specified by the stereotype.
Any constraints on the stereotype are implicitly attached to the model element. Any
tagged values on the stereotype are implicitly attached to the model element. If any of
the values are unspecified, then the model element must explicitly define tagged values
with the same tag name or the model is ill-formed. (This behaves as if a copy of the
tagged values from the stereotype is attached to the model element, so that the default
values can be changed). If the stereotype is a subtype of one or more other stereotypes,
then any constraints or tagged values from those stereotypes also apply to the model
element (because they are inherited by this stereotype). If there are any conflicts
among multiple constraints or tagged values (inherited or directly specified), then the
model is ill-formed.

2.7.5 Standard Elements

None.

OMG-UML V1.2 Data Types March 1998 2-65

2

2.7.6 Notes

From an implementation point of view, instances of a stereotyped class are stored as
instances of the base class with the stereotype name as a property. Tagged values can
and should be implemented as a lookup table (qualified association) of values
(expressed as strings) selected by tag names (represented as strings).

Attributes of UML metamodel classes and tag names should be accessible using a
single uniform string-based selection mechanism. This allows tags to be treated as
pseudo-attributes of the metamodel and stereotypes to be treated as pseudo-classes of
the metamodel, permitting a smooth transition to a full metamodeling capability, if
desired. See Section 5.2.2, “Mapping of Interface Model into MOF” for a discussion
of the relationship of the UML to the OMG Meta Object Facility (MOF).

2.8 Data Types

2.8.1 Overview

The Data Types package is the subpackage that specifies the different data types used
by UML. This chapter has a simpler structure than the other packages, since it is
assumed that the semantics of these basic concepts are well known.

2.8.2 Abstract Syntax

The abstract syntax for the Data Types package is expressed in graphic notation in
Figure 2-15 on page 2-66.

2-66 OMG-UML V1.2 May 1998

2

Figure 2-15 Data Types

In the metamodel, the data types are used for declaring the types of the classes’
attributes. They appear as strings in the diagrams and not with a separate ‘data type’
icon. In this way, the sizes of the diagrams are reduced. However, each occurrence of a
particular name of a data type denotes the same data type.

Note that these data types are the data types used for defining UML and not the data
types to be used by a user of UML. The latter data types will be instances of the
DataType metaclass defined in the metamodel.

DataType
(from Core)

AggregationKind
<<enumeration>>

Boolean
<<enumeration>>

BooleanExpression

ChangeableKind
<<enumeration>>

Geometry
body : UninterpretedOperationDirectionKind

<<enumeration>>

Expression
language : Name
body : Uninterpreted

Name
body : String

Integer
<<primitive>>

ParameterDirectionKind
<<enumeration>>

MessageDirectionKind
<<enumeration>>

SynchronousKind
<<enumeration>>

ObjectSetExpression

ScopeKind
<<enumeration>>

String
<<primitive>>

Time
<<primitive>>

TimeExpression

Uninterpreted
<<primitive>>

Visibil i tyKind
<<enumeration>>

EnumerationsPrimitiv es

PseudostateKind
<<enumeration>>

ProcedureExpression

GraphicMarker
body : Uninterpreted

CallConcurrencyKind
<<enumeration>>

StructurePrimitive
1

Enumeration

li teral

1..*

{ordered}

EnumerationLiteral
name : Name1 1..*

EventOriginKind
<<enumeration>>

ranges 1..*

Multipl icityRange
lower : Integer
upper : Integer

1

Multipl icity

1..*

1

Mapping
body : Uninterpreted

OMG-UML V1.2 Data Types March 1998 2-67

2

AggregationKind

In the metamodel, AggregationKind defines an enumeration whose values are none,
shared, and composite. Its value denotes what kind of aggregation an Association is.

Boolean

In the metamodel, Boolean defines an enumeration whose values are false and true.

BooleanExpression

In the metamodel, BooleanExpression defines a statement which will evaluate to an
instance of Boolean when it is evaluated.

ChangeableKind

In the metamodel, ChangeableKind defines an enumeration whose values are none,
frozen, and addOnly. Its value denotes how an AttributeLink or LinkEnd may be
modified.

Enumeration

In the metamodel, Enumeration defines a special kind of DataType whose range is a
list of definable values, called EnumerationLiterals.

EnumerationLiteral

An EnumerationLiteral defines an atom (i.e., with no relevant substructure) that can be
compared for equality.

Expression

In the metamodel, an Expression defines a statement which will evaluate to a (possibly
empty) set of instances when executed in a context. An Expression does not modify the
environment in which it is evaluated.

Geometry

In the metamodel, a Geometry denotes a position in space.

GraphicMarker

In the metamodel, GraphicMarker defines the presentation characteristics of view
elements, such as color, texture, font, line width, shading, etc.

2-68 OMG-UML V1.2 May 1998

2

Integer

In the metamodel, an Integer is an element in the (infinite) set of integers (…-2, -1, 0,
1, 2…).

Mapping

In the metamodel, a Mapping is an expression that is used for mapping
ModelElements. For exchange purposes, it should be represented as a String.

MessageDirectionKind

In the metamodel, MessageDirectionKind defines an enumeration whose values are
activation and return. Its value denotes the direction of a Message.

Multiplicity

In the metamodel, a Multiplicity defines a non-empty set of non-negative integers. A
set which only contains zero ({0}) is not considered a valid Multiplicity. Every
Multiplicity has at least one corresponding String representation.

MultiplicityRange

In the metamodel, a MultiplicityRange defines a range of integers. The upper bound of
the range cannot be below the lower bound.

Name

In the metamodel, a Name defines a token which is used for naming ModelElements.
Each Name has a corresponding String representation.

ObjectSetExpression

In the metamodel, ObjectSetExpression defines a statement which will evaluate to a set
of instances when it is evaluated. ObjectSetExpressions are commonly used to
designate the target instances in an Action.

OperationDirectionKind

In the metamodel, OperationDirectionKind defines an enumeration whose values are
provide and require. Its value denotes if an Operation is required or provided by a
Classifier.

OMG-UML V1.2 Data Types March 1998 2-69

2

ParameterDirectionKind

In the metamodel, ParameterDirectionKind defines an enumeration whose values are
in, inout, out, and return. Its value denotes if a Parameter is used for supplying an
argument and/or for returning a value.

Primitive

A Primitive defines a special kind of simple DataType, without any relevant
substructure.

ProcedureExpression

In the metamodel, ProcedureExpression defines a statement which will result in an
instance of Procedure when it is evaluated.

PseudostateKind

In the metamodel, PseudostateKind defines an enumeration whose values are initial,
deepHistory, shallowHistory, join, fork, branch, and final. Its value denotes the
possible pseudo states in a state machine.

ScopeKind

In the metamodel, ScopeKind defines an enumeration whose values are classifier and
instance. Its value denotes if the stored value should be an instance of the associated
Classifier or the Classifier itself.

String

In the metamodel, a String defines a stream of text.

Structure

A Structure defines a special kind of DataType, that has a fixed number of named
parts.

SynchronousKind

In the metamodel, SynchronousKind defines an enumeration whose values are
synchronous and asynchronous. Its value denotes what kind of Message a CallAction
will create when executed.

Time

In the metamodel, a Time defines a value representing an absolute or relative moment
in time and space. A Time has a corresponding string representation.

2-70 OMG-UML V1.2 May 1998

2

TimeExpression

In the metamodel, TimeExpression defines a statement which will evaluate to an
instance of Time when it is evaluated.

Uninterpreted

In the metamodel, an Uninterpreted is a blob, the meaning of which is domain-specific
and therefore not defined in UML.

VisibilityKind

In the metamodel, VisibilityKind defines an enumeration whose values are public,
protected, and private. Its value denotes how the element to which it refers is seen
outside the enclosing name space.

2.8.3 Standard Elements

The predefined stereotypes, constraints and tagged values for the Data Types package
are listed in Table 2-4 and defined in Appendix A - UML Standard Elements.

Part 3 - Behavioral Elements

This section defines the superstructure for behavioral modeling in UML, the
Behavioral Elements package. The Behavioral Elements package consists of four
lower-level packages: Common Behavior, Collaborations, Use Cases, and State
Machines.

2.9 Overview

Common Behavior specifies the core concepts required for behavioral elements. The
Collaborations package specifies a behavioral context for using model elements to
accomplish a particular task. The Use Case package specifies behavior using actors
and use cases. The State Machines package defines behavior using finite-state
transition systems.

Table 2-4 Data Types - Standard Elements

Model Element Stereotypes Constraints Tagged Values

DataType «enumeration»

OMG-UML V1.2 Common Behavior March 1998 2-71

2

Figure 2-16 Behavioral Elements Package

2.10 Common Behavior

2.10.1 Overview

The Common Behavior package is the most fundamental of the subpackages that
compose the Behavioral Elements package. It specifies the core concepts required for
dynamic elements and provides the infrastructure to support Collaborations, State
Machines and Use Cases.

The following sections describe the abstract syntax, well-formedness rules and
semantics of the Common Behavior package.

2.10.2 Abstract Syntax

The abstract syntax for the Common Behavior package is expressed in graphic notation
in the following figures. Figure 2-17 on page 2-72 shows the model elements that
define Requests, which include Signals and Operations.

Use Cases State MachinesCollaborations

Common
Behavior

2-72 OMG-UML V1.2 May 1998

2

Figure 2-17 Common Behavior Requests

Figure 2-18 on page 2-73 illustrates the model elements that specify various actions,
such as CreateAction, CallAction and SendAction.

ModelElement

(from Core)

GeneralizableElement

(from Core)

Operation

(from Core)

signal 1

reception

0..*
Reception

isPolymorphic : Boolean
specification : Uninterpreted

0..1

Signal1

0..*

parameter 0..*

{ordered}

Parameter

(from Core)

0..1

0..*
Request

Common Behavior: Requests

context *

BehavioralFeatureraisedException

*

Exception

**

OMG-UML V1.2 Common Behavior March 1998 2-73

2

Figure 2-18 Common Behavior - Actions

Figure 2-19 on page 2-74 shows the model elements that define Instances and Links.

DestroyActionUninterpretedAction
body : String

ModelElement
(from Core)

CallAction
mode : SynchronousKind

LocalInvocation SendAction
0..*

CreateActioninstantiation

1

Classifier

(from Core) 0..*1

Common Behavior:
Actions

ReturnAction

TerminateAction

actualArgument
*

{ordered}

Argument
value : Expression

0..1

request

0..1

Request

0..*

0..1

ActionSequence

action

*

Action
recurrence : Expression
target : ObjectSetExpression
isAsynchronous : Boolean
script : String

*

0..1

0..10..*

0..1
*

2-74 OMG-UML V1.2 May 1998

2

Figure 2-19 Common Behavior - Instances and Links

The following metaclasses are contained in the Common Behavior package.

Action

An action is a specification of an executable statement that forms an abstraction of a
computational procedure that results in a change in the state of the model, realized by
sending a message to an object or modifying a value of an attribute.

In the metamodel an Action is a part of an ActionSequence and may contain a
specification of a target as well as a specification of the arguments (actual parameters)
of the dispatched Request.

The target metaattribute is of type ObjectSetExpression which, when executed,
resolves into zero or more specific Instances which are the intended recipients of the
dispatched Request. Similarly, it is associated with a list of Arguments which at

LinkObject

DataValueObject

Link

ModelElement
(from Core)

association1

*

connection

2..*1

Association
(from Core)

1Link

1

*

linkRole

2 .. *

associationEnd
1

AssociationEnd
(from Core)2..*1

*

classif ier1..*

Classif ier
(from Core)

*

instance

1

linkEnd

*

LinkEnd1

2 .. *

1

* *

attribute1

Attribute
(from Core)

*
value1

1Instance

1..*

*

1* slot

0..* AttributeLink

*

1

*
1

1 0..*

*

specification1

Request

*

argument

*

*

receiver

1

*

MessageInstance*

1
sende

1

Instance

*

*

*

1

*

1

OMG-UML V1.2 Common Behavior March 1998 2-75

2

runtime are resolved to the actual arguments of the Request. The recurrence
metaattribute specifies how many times the resulted Request should be sent every time
the Action is executed.

Action is an abstract metaclass.

Attributes

Associations

ActionSequence

An action sequence is a collection of actions.

In the metamodel an ActionSequence is an aggregation of Actions. It describes the
behavior of the owning State or Transition.

Associations

Argument

An argument represents the actual values passed to a dispatched request and
aggregated within an action.

In the metamodel, an Argument is a part of an Action and contains a metaattribute,
value, or type Expression.

Attributes

AttributeLink

An attribute link is a named slot in an instance, which holds the value of an attribute.

recurrence An Expression stating how many times the Action should be
performed.

target An ObjectSetExpression which determines the target of the
Action.

request The specification of the Request being dispatched by the Action.

actualArgument A sequence of Expressions which determines the actual arguments
needed when evaluating the Action.

action A sequence of Actions performed sequentially as an atomic unit.

value An Expression determining the actual Instance when evaluated.

2-76 OMG-UML V1.2 May 1998

2

In the metamodel AttributeLink is a piece of the state of an Instance and holds the
value of an Attribute.

Associations

CallAction

A call action is an action resulting in an invocation of an operation on an instance. A
call action can be synchronous or asynchronous, indicating whether the operation is
invoked synchronously or asynchronously.

In the metamodel, the CallAction is a subtype of Action. The designated instance or set
of instances is specified via the target expression, and the actual arguments are
designated via the argument association inherited from Action. The resulting operation
is specified by the dispatched Request, which in that case should be an Operation.

Attributes

CreateAction

A create action is an action resulting a creation of an instance of some classifier.

In the metamodel, the CreateAction is a subtype of Action. The Classifier class is
designated by the instantiation association of the CreateAction.

Associations

DestroyAction

A destroy action is an action results in the destruction of an object specified in the
action.

value The Instance which is the value of the AttributeLink.

attribute The Attribute from which the AttributeLink originates.

mode An enumeration which states if the dispatched Operation will be
synchronous or asynchronous.

• synchronous - indicates that the caller waits for the completion
of the execution of the Operation.

• asynchronous - Indicates that the caller does not wait for the
completion of the execution of the Operation but continues
immediately.

classifier The Classifier of which an Instance will be created of when the
CreateAction is performed.

OMG-UML V1.2 Common Behavior March 1998 2-77

2

In the metamodel a DestroyAction is a subclass of Action. The designated object is
specified by the target association of the Action.

DataValue

A data value is an instance with no identity.

In the metamodel DataValue is a subclass of Instance which cannot change its state,
i.e. all Operations that are applicable to it are pure functions or queries. DataValues are
typically used as attribute values.

Exception

An exception is a signal raised by behavioral features typically in case of execution
faults. In the metamodel, Exception is derived from Signal. An Exception is associated
with the BehavioralFeature that raises it.

Attributes

Associations

Instance

The instance construct defines an entity to which a set of operations can be applied and
which has a state that stores the effects of the operations.

In the metamodel Instance is connected to at least one Classifier which declares its
structure and behavior. It has a set of attribute values and is connected to a set of
Links, both sets matching the definitions of its Classifiers. The two sets implements
the current state of the Instance. Instance is an abstract metaclass.

body A description of the Exception in a format not defined in UML.

behavioralFeature The set of BehavioralFeatures that raise the exception.

2-78 OMG-UML V1.2 May 1998

2

Associations

Link

The link construct is a connection between instances.

In the metamodel Link is an instance of an Association. It has a set of LinkEnds that
matches the set of AssociationEnds of the Association. A Link defines a connection
between Instances.

Associations

LinkEnd

A link end is an end point of a link.

In the metamodel LinkEnd is the part of a Link that connects to an Instance. It
corresponds to an AssociationEnd of the Link’s Association.

Associations

LinkObject

A link object is a link with its own set of attribute values and to which a set of
operations may be applied.

In the metamodel LinkObject is a connection between a set of Instances, where the
connection itself may have a set of attribute values and to which a set of Operations
may be applied. It is a subclass of both Object and Link.

attributeLink The set of AttributeLinks that holds the attribute values of the
Instance.

linkEnd The set of LinkEnds of the connected Links that are attached to
the Instance.

classifier The set of Classifiers that declare the structure of the Instance.

association The Association that is the declaration of the link.

linkRole The sequence of LinkEnds that constitute the Link.

instance The Instance connected to the LinkEnd.

associationEnd The AssociationEnd that is the declaration of the LinkEnd..

OMG-UML V1.2 Common Behavior March 1998 2-79

2

LocalInvocation

A local invocation is a special type of action that invokes a local operation (an
operation on "self"). This type of invocation takes place without the mediation of the
state machine (i.e., it does not generate a call event). The invocation of a local utility
procedure of an object is an example of a LocalInvocation. In contrast, a CallAction on
"self" always results in an event.

In the metamodel, LocalInvocation is associated with the Operation that it invokes
through the relationship to Request. The argument association specifies the arguments
of the Operation are specified by the argument association. (inherited from Action).

MessageInstance

A message instance reifies a communication between two instances.

In the metamodel MessageInstance is an instance of a subclass of a Request, like
Signal and Request. It has a sender, a receiver, and may have a set of arguments, all
being Instances.

Associations

Object

An object is an instance that originates from a class.

In the metamodel Object is a subclass of Instance and it originates from at least one
Class. The set of Classes may be modified dynamically, which means that the set of
features of the Object is changed during its life-time.

Reception

A reception is a declaration stating that a classifier is prepared to react to the receipt of
a signal. The reception designates a signal and specifies the expected behavioral
response. A reception is a summary of expected behavior. The details of handling a
signal are specified by a state machine.

specification The Request from which the MessageInstance originates.

sender The Instance which sent the MessageInstance.

receiver The Instance which receives the MessageInstance.

arguments The sequence of Instances being the arguments of the
MessageInstance.

2-80 OMG-UML V1.2 May 1998

2

In the metamodel Reception is a subclass of BehavioralFeature and declares that the
Classifier containing the feature reacts to the signal designated by the reception
feature. The isPolymorphic attribute specifies whether the behavior is polymorphic or
not; a true value indicates that the behavior is not always the same and may be affected
by state or subclassing. The specification indicates the expected response to the signal.

Attributes

Associations

Request

A request is a specification of a stimulus being sent to instances. It can either be an
operation or a signal.

In the metamodel a Request is an abstract subclass of BehavioralFeature.

ReturnAction

A return action is an action that results in returning a value to a caller.

In the metamodel ReturnAction values are represented as the arguments inherited from
an Action.

SendAction

A send action is an action that results in the (asynchronous) sending of a signal. The
signal can be directed to a set of receivers via objectSetExpression, or sent implicitly
to an unspecified set of receivers, defined by some external mechanism. For example,
if the signal is an exception, the receiver is determined by the underlying runtime
system mechanisms.

In the metamodel SendAction is associated with the Signal by the request association
inherited from Action. The actual arguments are specified by the argument association,
inherited from Action.

isPolymorphic Whether the response to the Signal is fixed. If true, then the
response may depend on state of the Classifier and may be
overridden on subclasses. If false, then response to the signal is
always the same, regardless of state of the Classifier, and it may
not be overridden by subclasses.

specification A description of the effects of the classifier receiving a signal,
stated as an Expression.

signal The Signal that the Classifier is prepared to handle.

OMG-UML V1.2 Common Behavior March 1998 2-81

2

Signal

A signal is a specification of an asynchronous stimulus communicated between
instances. The receiving instance handles the signal by a state machine. Signal is a
generalizable element and is defined independently of the classes handling the signal.
A reception is a declaration that a class handles a signal, but the actual handling is
specified by a state machine.

In the metamodel Signal is a subclass of Request that is dispatched by a SendAction. It
is a GeneralizableElement, and aggregates a set of Parameters. A Signal is always
asynchronous.

Associations

TerminateAction

A terminate action results in self-destruction of an object.

In the metamodel TerminateAction is a subclass of Action.

UninterpretedAction

An uninterpreted action represents all actions that are not explicitly reified in the UML

Taken to the extreme, any action is a call or raise on some instance (e.g., Smalltalk).
However, in more practical terms, actions such as assignments and conditional
statements can be captured as uninterpreted actions, as well as any other language
specific actions that are neither call nor send actions

Attributes

2.10.3 Well-Formedness Rules

The following well-formedness rules apply to the Common Behavior package.

AttributeLink

[1] The type of the Instance must match the type of the Attribute.

self.value.classifier->includes(self.attribute.type)

reception A set of Receptions that indicate Classes prepared to handle the
signal.

body The definition of the action.

2-82 OMG-UML V1.2 May 1998

2

CallAction

[1] The types and order of actual arguments for an Action must match the parameters
of the Request.

(self.actualArgument->size > 0)

implies (Sequence{1..self.actualArguments->size})->

forAll (x |

self.actualArgument->at(x).type =

self.message.parameter->at(x).type)

Note: parameter refers to Signal or Operation (downcast)

[2] A CallAction must have exactly one target

self.target->size = 1

[3] The type of the dispatched Request should be Operation.

self.message->notEmpty

and

self.message.oclIsTypeOf(Operation)

CreateAction

[1] A CreateAction does not have a target expression.

self.target->isEmpty

DestroyAction

[1] A DestroyAction should not have arguments

self.actualArgument->size = 0

DataValue

[1] A DataValue originates from exactly one Classifier, which is a DataType.

(self.classifier->size = 1)

and

self.classifier.oclIsKindOf(DataType)

[2] A DataValue has no AttributeLinks.

self.slot->isEmpty

 Instance

[1] The AttributeLinks matches the declarations in the Classifiers.

self.slot->forAll (al |

self.classifier->exists (c |

c.allAttributes->includes (al.attribute)))

OMG-UML V1.2 Common Behavior March 1998 2-83

2

[2] The Links matches the declarations in the Classifiers.

self.allLinks->forAll (l |

self.classifier->exists (c |

c.allAssociations->includes (l.association)))

[3] If two Operations have the same signature they must be the same.

self.classifier->forAll (c1, c2 |

c1.allOperations->forAll (op1 |

c2.allOperations->forAll (op2 |

op1.hasSameSignature (op2) implies op1 = op2)))

[4] There are no name conflicts between the AttributeLinks and opposite LinkEnds.

self.slot->forAll(al |

not self.allOppositeLinkEnds->exists(le | le.name = al.name))

and

self.allOppositeLinkEnds->forAll(le |

not self.slot->exists(al | le.name = al.name))

 [6] The number of associated Instances in one opposite LinkEnds must match the
multiplicity of that AssociationEnd.

Additional operations

[1] The operation allLinks results in a set containing all Links of the Instance itself.

allLinks : set(Link);

allLinks = self.linkEnd->collect (l | l.link)

[2] The operation allOppositeLinkEnds results in a set containing all LinkEnds of
Links connected to the Instance with another LinkEnd.

allOppositeLinkEnds : set(Link);

allOppositeLinkEnds = self.allLinks->collect (l |

l.linkRole)->select (le | le.instance <> self)

Link

[1] The set of LinkEnds must match the set of AssociationEnds of the Association.

Sequence {1..self.linkRole->size}->forAll (i |

self.linkRole->at (i).associationEnd =
self.association.connection->at (i))

[2] There are not two Links of the same Association which connects the same set of
Instances in the same way.

self.association.instance->forAll (l |

Sequence {1..self.linkRole->size}->forAll (i |

self.linkRole.instance = l.linkRole.instance) implies self
= l)

2-84 OMG-UML V1.2 May 1998

2

LinkEnd

[1] The type of the Instance must match the type of the AssociationEnd.

self.instance.classifier->includes (self.associationEnd.type)

LinkObject

[1] One of the Classifiers must be the same as the Association.

self.classifier->includes(self.association)

[2] The Association must be a kind of AssociationClass.

self.association.oclIsKindOf(AssociationClass)

MessageInstance

[1] The type of the arguments must match the parameters of the Request.

self.argument->size = self.specification.parameter->size

and

Sequence {1..self.argument->size}->forAll (i |

self.argument->at (i).classifier->includes (

self.specification.parameter->at (i).type))

-- Note: parameter refers to the parameter of the operation or signal

-- subclasses of request.

Object

[1] Each of the Classifiers must be a kind of Class.

self.classifier->forAll (c | c.oclIsKindOf(Class))

 Signal

[1] A Signal is always asynchronous and is always an invocation.

self.isAsynchronous and self.direction = activation

Reception

[1] A Reception can not be a query.

not self.isQuery

Request

Additional operations

 [1] The parameter of a Request is the parameter of the Signal or Operation.

parameter : set(Parameter);

OMG-UML V1.2 Common Behavior March 1998 2-85

2

parameter = if self.oclIsKindOf(Operation)

 then self.oclAsType(Operation).parameter

 else if self.oclIsKindOf(Signal)

 then self.oclAsType(Signal).parameter

 else Set {}

 endif endif

SendAction

[1] The types and order of actual arguments must match the parameters of the Request
(Signal or Operation).

(self.actualArgument->size > 0)

implies (Sequence{1..self.actualArgument->size}->

forAll (x |

self.actualArgument->at(x).type =

self.message.parameters->at(x).type))

-- note: parameters apply to signal or operation (downcast)

[2] The type of the dispatched Request is a Signal.

self.message->notEmpty

and

self.message.oclIsKindOf (Signal)

[3] The target of an Exception should be empty (implicit)

self.message.oclIsKindOf(Exception) implies (self.target = NULL)

TerminateAction

[1] A TerminateAction should not have arguments.

self.actualArgument->size = 0

2.10.4 Semantics

This section provides a description of the semantics of the elements in the Common
Behavior package.

Object and DataValue

An object is an instance that originates from a class, it is structured and behaves
according to its class. All objects originating from the same class are structured in the
same way, although each of them has its own set of attribute links. Each attribute link
references an instance, usually a data value. The number of attribute links with the
same name fulfills the multiplicity of the corresponding attribute in the class. The set
may be modified according to the specification in the corresponding attribute (e.g.,

2-86 OMG-UML V1.2 May 1998

2

each referenced instance must originate from (a subtype of) the type of the attribute,
and attribute links may be added or removed according to the changeable property of
the attribute).

An object may have multiple classes (i.e., it may originate from several classes). In
this case, the object will have all the features declared in all of these classes, both the
structural and the behavioral ones. Moreover, the set of classes (i.e., the set of features
that the object conforms to) may vary over time. New classes may be added to the
object and old ones may be detached. This means that the features of the new classes
are dynamically added to the object, and the features declared in a class which is
removed from the object are dynamically removed from the object. No name clashes
between attributes links and opposite link ends are allowed, and each operation which
is applicable to the object should have a unique signature.

Another kind of instance is data value, which is an instance with no identity. Moreover,
a data value cannot change its state-all operations that are applicable to a data value are
queries and do not cause any side effects. Since it is not possible to differentiate
between two data values that appear to be the same, it becomes more of a
philosophical issue whether there are several data values representing the same value
or just one for each value-it is not possible to tell. In addition, a data value cannot
change its type.

Link

A link is a connection between instances. Each link is an instance of an association
(i.e., a link connects instances of (subclasses of) the associated classifiers). In the
context of an instance, an opposite end defines the set of instances connected to the
instance via links of the same association and each instance is attached to its link via a
link-end originating from the same association end. However, to be able to use a
particular opposite end, the corresponding link end attached to the instance must be
navigable. An instance may use its opposite ends to access the associated instances. An
instance can communicate with the instances of its opposite ends and also use
references to them as arguments or reply values in communications.

A link object is a special kind of link, it is at the same time also an object. Since an
object may change it classes this is also true for a link object. However, one of the
classes must always be an association class.

Request, Signal, Exception and Message Instance

A request is a specification of a communication between instances as a result of an
instance performing certain kinds of actions: call action, raise action, destroy action,
and return action.

Two kinds of requests exist: signal and operation. The former is used to trigger a
reaction in the receiver in an asynchronous way and without a reply, and the latter is
the specification of an operation, which can be either synchronous or asynchronous
and may require a reply from the receiver to the sender. When an instance
communicates with another instance a message instance is passed between the two
instances. It has a sender, a receiver, and possibly a set of arguments according to the

OMG-UML V1.2 Common Behavior March 1998 2-87

2

specifying request. A signal may be attached to a classifier, which means that instances
of the classifier will be able to receive that signal. This is facilitated by declaring a
reception by the classifier.

An exception is a special kind of signal, typically used to signal fault situations. The
sender of the exception aborts execution and execution resumes with the receiver of
the exception, which may be the sender itself. Unlike other signals, the receiver is
determined implicitly by the interaction sequence during execution and is not explicitly
specified.

The reception of a message instance originating from a call action by an instance
causes the invocation of an operation on the receiver. The receiver executes the method
that is found in the full descriptor of the class that corresponds to the operation. The
reception of a signal by an instance may cause a transition and subsequent effects as
specified by the state machine for the classifier of the recipient. This form of behavior
is described in the State Machines package. Note that the invoked behavior is
described by methods and state machine transitions. Operations and Receptions merely
declare that a classifier accepts a given Request but they do not specify the
implementation.

Action

An action is a specification of a computable statement. Each kind of action is defined
as a subclass of action. The following kinds of actions are defined:

• send action is an action in which a message instance is created that causes a signal
event for the receiver(s).

• call action is an action in which a message instance is created that causes an
operation to be invoked on the receiver.

• local invocation is an action that leads to the local execution of an operation.

• create action is an action in which an instance is created based on the definitions of
the specified set of classifiers.

• terminate action is an action in which an instance causes itself to cease to exist.

• destroy action is an action in which an instance causes another instance to cease to
exist.

• return action is an action that returns a value to a caller.

• uninterpreted action is an action that has no interpretation in UML.

Each action has a specification of the target object set, which resolves into zero or
more instances when the action is executed. These instances are the recipients of a
signal or an operation invocation. Each action also has a list of expressions, which
resolve into a list of actual argument values when the action is executed. An action is
always executed within the context of an instance.

An action may dispatch a request to another instance (e.g., call action, send action).
The action specifies how the receiver and the arguments are to be evaluated for each
dispatched instance of the request. Moreover, the action also specifies how many

2-88 OMG-UML V1.2 May 1998

2

message instances should be dispatched and if they should be dispatched sequentially
or in parallel (recurrence). In a degenerated case, this could be used for specification of
a condition, which must be fulfilled if the request is to be sent; otherwise, the request
is neglected.

2.10.5 Standard Elements

The predefined stereotypes, constraints and tagged values for the Common Behavior
package are listed in Table 2-5 and defined in Appendix A - UML Standard Elements.

2.11 Collaborations

2.11.1 Overview

The Collaborations package is a subpackage of the Behavioral Elements package. It
specifies the concepts needed to express how different elements of a model interact
with each other from a structural point of view. The package uses constructs defined in
the Foundation package of UML as well as in the Common Behavior package.

A Collaboration defines a specific way to use the Model Elements in a Model. It
describes how different kinds of Classifiers and their Associations are to be used in
accomplishing a particular task. The Collaboration defines a restriction of, or a
projection of, a Model of Classifiers (i.e., what properties Instances of the participating
Classifiers must have in a particular Collaboration). The same Classifier or Association
can appear in several Collaborations, and also several times in one Collaboration, each
time in a different role. In each appearance it is specified which of the properties of the
Classifier or Association are needed in that particular usage. These properties are a
subset of all the properties of that Classifier or Association. A set of Instances and
Links conforming to the participants specified in the Collaboration cooperate when the
specified task is performed. Hence, the Classifier structure implies the possible
collaboration structures of conforming Instances. A Collaboration may be presented in
a diagram, either showing the restricted views of the participating Classifiers and
Associations, or by showing prototypical Instances and Links conforming to the
restricted views.

Collaborations can be used for expressing several different things, like how use cases
are realized, actor structures of ROOM, OORam role models, and collaborations as
defined in Catalysis. They are also used for setting up the context of Interactions and
for defining the mapping between the specification part and the realization part of a
Subsystem.

Table 2-5 Common Behavior - Standard Elements

Model Element Stereotypes Constraints Tagged Values

Instance persistent

LinkEnd association, global, local,
parameter, self

Request broadcast, vote

OMG-UML V1.2 Collaborations March 1998 2-89

2

An Interaction defined in the context of a Collaboration specifies the details of the
communications that should take place in accomplishing a particular task. It describes
which Requests should be sent and their internal order.

The following sections describe the abstract syntax, well-formedness rules and
semantics of the Collaborations package.

2.11.2 Abstract Syntax

The abstract syntax for the Collaborations package is expressed in graphic notation in
Figure 2-20.

Figure 2-20 Collaborations

AssociationEndRole

An association-end role specifies an endpoint of an association as used in a
collaboration.

{or}

Collaborations

connection2..*

1

base

1AssociationEnd

(from Core)

*

action

1

Action

(from Common Behav0..*
*

activator 0..1

*

predecessor *

base

1
Association

(from Core)

2..*

1

*

1

/connection 2..*

*AssociationEndRole1 *

/type

1

sender

1

**

receiver

1

* base

1

Classifier

(from Core)

*

availableFeature *

Feature

*

message
1..*

Message

10..*
*

0..1

*

*

1

/ownedElement

*

AssociationRole
multiplicity : Multiplicity

1 *

1

2..*

*represented
Operation

0..1Operation
(from Core)

1

/ownedElement

1..* ClassifierRole
multiplicity : Multiplicity

* 1

1

**

1

*

1

*

*

context

1
interaction

*
Interaction

*

1..*

*

represented
Classifier

0..1

Classifier

(from Core)
*

Collaboration

1

*

*

0..1

1

1..*

1 *

*

0..1

constrainingElement

*

ModelElement

(from Core)

* *

Namespace

(from Core)

2-90 OMG-UML V1.2 May 1998

2

In the metamodel, an AssociationEndRole is part of an AssociationRole and specifies
the connection of an AssociationRole to a ClassifierRole. It is related to the
AssociationEnd, declaring the corresponding part in an Association.

Attributes

Associations

AssociationRole

An association role is a specific usage of an association needed in a collaboration.

In the metamodel an AssociationRole specifies a restricted view of an Association used
in a Collaboration. An AssociationRole is a composition of a set of
AssociationEndRoles corresponding to the AssociationEnds of its base Association.

Attributes

Associations

ClassifierRole

A classifier role is a specific role played by a participant in a collaboration. It specifies
a restricted view of a classifier, defined by what is required in the collaboration.

In the metamodel a ClassifierRole specifies one participant of a Collaboration (i.e., a
role Instances conform to). It declares a set of Features, which is a subset of those
available in the base Classifier. The ClassifierRole may be connected to a set of
AssociationRoles via AssociationEndRoles.

Attributes

multiplicity The number of LinkEnds playing this role in a Collaboration.

base An AssociationEndRole that is a projection of an AssociationEnd.

multiplicity The number of Links playing this role in a Collaboration.

base An AssociationRole that is a projection of an Association.

multiplicity The number of Instances playing this role in a Collaboration.

OMG-UML V1.2 Collaborations March 1998 2-91

2

Associations

Collaboration

A collaboration describes how an operation or a classifier, like a use case, is realized
by a set of classifiers and associations used in a specific way. The collaboration defines
a context for performing tasks defined by interactions.

In the metamodel, a Collaboration contains a set of ClassifierRoles and
AssociationRoles, which represent the Classifiers and Associations that take part in the
realization of the associated Classifier or Operation. The Collaboration may also
contain a set of Interactions that are used for describing the behavior performed by
Instances conforming to the participating ClassifierRoles.

A Collaboration specifies a view (restriction, slice, projection) of a model of
Classifiers. The projection describes the required relationships between Instances that
conform to the participating ClassifierRoles, as well as the required subset of the
Features of these Classifiers. Several Collaborations may describe different projections
of the same set of Classifiers. Hence, a Classifier can be a base for several
ClassifierRoles.

A Collaboration may also reference a set of ModelElements, usually Classifiers and
Generalizations, needed for expressing structural requirements, such as Generalizations
required between the Classifiers themselves to fulfill the intent of the Collaboration.

Associations

availableFeature The subset of Features of the Classifier which is used in the
Collaboration.

base A ClassifierRole that is a projection of a Classifier.

constrainingElement The ModelElements that add extra constraints, like Generalization
and Constraint, on the ModelElements participating in the
Collaboration.

interaction The set of Interactions that are defined within the Collaboration.

ownedElement (Inherited from Namespace) The set of roles defined by the
Collaboration. These are ClassifierRoles and AssociationRoles.

representedClassifier The Classifier the Collaboration is a realization of. (Used if the
Collaboration represents a Classifier.)

representedOperation The Operation the Collaboration is a realization of. Used if the
Collaboration represents an Operation.)

2-92 OMG-UML V1.2 May 1998

2

Interaction

An interaction specifies the messages sent between instances performing a specific
task. Each interaction is defined in the context of a collaboration.

In the metamodel an Interaction contains a set of Messages specifying the
communication between a set of Instances conforming to the ClassifierRoles of the
owning Collaboration.

Associations

Message

A message defines how a particular request is used in an interaction.

In the metamodel a Message defines a particular usage of a Request in an Interaction.
It specifies the roles of the sender and receiver as well as the dispatching Action.
Furthermore, it defines the relative sequencing of Messages within the Interaction.

Associations

2.11.3 Well-Formedness Rules

The following well-formedness rules apply to the Collaborations package.

AssociationEndRole

[1] The type of the ClassifierRole must conform to the type of the base
AssociationEnd.

context The Collaboration which defines the context of the Interaction.

message The Messages that specify the communication in the Interaction.

action The specification of the Message.

activator The Message that called the operation whose method contains the
current Message.

receiver The role of the Instance that receives the Message and reacts to it.

predecessor The set of Messages whose completion enables the execution of
the current Message. All of them must be completed before
execution begins. Empty if this is the first message in a method.

sender The role of the Instance that sends the Message and possibly
receives a response.

OMG-UML V1.2 Collaborations March 1998 2-93

2

self.type = self.base.type

or

self.type.allSupertypes->includes (self.base.type)

[2] The type must be a kind of ClassifierRole.

self.type.oclIsKindOf (ClassifierRole)

AssociationRole

[1] The AssociationEndRoles must conform to the AssociationEnds of the base
Association.

Sequence{ 1..(self.role->size) }->forAll (index |

self.role->at(index).base = self.base.connection->at(index))

[2] The endpoints must be a kind of AssociationEndRoles.

self.role->forAll(r | r.oclIsKindOf (AssociationEndRole))

ClassifierRole

[1] The AssociationRoles connected to the ClassifierRole must match a subset of the
Associations connected to the base Classifier.

self.allAssociations->forAll(ar |

self.base.allAssociations->exists (a | ar.base = a))

[2] The Features of the ClassifierRole must be a subset of those of the base Classifier.

self.base.allFeatures->includesAll (self.availableFeature)

[3] A ClassifierRole does not have any Features of its own.

self.allFeatures->isEmpty

Collaboration

[1] All Classifiers and Associations of the ClassifierRoles and AssociationRoles in the
Collaboration should be included in the namespace owning the Collaboration.

self.ownedElement->forAll (e |

(e.oclIsKindOf (ClassifierRole) implies

self.namespace.allContents->includes
(e.oclAsType(ClassifierRole).base))

and

(e.oclIsKindOf (AssociationRole) implies

self.namespace.allContents->includes (e.
oclAsType(AssociationRole).base)))

[2] All the constraining ModelElements should be included in the namespace owning
the Collaboration.

self.constrainingElement->forAll (ce |

2-94 OMG-UML V1.2 May 1998

2

self.namespace.allContents->includes (ce))

[3] If a ClassifierRole or an AssociationRole does not have a name then it should be
the only one with a particular base.

self.ownedElement->forAll (p |

(p.oclIsKindOf (ClassifierRole) implies

p.name = ’’ implies

self.ownedElement->forAll (q |

q.oclIsKindOf(ClassifierRole) implies

(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies p =
q)))

and

(p.oclIsKindOf (AssociationRole) implies

p.name = ’’ implies

self.ownedElement->forAll (q |

q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =

q.oclAsType(AssociationRole).base implies p =
q)))

)

[4] A Collaboration may only contain ClassifierRoles and AssociationRoles.

self.ownedElement->forAll (p |

p.oclIsKindOf (ClassifierRole) or

p.oclIsKindOf (AssociationRole))

Interaction

[1] All Signals being bases of Messages must be included in the namespace owning
the Interaction.

self.message->forAll (m |

m.base.oclIsKindOf(Signal) implies

self.collaboration.namespace.allContents->includes
(m.base))

Message

[1] The sender and the receiver must participate in the Collaboration which defines the
context of the Interaction.

self.interaction.context.ownedElement->includes (self.sender)

and

self.interaction.context.ownedElement->includes (self.receiver)

[2] The predecessors and the activator must be contained in the same Interaction.

OMG-UML V1.2 Collaborations March 1998 2-95

2

self.predecessor->forAll (p | p.interaction = self.interaction)

and

self.activator->forAll (a | a.interaction = self.interaction)

[3] The predecessors must have the same activator as the Message.

self.allPredecessors->forAll (p | p.activator = self.activator)

[4] A Message cannot be the predecessor of itself.

not self.allPredecessors->includes (self)

Additional operations

[1] The operation allPredecessors results in the set of all Messages that precede the
current one.

allPredecessors : Set(Message);

allPredecessors = self.predecessor->union
(self.predecessor.allPredecessors)

2.11.4 Semantics

This section provides a description of the semantics of the elements in the
Collaborations package. It is divided into two parts: Collaboration and Interaction.

Collaboration

In the following text the term instance of a collaboration denotes the set of instances
that together participate in and perform one specific collaboration.

The purpose of a collaboration is to specify how an operation or a classifier, like a use
case, is realized by a set of classifiers and associations. Together, the classifiers and
their associations participating in the collaboration conform to the requirements of the
realized operation or classifier. The collaboration defines a context in which the
behavior of the realized element can be specified in terms of interactions between the
participants of the collaboration. Thus, while a model describes a whole system, a
collaboration is a slice, or a projection, of that model. It defines a subset of its
contents, like classifiers and associations.

A collaboration may be presented at two different levels: specification level or instance
level. A diagram presenting the collaboration at the specification level will show
classifier roles and association roles, while a diagram at the instance level will present
instances and links conforming to the roles in the collaboration.

In a collaboration it is specified what properties instances must have to be able to take
part in the collaboration, i.e. each participant specifies the required set of features a
conforming instance must have. Furthermore, the collaboration also states which
associations must exist between the participants. Not all features of the participating
classifiers and not all associations between these classifiers are always required in a
particular collaboration. Because of this, a collaboration is not actually defined in
terms of classifiers, but classifier roles. Thus, while a classifier is a complete

2-96 OMG-UML V1.2 May 1998

2

description of instances, a classifier role is a description of the features required in a
particular collaboration (i.e., a classifier role is a projection of a classifier in the sense
that its features match a subset of the classifier’s features). The represented classifier is
referred to as the base classifier. Several classifier roles may have the same base
classifier, even in the same collaboration, but their features may be different subsets of
the features of the classifier. These classifier roles then specify different roles played
by (usually different) instances of the same classifier.

In a collaboration the association roles defines what associations are needed between
the classifiers in this context. Each association role represents the usage of an
association in the collaboration, and it is defined between the classifier roles that
represents the associated classifiers. The represented association is called the base
association of the association role.

An instance participating in a collaboration instance plays a specific role (i.e.,
conforms to a classifier role) in the collaboration. The number of instances that should
play one specific role in one instance of a collaboration is specified by the classifier
role (multiplicity). Different instances may play the same role but in different instances
of the collaboration. Since all these instances play the same role, they must all conform
to the classifier role specifying the role. Thus, every instance must have attribute
values corresponding to the attribute specified by the classifier role, and must
participate in links corresponding to the association roles connected to the classifier
role. The instances may, of course, have more attribute values than required by the
classifier role which would be the case if they originate from a classifier being a
subtype of the required one. Furthermore, one instance may play different roles in
different instances of one collaboration. The instance may, in fact, play multiple roles
in the same instance of a collaboration.

If the collaboration represents an operation the context could also include things like
parameters, attributes and classifiers contained in the classifier owning the operation,
etc. The interactions then specify how the arguments, the attribute values, the instances
etc. will cooperate to perform the behavior specified by the operation. A collaboration
can be used to specify how an operation or a classifier, like a use case, is realized by a
set of cooperating classifiers. In a collaboration representing an operation, the base
classifiers are the operation’s parameter types together with the attribute types of the
classifier owning the operation. When the collaboration represents a classifier, its base
classifiers can be classifiers of any kind, like classes or subsystems.

How the instances conforming to a collaboration should interact to jointly perform the
behavior of the realized classifier is specified with a set of interactions. The
collaboration thus specifies the context in which these interactions are performed.

Two or more collaborations may be composed in order to refine a superordinate
collaboration. For example, when refining a superordinate use case into a set of
subordinate use cases, the collaborations specifying each of the subordinate use cases
may be composed into one collaboration, which will be a (simple) refinement of the
superordinate collaboration. The composition is done by observing that at least one
instance must participate in both sets of collaborating instances. This instance has to
conform to one classifier role in each collaboration. In the composite collaboration
these two classifier roles are merged into a new one, which will contain all features
included in either of the two original classifier roles. The new classifier role will, of

OMG-UML V1.2 Collaborations March 1998 2-97

2

course, be able to fulfill the requirements of both of the previous collaborations, so the
instance participating in both of the two sets of collaborating instances will conform to
the new classifier role.

A collaboration may be a specification of a template. There will not be any instances
of such a template collaboration, but it can be used for generating ordinary
collaborations, which may be instantiated. Template collaborations may have
parameters that act like placeholders in the template. Usually, these parameters would
be classifiers and associations, but other kinds of model elements can also be defined
as parameters in the collaboration, like operation or signal. In a collaboration generated
from the template these parameters are refined by other model elements that make the
collaboration instantiable.

Moreover, a collaboration may have a set of constraining model elements, like
constraints and generalizations perhaps together with some extra classifiers. These
constraining model elements do not participate in the collaboration themselves. They
are used for expressing extra constraints on the participating elements in the
collaboration that cannot be covered by the participating roles themselves. For
example, in a template it might be required that two of the classifiers must have a
common ancestor or one classifier must be a subclass of another one. These kinds of
requirements cannot be expressed with association roles, since they express the
required links between participating instances. An extra set of model elements is
therefore added to the collaboration.

Interaction

The purpose of an interaction is to specify the communication between a set of
interacting instances performing a specific task. An interaction is defined within a
collaboration (i.e., the collaboration defines the context in which the interaction takes
place). The instances performing the communication specified by the interaction
conform to the classifier roles of the collaboration.

An interaction specifies the execution of a set of message instances. These are partially
ordered based on which execution thread they belong to. The execution starts by
executing the first message instance of each thread after it has been dispatched. Within
each thread the message instances are executed in a sequential order while message
instances of different threads may be executed in parallel or in an arbitrary order.

A request is a specification of a communication between instances, such as a call
action or a send action. The request states the name of the operation to be applied to or
the event to be raised in the receiver as well as the arguments. Furthermore, it specifies
the direction of the stimulus (i.e., whether it is an invocation of an operation or a reply)
and whether or not it is an asynchronous stimulus. If it is asynchronous the instance
will continue its execution immediately after sending the message instance, while it
will be blocked and waiting for a reply if it is synchronous.

2-98 OMG-UML V1.2 May 1998

2

A message is a usage of a request in an interaction. It specifies the type of the sender
and the type of the receiver as well as which messages should have been received and
sent before the current one. Moreover, the message also specifies the expected
response of the receiver (script), which should be in conformance with the
specification of the corresponding operation of the receiver.

The interaction specifies the activator and predecessors of each message. The activator
is the message that invoked the procedure of which the current message is a step.
Every message except the initial message of an interaction has an activator. The
predecessors are the set of messages that must be completed before the current
message may be executed. The first message in a procedure has no predecessors. If a
message has more than one predecessor, then it represents the joining of two threads of
control. If a message has more than one successor (the inverse of predecessor), then it
indicates a fork of control into multiple threads. The predecessors relationship imposes
a partial ordering on the messages within a procedure, whereas the activator
relationship imposes a tree on the activation of operations. Messages may be executed
concurrently subject to the sequential constraints imposed by the predecessors and
activator relationship.

Each message instance is dispatched by performing an action. The action specifies how
the receiver and the arguments are to be evaluated for each dispatched instance of the
message. Moreover, the action also specifies whether iteration or conditionality should
be applied and whether iteration should be applied sequentially or in parallel
(recurrence).

2.11.5 Standard Elements

None.

2.11.6 Notes

Pattern is a synonym for a template collaboration that describes the structure of a
design pattern. Design patterns involve many nonstructural aspects, such as heuristics
for their use and lists of advantages and disadvantages. Such aspects are not modeled
by UML and may be represented as text or tables.

2.12 Use Cases

2.12.1 Overview

The Use Cases package is a subpackage of the Behavioral Elements package. It
specifies the concepts used for definition of the functionality of an entity like a system.
The package uses constructs defined in the Foundation package of UML as well as in
the Common Behavior package.

The elements in the Use Cases package are primarily used to define the behavior of an
entity, like a system or a subsystem, without specifying its internal structure. The key
elements in this package are UseCase and Actor. Instances of use cases and instances

OMG-UML V1.2 Use Cases March 1998 2-99

2

of actors interact when the services of the entity are used. How a use case is realized in
terms of cooperating objects, defined by classes inside the entity, can be specified with
a Collaboration. A use case of an entity may be refined to a set of use cases of the
elements contained in the entity. How these subordinate use cases interact can also be
expressed in a Collaboration. The specification of the functionality of the system itself
is usually expressed in a separate use-case model (i.e., a Model stereotyped
«useCaseModel»). The use cases and actors in the use-case model are equivalent to
those of the system package.

The following sections describe the abstract syntax, well-formedness rules and
semantics of the Use Cases package.

2.12.2 Abstract Syntax

The abstract syntax for the Use Cases package is expressed in graphic notation in
Figure 2-21 on page 2-99.

Figure 2-21 Use Cases

The following metaclasses are contained in the Use Cases package.

Actor

An actor defines a coherent set of roles that users of an entity can play when
interacting with the entity. An actor has one role for each use case with which it
communicates.

In the metamodel Actor is a subclass of Classifier. An Actor has a Name and may
communicate with a set of UseCases, and, at realization level, with Classifiers taking
part in the realization of these UseCases. An Actor may also have a set of Interfaces,
each describing how other elements may communicate with the Actor.

UseCaseInstance

Actor

classifier

1..* *

Instance
(from Common Behavior)

realization
*

Classifier
(from Core)

1..* *

*

*

specification

*

UseCase

extensionPoint : list of String

2-100 OMG-UML V1.2 May 1998

2

An Actor may inherit other Actors. This means that the inheriting Actor will be able to
play the same roles as the inherited Actor (i.e., communicate with the same set of
UseCases) as the inherited Actor.

UseCase

The use case construct is used to define the behavior of a system or other semantic
entity without revealing the entity’s internal structure. Each use case specifies a
sequence of actions, including variants, that the entity can perform, interacting with
actors of the entity.

In the metamodel UseCase is a subclass of Classifier, containing a set of Operations
and Attributes specifying the sequences of actions performed by an instance of the
UseCase. The actions include changes of the state and communications with the
environment of the UseCase.

There may be Associations between UseCases and the Actors of the UseCases. Such
an Association states that instances of the UseCase and a user playing one of the roles
of the Actor communicate with each other. UseCases may be related to other UseCases
only by Extends and Uses relationships (i.e., Generalizations stereotyped «extends» or
«uses»). An Extends relationship denotes the extension of the sequence of one
UseCase with the sequence of another one, while Uses relationships denote that
UseCases share common behavior.

The realization of a UseCase may be specified by a set of Collaborations (i.e., the
Collaborations define how Instances in the system interact to perform the sequence of
the UseCase).

Attributes

UseCaseInstance

A use case instance is the performance of a sequence of actions being specified in a
use case.

In the metamodel UseCaseInstance is a subclass of Instance. Each method performed
by a UseCaseInstance is performed as an atomic transaction (i.e., it is not interrupted
by any other UseCaseInstance).

An explicitly described UseCaseInstance is called a scenario.

2.12.3 Well-FormednessRules

The following well-formedness rules apply to the Use Cases package.

extensionPoint A list of strings representing extension points defined within the
use case. An extension point is a location at which the use case
can be extended with additional behavior.

OMG-UML V1.2 Use Cases March 1998 2-101

2

Actor

[1] Actors can only have Associations to UseCases and Classes and these Associations
are binary.

self.associations->forAll(a |

a.connection->size = 2 and

a.allConnections->exists(r | r.type.oclIsKindOf(Actor)) and

a.allConnections->exists(r |

r.type.oclIsKindOf(UseCase) or

r.type.oclIsKindOf(Class)))

[2] Actors cannot contain any Classifiers.

self.contents->isEmpty

[3] For each Operation in an offered Interface the Actor must have a matching
Operation.

self.specification.allOperations->forAll (interOp |

self.allOperations->exists (op | op.hasSameSignature (interOp)))

UseCase

[1] UseCases can only have binary Associations.

self.associations->forAll(a | a.connection->size = 2)

[2] UseCases can not have Associations to UseCases specifying the same entity.

self.associations->forAll(a |

a.allConnections->forAll(s, o|

s.type.specificationPath->isEmpty and o.type.specificationPath-
>isEmpty

or

(not s.type.specificationPath-
>includesAll(o.type.specificationPath) and

not o.type.specificationPath-
>includesAll(s.type.specificationPath))

))

[3] A UseCase can only have «uses» or «extends» Generalizations.

self.generalization->forAll(g |

g.stereotype.name = ’Uses’ or g.stereotype.name = ’Extends’)

[4] A UseCase cannot contain any Classifiers.

self.contents->isEmpty

[5] For each Operation in an offered Interface the UseCase must have a matching
Operation.

self.specification.allOperations->forAll (interOp |

2-102 OMG-UML V1.2 May 1998

2

self.allOperations->exists (op | op.hasSameSignature (interOp)
))

Additional operations

[1] The operation specificationPath results in a set containing all surrounding
Namespaces that are not instances of Package.

specificationPath : Set(Namespace)

specificationPath = self.allSurroundingNamespaces->select(n |

n.oclIsKindOf(Subsystem) or n.oclIsKindOf(Class))

UseCaseInstance

No extra well-formedness rules.

2.12.4 Semantics

This section provides a description of the semantics of the elements in the Use Cases
package, and its relationship to other elements in the Behavioral Elements package.

Actor

Figure 2-22 Actor Illustration

Actors model parties outside an entity such as a system, a subsystem, or a class which
interact with the entity. Each actor defines a coherent set of roles users of the entity
can play when interacting with the entity. Every time a specific user interacts with the
entity, it is playing one such role. An instance of an actor is a specific user interacting
with the entity. Any instance that conforms to an actor can act as an instance of the
actor. If the entity is a system the actors represent both human users and other systems.
Some of the actors of a lower level subsystem or a class may coincide with actors of
the system, while others appear inside the system. The roles defined by the latter kind
of actors are played by instances of classifiers in other packages or subsystems, where
in the latter case the classifier may belong to either the specification part or the
contents part of the subsystem.

Association

2..*

*

AssociationEnd

2..*

*

Interface

*

* Generalization

1 1

1Actor

1*

*

*1
*1

Namespace

1

*

1

*

OMG-UML V1.2 Use Cases March 1998 2-103

2

Since an actor is outside the entity, its internal structure is not defined but only its
external view as seen from the entity. Actor instances communicate with the entity by
sending and receiving message instances to and from use case instances and, at
realization level, to and from objects. This is expressed by associations between the
actor and the use case or class.

Furthermore, interfaces can be connected to an actor, defining how other elements may
interact with the actor.

Two or more actors may have commonalities (i.e., communicate with the same set of
use cases in the same way). This commonality is expressed with generalizations to
another (possibly abstract) actor, which models the common role(s). An instance of an
heir can always be used where an instance of the ancestor is expected.

UseCase

Figure 2-23 UseCase Illustration

In the following text the term entity is used when referring to a system, a subsystem,
or a class and the term model element or element denotes a subsystem or a class.

The purpose of a use case is to define a piece of behavior of an entity without
revealing the internal structure of the entity. The entity specified in this way may be a
system or any model element that contains behavior, like a subsystem or a class, in a
model of a system. Each use case specifies a service the entity provides to its users
(i.e., a specific way of using the entity). It specifies a complete sequence initiated by a
user (i.e., the interactions between the users and the entity as well as the responses
performed by the entity) as they are perceived from the outside. A use case also
includes possible variants of this sequence (e.g., alternative sequences, exceptional
behavior, error handling etc.). The complete set of use cases specifies all different
ways to use the entity (i.e., all behavior of the entity is expressed by its use cases).
These use cases can be grouped into packages for convenience.

{<<Uses>> or <<Extends>>}

Association

2..*

Namespace

*

*

Attribute

*

Operation

*
AssociationEnd

2..*

*

Interface

*

*

GeneralizationUseCase

1

*

*

*

*

*

*

*

*
UseCaseInstance

*

1

2-104 OMG-UML V1.2 May 1998

2

From a pragmatic point of view, use cases can be used both for specification of the
(external) requirements on an entity and for specification of the functionality offered
by an (already realized) entity. Moreover, the use cases also indirectly state the
requirements the specified entity poses on its users (i.e., how they should interact so
the entity will be able to perform its services).

Since users of use cases always are external to the specified entity, they are represented
by actors of the entity. Thus, if the specified entity is a system or a subsystem at the
topmost level (i.e., a top-package, the users of its use cases are modeled by the actors
of the system). Those actors of a lower level subsystem or a class that are internal to
the system are often not explicitly defined. Instead, the use cases relate directly to
model elements conforming to these implicit actors (i.e., whose instances play these
roles in interaction with the use cases). These model elements are contained in other
packages or subsystems, where in the subsystem case they may be contained in the
specification part or the contents part. The distinction between actor and conforming
element like this is often neglected; thus, they are both referred to by the term actor.

There may be associations between use cases and actors, meaning that the instances of
the use case and the actor communicates with each other. One actor may communicate
with several use cases of an entity (i.e., the actor may request several services of the
entity) and one use case communicates with one or several actors when providing its
service. Note that two use cases specifying the same entity cannot communicate with
each other since each of them individually describes a complete usage of the entity.
Moreover, use cases always use signals when communicating with actors outside the
system, while it may use other communication semantics when communicating with
elements inside the system.

The interaction between actors and use cases can be defined with interfaces. The
interface then defines a subset of the entire interaction defined in the use case.
Different interfaces offered by the same use case need not be disjoint.

A use-case instance is a performance of a use case, initiated by a message from an
instance of an actor. As a response to the message the use-case instance performs a
sequence of actions as specified by the use case, like sending messages to actor
instances, not necessarily only the initiating one. The actor instances may send new
messages to the use-case instance and the interaction continues until the instance has
responded to all input and does not expect any more input, when it ends. Each method
performed by a use-case instance is performed as an atomic transaction (i.e., it is not
interrupted by any other use-case instance).

A use case can be described in plain text, using operations, in activity diagrams, by a
state-machine, or by other behavior description techniques, such as pre-and post
conditions. The interaction between the use case and the actors can also be presented
in collaboration diagrams.

In the case where subsystems are used to model the package hierarchy, the system can
be specified with use cases at all levels, since use cases can be used to specify each
subsystem and each class. A use case specifying one model element is then refined into
a set of smaller use cases, each specifying a service of a model element contained in
the first one. The use case of the whole is said to be superordinate to its refining use
cases, which in turn are subordinate to the first one. The functionality specified by

OMG-UML V1.2 Use Cases March 1998 2-105

2

each superordinate use case is completely traceable to its subordinate use cases. Note,
though, that the structure of the container element is not revealed by the use cases,
since they only specify the functionality offered by the element. All subordinate use
cases of a specific superordinate use case cooperate to perform the superordinate one.
Their cooperation is specified by collaborations and may be presented in collaboration
diagrams. All actors of a superordinate use case appear as actors of subordinate use
cases. Moreover, the cooperating subordinate use cases are actors of each other.
Furthermore, the interfaces of a superordinate use case are traceable to the interfaces of
those subordinate use cases that communicate with actors that are also actors of the
superordinate use case.

The environment of subordinate use cases is the model element containing the model
elements specified by these use cases. Thus, from a bottom-up perspective, interaction
of subordinate use cases results in a superordinate use case (i.e., a use case of the
container element).

Use cases of classes are specified in terms of the operations of the classes, since a
service of a class in essence is the invocation of the operations of the class. Some use
cases may consist of the application of only one operation, while others may involve a
set of operations, possibly in a well-defined sequence. One operation may be needed in
several of the services of the class, and will therefore appear in several use cases of the
class.

The realization of a use case depends on the kind of model element it specifies. For
example, since the use cases of a class are specified by means of operations, they are
realized by the corresponding methods, while the use cases of a subsystem are realized
by the elements contained in the subsystem. Since a subsystem does not have any
behavior of its own, all services offered by a subsystem must be a composition of
services offered by elements contained in the subsystem (i.e., eventually by classes).
These elements will collaborate and jointly perform the behavior of the specified use
case. One or a set of collaborations describes how the realization of a use case is made.
Hence, collaborations are used for specification of both the refinement and the
realization of a use case.

The usage of use cases at all levels imply not only a uniform way of specification of
functionality at all levels, but also a powerful technique for tracing requirements at the
system package level down to operations of the classes. The propagation of the effect
of modifying a single operation at the class level all the way up to the behavior of the
system package is managed in the same way.

Commonalities between use cases are expressed with uses relationships (i.e.,
generalizations with the stereotype «uses»). The relationship means that the sequence
of behavior described in a used use case is included in the sequence of another use
case. The latter use case may introduce new pieces of behavior anywhere in the
sequence as long as it does not change the ordering of the original sequence. Moreover,
if a use case has several uses relationships, its sequence will be the result of
interleaving the used sequences together with new pieces of behavior. How these parts
are combined to form the new sequence is defined in the using use case.

2-106 OMG-UML V1.2 May 1998

2

An extends relationship (i.e., a generalization with the stereotype «extends») defines
that a use case may be extended with some additional behavior defined in another use
case. The extends relationship includes both a condition for the extension and a
reference to an extension point in the related use case (i.e., a position in the use case
where additions may be made). Once an instance of a use case reaches an extension
point to which an extends relationship is referring, the condition of the relationship is
evaluated. If the condition is fulfilled, the sequence obeyed by the use-case instance is
extended to include the sequence of the extending use case. Different parts of the
extending use case sequence may be inserted at different extension points in the
original sequence. If there is still only one condition (i.e., if the condition of the
extends relationship is fulfilled at the first extension point), then the entire extending
behavior is inserted in the original sequence.

Note that the two kinds of relationships described above can only exist between use
cases specifying the same entity. The reason for this is that the use cases of one entity
specify the behavior of that entity alone (i.e., all use-case instances are performed
entirely within that entity). If a use case would have a uses or extends relationship to a
use case of another entity, the resulting use-case instances would involve both entities,
resulting in a contradiction. However, uses and extends relationships can be defined
from use cases specifying one entity to use cases of another one if the first entity has a
generalization to the second one, since the contents of both entities are available in the
first entity.

As a first step when developing a system, the dynamic requirements of the system as a
whole can be expressed with use cases. The entity being specified is then the whole
system, and the result is a separate model called a use-case model (i.e., a model with
the stereotype «useCaseModel»). Next, the realization of the requirements is expressed
with a model containing a system package, probably a package hierarchy, and at the
bottom a set of classes. If the system package (i.e., the representation of the system as
a whole in the model) is modeled by applying the «topLevelPackage» stereotype to the
subsystem construct, its abstract behavior is naturally the same as that of the system.
Thus, if use cases are used for the specification part of the system package, these use
cases are equivalent to those in the use-case model of the system (i.e., they express the
same behavior but possibly slightly differently structured). In other words, all services
specified by the use cases of a system package, and only those, define the services
offered by the system. Furthermore, if several models are used for modeling the
realization of a system (e.g., an analysis model and a design model) the set of use cases
of all system packages and the use cases of the use-case model must be equivalent.

2.12.5 Standard Elements

See Appendix A - UML Standard Elements for definitions of the «extends»,
«extends», and «useCaseModel» stereotypes.

2.12.6 Notes

A pragmatic rule of use when defining use cases is that each use case should yield
some kind of observable result of value to (at least) one of its actors. This ensures that
the use cases are complete specifications and not just fragments.

OMG-UML V1.2 State Machines March 1998 2-107

2

2.13 State Machines

2.13.1 Overview

The State Machine package is a subpackage of the Behavioral Elements package. It
specifies a set of concepts that can be used for modeling behavior through finite state-
transition systems. It is defined as an elaboration of the Foundation package. The State
Machine package also depends on concepts that are defined in the Common Behavior
package, enabling integration with the other subpackages in Behavioral Elements.

The metamodel described supports an object variant of statecharts. Statecharts are
characterized by a number of conceptual shortcuts, such as hierarchical states,
concurrent states, history, and branch nodes, which, in combination, achieve a
significant compaction of specifications over most other state-based formalisms. In a
sense, all other finite-state machine models can be considered as constrained versions
of statecharts (e.g., Mealy machines or state-event matrices).

State machines can be used in two different ways. In one case, the state machine may
specify complete behavior of its context, typically a class. In that case requestors send
requests to the owner of a state machine. and the state machine receiving an event
determines what the effect will be by attaching actions to transitions, from which
complete specifications of operations can be derived.

In the second case, the state machine may be used as a protocol specification, showing
the order in which operations may be invoked on a type. Transitions are triggered by
call events and their actions invoke the desired operation. This means that a caller is
allowed to invoke the operation at that point. The protocol state machine does not
specify actions that specify the behavior of the operation itself, but shows a change of
state determining which operations can be invoked next.

In addition to defining state machines, the metamodel also defines the core semantics
of activity models. Statecharts and activity models share many elements, and hence are
based on the same metamodel. Activity models are a subtype of state models that use
most of the concepts that apply to state machines.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the State Machines package.

2.13.2 Abstract Syntax

The abstract syntax for the State Machines package is expressed in graphic notation in
the following figures. Figure 2-24 on page 2-108 shows the main model elements that
define state machines, which include States, Events and Transitions.

2-108 OMG-UML V1.2 May 1998

2

Figure 2-24 State Machines - Main

Figure 2-25 on page 2-109 shows model elements that are specializations of Events.

Pseudostate
kind : PseuostateKind

SimpleState

State Machines: Main

ModelElement

(from Core)

action

*
{ordered}

Action
(from Common Behavior)

0..1
0..1

entry 0..1

0..1 exit 0..1

0..*

deferredEvent

0..*

behavio

*

context

0..1

ModelElement

(from Core)

top
1

0..1

substate

1..*

parent

0..1

CompositeState
isConcurrent : Boolean
isRegion : Boolean

1

guard 0..1

Guard
expression : BooleanExpression

effect0..1

ActionSequence

(from Common Behavior)
*

0..1

0..1
internalTransition*

0..1

State

0..1

0..1

0..1 0..1

trigger

0..1

Event

0..*

0..*

*

transitions *

0..1

StateMachine
*

0..1

1

0..1

source

1

outgoing

*
target

1

StateVertex

1..*

0..1

incoming

*

Transition

1

0..1

0..1

0..1
*

0..1

0..1

*

*

0..1

1 *

1 *

*

SubmachineState

submachine 1

StateMachine

*

1

OMG-UML V1.2 State Machines March 1998 2-109

2

Figure 2-25 State Machines - Events

CallEvent

A call event is the reception of a request to invoke an operation. The expected result is
the execution of the operation.

In the metamodel CallEvent is a subclass of Event, which is the abstract meta-class
representing all event types that trigger a transition in the state machine.

Two special cases of CallEvent are the object creation event and the object destruction
event.

Associations

ChangeEvent

A change event is an event that is generated when one or more attributes or
relationships change value according to an explicit expression.

A change event is never raised by an explicit change event action. Instead, it is a
consequence of the execution of one or more actions that modify the values of
elements that are referenced in the boolean expression. The corresponding change
event is actually raised by the underlying run-time system that detects that the
condition has changed to true

operation Designates the operation whose invocation is requested.

TimeEvent
duration : TimeExpression

ChangeEvent
changeExpression : BooleanExpression

Event

1

Operation

(from Core)

occurrence *

CallEvent

1

*occurrence *

SignalEvent

1

Signal

from Common Behavior)

*

1

State Machines:
Events

signal operation

2-110 OMG-UML V1.2 May 1998

2

A change event functions as a trigger for transitions, and must not be confused with a
guard. When a change event occurs, a guard can still block any transition that would
otherwise be triggered by that change.

In the metamodel ChangeEvent is a subclass of Event, which is the abstract class that
represents all events that trigger a StateMachine.

Attributes

CompositeState

A composite state is a state that consists of substates.

In the metamodel a CompositeState is a subclass of State that contains one or more
substates that are subtypes of StateVertex.

Associations

Attributes

Event

An event is the specification of a significant occurrence that has a location in time and
space. An instance of an event can lead to the activation of a behavioral feature in an
object.

changeExpression A boolean expression that indicates when a ChangeEvent occurs.

substate Designates a set of States that constitute the substates of a
CompositeState. Each substate is uniquely owned by its parent
CompositeState.

isConcurrent A boolean value that specifies the decomposition semantics. If
this attribute is true, then the composite state is decomposed
directly into two or more orthogonal conjunctive components
(usually associated with concurrent execution). If this attribute is
false, then there are no direct orthogonal components in the
composite. This means that exactly one of the substates can be
active at a given instant (i.e., sequential execution).

isRegion A derived boolean value that indicates whether a CompositeState
is a substate of a concurrent state. If it evaluates to true, then the
CompositeState is a substate of a concurrent state.

OMG-UML V1.2 State Machines March 1998 2-111

2

It is important to distinguish between an event, which is a static specification for a
dynamically occurring concept, from an actual instance of an event as a result of
program execution. The class Event represents the type of an event. An instance of an
event is not modeled explicitly in the metamodel.

In the metamodel an Event is a subclass of ModelElement and is the part of a
Transition that represents its trigger.

Guard

A guard condition is a boolean expression that may be attached to a transition in order
to determine whether that transition is enabled or not.

The guard is evaluated when an event occurrence triggers the transition. Only if the
guard is true at the time the event is presented to the state machine will the transition
actually take place. Guards should be pure expressions without side effects. Guard
expressions with side effects may lead to unpredictable results.

In the metamodel Guard is a ModelElement so it can be substituted in refined state
machines.

Attributes

PseudoState

A pseudo state is an abstraction of different types of nodes in the state machine graph
which represent transient points in transition paths from one state to another (e.g.,
branch and fork points). Pseudo states are used to construct complex transitions from
simple transitions. For example, by combining a transition entering a fork pseudo state
with a set of transitions exiting the fork pseudo state, we get a complex transition that
leads to a set of target states.

In the metamodel PseudoState is a subclass of StateVertex, which generalizes all
statechart nodes.

Attributes

SignalEvent

A SignalEvent represents events that result from the reception of a signal by an object.

In the metamodel SignalEvent is a subclass of Event.

expression A boolean expression that specifies the guard condition.

kind Determines the type of the PseudoState and can be one of initial,
deepHistory, shallowHistory, join, fork, branch, or final.

2-112 OMG-UML V1.2 May 1998

2

Associations

SimpleState

A SimpleState is a state that does not have substates.

In the metamodel a SimpleState is a subclass of State that does not have any additional
features. It is included solely for symmetry with CompositeState.

State

A State is a condition or situation during the life of an object during which is satisfies
some condition, performs some activity, or waits for some event. A state models a
dynamic situation in which, typically, one or more (implicit or explicit) conditions
hold.

In the metamodel, a State is a subclass of StateVertex, thereby inheriting the
fundamental features of incoming and outgoing transitions associated with state
vertices.

signal Designates the Signal whose reception by the state owner may
trigger a Transition.

OMG-UML V1.2 State Machines March 1998 2-113

2

Associations

StateMachine

A state machine is a behavior that specifies the sequences of states that an object or an
interaction goes through during its life in response to events, together with its
responses and actions. The behavior is specified as a traversal of a graph of state nodes
interconnected by one or more joined transition arcs. The transitions are triggered by
series of event instances.

In the metamodel a StateMachine is composed of States and Transitions. The
ModelElement role provides the context for the StateMachine. A common case of the
context relation is where a StateMachine is designated to specify the lifecycle of the
Classifier. The StateMachine has a composition aggregation to a State that represents
the top state and a set of Transitions. As a consequence the StateMachine owns its
Transitions and its top State, but nested states are transitively owned through their
parent States.

deferredEvent A list of Events. The effect of whose occurrence during the State
is postponed until the owner enters a State in which they are not
deferred, at which time they may trigger Transitions as if they had
just occurred.

entry An optional ActionSequence that is executed when the State is
entered. These Actions are atomic, may not be avoided, and
precede any internal activity or Transitions.

exit An optional ActionSequence that is executed when the State is
exited. These Actions are atomic, may not be avoided, and follow
any internal activity or Transitions.

internalTransition A set of Transitions that occur entirely within the State. If one of
their triggers is satisfied, then the action is performed without
changing State. This means that the entry or exit condition of the
State will not be invoked. These Transitions apply even if the
StateMachine is in a nested region and they leave it in the same
State.

deferredEvent An association that specifies the Events to be deferred if received
within the State. Multiplicity ‘*..*’ indicates that a State can defer
multiple Events, and an Event can be deferred by multiple States.

2-114 OMG-UML V1.2 May 1998

2

Associations

StateVertex

A StateVertex is an abstraction of a node in a statechart graph. In general, it can be the
source or destination of any number of transitions.

In the metamodel a StateVertex is a subclass of ModelElement.

Associations

SubmachineState

A SubmachineState represents a nested state machine. A nested state machine is
semantically equivalent to a composite state, but facilitates reuse and modularity in the
form of an independent nested state machine.

In the metamodel a SubmachineState is a subclass of State.

context An association to a ModelElement constrained to be a Classifier
or a BehavioralFeature. The owning ModelElement is the element
whose behavior is specified by the StateMachine. The
ModelElement may contain multiple StateMachines (although for
many purposes one suffices). Each StateMachine is owned by one
ModelElement.

top Designates the top level State directly owned by the
StateMachine. Other States are owned by the parent composite
states. The multiplicity is 1, there must be one State designated as
the top State. The rest of the StateMachine is an expansion of this
CompositeState.

transitions Associates the StateMachine with its Transitions. Note that
internal Transitions are owned by the State and not by the
StateMachine. All other Transitions which are essentially
relationships between States are owned by the StateMachine.
Multiplicity is ‘0..*’.

outgoing Specifies the transitions departing from the vertex.

incoming Specifies the transitions entering the vertex.

OMG-UML V1.2 State Machines March 1998 2-115

2

Associations

TimeEvent

A TimeEvent is a subtype of Event for modeling event instances resulting from the
expiration of a deadline.

In the metamodel a time event can specify a trigger of a transition, which by default
denotes the time elapsed since the current state was entered.

Attributes

Transition

A Transition is a relationship between a source state vertex and a target state vertex. It
may be part of a compound transition, which takes the state machine from one state
configuration to another, representing the complete response of the state machine to a
particular event instance for a given source state configuration.

In the metamodel Transition is a subclass of ModelElement that participates in various
relationships with other state machine metaclasses.

Associations

submachine Represents the substate machine.

duration Specifies the corresponding time deadline.

trigger Specifies the single Event which activates it.

guard Predicate that must evaluate to true at the instant the Transition is
triggered.

effect Specifies an ActionSequence to be performed when the Transition
fires.

source Designates the StateVertex affected by firing the Transition. If the
StateVertex is in the source state and the trigger of the Transition
is satisfied, then it fires, performs its Actions, and the
StateMachine enters the target State.

target Designates the StateVertex that results from a firing of the
Transition when the StateMachine was originally in the source
State. After the firing the StateMachine is in the target State.

2-116 OMG-UML V1.2 May 1998

2

2.13.3 Well-FormednessRules

The following well-formedness rules apply to the State Machines package.

CompositeState

[1] A composite state can have at most one initial vertex

self.subState->select (v | v.oclType = Pseudostate)->

select(p : Pseudostate | p.kind = #initial)->size <= 1

[2] A composite state can have at most one deep history vertex

self.subState->select (v | v.oclType = Pseudostate)->

select(p : Pseudostate | p.kind = #deepHistory)->size <= 1

[3] A composite state can have at most one shallow history vertex

self.subState->select(v | v.oclType = Pseudostate)->

select(p : Pseudostate | p.kind = #shallowHistory)->size <= 1

[4] There have to be at least two composite substates in a concurrent composite state

(self.isConcurrent) implies

(self.subState->select (v | v.oclIsKindOf(CompositeState))-
>size >= 2)

Guard

[1] A guard should not have side effects

LocalInvocation

[1] A local invocation has no target

self.target->size = 0

PseudoState

[1] An initial vertex can have at most one outgoing transition and no incoming
transitions

(self.kind = #initial) implies

((self.outgoing->size <= 1) and (self.incoming->isEmpty))

[2] A final pseudo state cannot have outgoing transitions

(self.kind = #final) implies (self.outgoing->isEmpty)

[3] History vertices can have at most one outgoing transition

((self.kind = #deepHistory) or (self.kind = #shallowHistory))
implies

(self.outgoing->size <= 1)

OMG-UML V1.2 State Machines March 1998 2-117

2

[4] A join vertex must have at least two incoming transitions and exactly one outgoing
transition

(self.kind = #join) implies

((self.outgoing->size = 1) and (self.incoming->size >= 2))

[5] A fork vertex must have at least two outgoing transitions and exactly one
incoming transition

(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))

[6] A branch vertex must have one incoming transition segment and at least two
outgoing transition segments with guards.

(self.kind = #branch) implies

((self.incoming->size = 1) and

((self.outgoing->size >= 2) and self.outgoing->forAll(t |

t.guard->size = 1)))

StateMachine

[1] A StateMachine is aggregated within either a classifier or a behavioral feature.

self.context.oclIsKindOf(BehavioralFeature) or
self.context.oclIsKindOf(Classifier)

[2] A top state is always a composite.

self.top.oclIsTypeOf(CompositeState)

[3] A top state cannot have parents

self.top.parent->isEmpty

[4] The top state cannot be the source or target of a transition.

(self.top.outgoing->isEmpty) and (self.top.incoming->isEmpty)

[5] There can be no history vertices in the top state.

self.top.substate->select(oclIsTypeOf(Pseudostate))->

forAll (p : Pseudostate |

not (p.kind = #shallowHistory) and not (p.kind =
#deepHistory))

[6] If a StateMachine describes a behavioral feature, it contains no triggers of type
CallEvent, apart from the trigger on the initial transition (see OCL for Transition [8]).

self.context.oclIsKindOf(BehavioralFeature) implies

self.transitions->reject(

source.oclIsKindOf(Pseudostate) and

source.oclAsType(Pseudostate).kind= #initial).trigger-
>isEmpty

2-118 OMG-UML V1.2 May 1998

2

Transition

[1] A fork segment should not have guards or triggers.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[2] A join segment should not have guards or triggers.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment should always target a state.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.oclIsKindOf(State)))

[4] A join segment should always originate from a state.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.oclIsKindOf(State)))

[5] A branch segment must not have a trigger.

self.source.oclIsKindOf(Pseudostate) implies

(((self.source.oclAsType(Pseudostate).kind = #branch) or

(self.source.oclAsType(Pseudostate).kind = #deepHistory) or

(self.source.oclAsType(Pseudostate).kind = #shallowHistory) or

(self.source.oclAsType(Pseudostate).kind = #initial)) implies

(self.trigger->isEmpty))

[6] Join segments should originate from orthogonal states.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.parent.isConcurrent))

[7] Fork segments should target orthogonal states.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.parent.isComposite))

[8] An initial transition at the topmost level may have a trigger with the stereotype
"create." An initial transition of a StateMachine modeling a behavioral feature has a
CallEvent trigger associated with that BehavioralFeature. Apart from these cases, an
initial transition never has a trigger.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #initial) implies

OMG-UML V1.2 State Machines March 1998 2-119

2

(self.trigger->isEmpty or

((self.source.parent = self.stateMachine.top) and

(self.trigger.stereotype.name = ’create’)) or

(self.stateMachine.context.oclIsKindOf(BehavioralFeature)
and

self.trigger.oclIsKindOf(CallEvent) and

(self.trigger.oclAsType(CallEvent).operation =

self.stateMachine.context))

))

self.source.oclIsKindOf(Pseudostate) implies

((self.source.kind = #initial) implies

(self.trigger.isEmpty or

((self.source.parent = self.StateMachine.top) and

(self.trigger.stereotype.name = ’create’)) or

(self.StateMachine.context.oclIsKindOf(BehaviouralFeature)
and

self.trigger.oclIsKindOf(CallEvent) and

(self.trigger.operation =
self.StateMachine.context))

))

2.13.4 Semantics

This section describes the execution semantics of state machines. For convenience, the
semantics are described using an operational style; that is, they are expressed in terms
of the operations of a hypothetical machine that implements a state machine
specification. In the general case, the key components of this abstract machine are:

• an events queue which accepts incoming event instances,

• a dispatcher which selects and de-queues event instances for processing, and

• an event processor which processes dispatched event instances according to the
general semantics of UML state machines and the specific form of the state
machine in question. Because of that, this component is simply referred to as "the
state machine" in the following text.

This is for reference purposes only and is not meant to imply that individual
realizations must conform to this structure. For example, the role of the event
dispatcher might be played by some other object that simply invokes an operation on
the object.

Understanding the dynamic semantics of state machines requires an understanding of
the complex relationships between individual metaclasses. Therefore, the bulk of the
description of the dynamic semantics of state machine is included in the context of the
state machine metaclass.

2-120 OMG-UML V1.2 May 1998

2

StateMachine

The software context that assumes that a state machine reacts to an event applied to it
by some external object.

Event processing by a state machine is partitioned into steps, each of which is caused
by an event instance directed to the state machine.

The fundamental semantics assumes that events are processed in sequence, where each
event stimulates a run-to-completion (RTC) step. The next external event is dispatched
to the state machine after the previous RTC step has completed. This assumption
simplifies the transition function of the state machine since the incoming event is
processed only after the state machine has reached a well-defined (stable) state
configuration.

The practical meaning of these semantics is thread protection, allowing the state
machine to safely complete its RTC step without concern about being interrupted in
mid-transition by a subsequent event. This may be implemented by a thread event-loop
reading events from a queue (in case of active classes) or as a monitor (in case of a
passive class).

It is possible to define state machine semantics by allowing the RTC steps to be
applied concurrently to the orthogonal regions of a composite state, rather than to the
whole state machine. This would allow the event serialization constraint to be relaxed.
However, such semantics are quite subtle and difficult to implement. Therefore, the
dynamic semantics as defined in this document are based on the precept that an RTC
step applies to the entire state machine. This satisfies most practical purposes.

Run-to-completion processing

Once an event instance is dispatched, it may result in one or multiple transitions being
enabled for firing. (Only transitions that triggered by the corresponding event type can
be enabled). By default, if no transition is enabled, the event is discarded without any
effect. An event can be deferred to be processed later if specified as a deferred event in
one of the active states. Deferred events semantics are described in a following section.

In case where one or more transitions are enabled, the state machine selects a subset
and fires them, moving the state machine from one active state configuration to a new
active state configuration. This basic transformation is called a step. The transitions
that fire are determined by the transition selection function described below. Actions
that result from taking the transition may cause event instances to be generated for this
and other objects.

If these actions are synchronous then the transition freezes until the invoked objects
complete their own run. Each orthogonal bottom-level component can fire at most one
transition as a result of the event instance dispatch. Conflicting transitions (described
below) will not fire in the same step. When all orthogonal regions have finished
executing the transition, the event instance is consumed, and the step terminates.

The order in which selected transitions fire is not defined. It is based on an arbitrary
traversal that is not explicitly defined by the state machine formalism.

OMG-UML V1.2 State Machines March 1998 2-121

2

Completion transitions and completion events

A completion transition is a transition without a trigger (a guard is possible). The
completion transition is typically taken upon the completion of actions of its source
state.

After reacting to an event occurrence, the state machine may reach a state
configuration where some of the states have outgoing completion transitions (transient
configurations). Such a configuration is considered non-stable.

In this case further steps are taken until the state machine reaches a stable state
configuration (i.e., no more transitions are enabled). Completion transitions are
triggered by completion events, which are dispatched to the state machine whenever a
transient configuration is encountered. Completion events are dispatched in a series of
steps until a stable configuration is reached completing the RTC step initiated by the
event instance. At this point, control returns to the dispatcher and a new event instance
can be dispatched.

It is possible for a state machine to never reach a stable configuration. (A practical
solution to overcome such cases in an implementation of this semantics, is to set a
limit on the maximal number of steps allowed before the state machine is to reach a
stable configuration.)

An event instance can arrive at a state machine that is frozen in the middle of an RTC
step from some other object within the same thread, in a circular fashion. This event
instance can be treated by orthogonal components of the state machine that are not
frozen along transitions at that time.

Step semantics

Informally, the semantics of a step involve the execution of a maximal set of non-
conflicting transitions from an active, current state configuration. (Note that this
section is based on the dynamic semantics sections of State, CompositeState, and
Transition.)

Transition selection

Transition selection specifies which subset of the enabled transitions will fire. The
following sections discuss the two major considerations that affect transition selection:
conflicts and priorities.

Conflicts

In a given state, it is possible for several transitions to be enabled within a state
machine. The issue then is which ones can be fired simultaneously without
contradicting (conflicting with) each other. For example, if there are two transitions
originating from a state s, one labeled e[c1] and the other e[c2], and if both [c1] and
[c2] are true, then only one transition can fire.

2-122 OMG-UML V1.2 May 1998

2

Two transitions are said to conflict if they both exit the same state, or, more precisely,
that the intersection of the set of states they exit is non-empty. The intuition is that
only ‘concurrent’ transitions may be fired simultaneously. This constraint guarantees
that the new active state configuration resulting from executing the set of transitions is
well formed.

An internal transition in a state conflicts only with transitions that cause an exit from
that state.

Priorities

Priorities resolve transition conflicts, but not all of them. We use the state hierarchy to
define priorities among conflicting transitions. By definition, a transition emanating
from a substate has higher priority than a conflicting transition emanating from any of
the containing states.

The priority of a transition is defined based on its source state. Join transitions get the
priority according to their lowest source state.

If t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not hierarchically related, then there is no priority defined between
t1 and t2.

Note – other policies are also possible. In classical statecharts, the priority is reversed:
parent states imply higher priorities than nested states. However, in the object context
inner states are more specialized than their ancestors, and therefore override them.)

 Selecting transitions

The set of transitions that will fire is the maximal set that satisfies the following
conditions:

• All transitions in the set are enabled.

• There are no conflicts within the set.

• There is no transition outside the set that has higher priority than a transition in the
set. Intuitively, the ones with higher priorities are in the set and the ones with lower
priorities are left out.

This definition is not written algorithmically, but can be easily implemented by a
greedy selection algorithm, with a straightforward traversal of the active state
configuration. Active states are traversed bottom up, where transitions originating from
each state are evaluated. This traversal guarantees that the priority principle is not
violated. The only non-trivial issue is resolving transition conflicts across orthogonal
states on all levels. This is resolved by "locking" each orthogonal state once a
transition inside any one of its components is fired. The bottom-up traversal and the
orthogonal state locking together guarantee a proper selection set.

OMG-UML V1.2 State Machines March 1998 2-123

2

Deferred events

Each of the states in the active states configuration may specify a set of deferred
events. In case where no transition is enabled following an event dispatch, if the event
is specified to be deferred by any of the active configuration states, it is considered
pending.

An event instance is pending as long as its event is deferred by the active
configuration. Following an RTC step where the state machine reaches a configuration
in which the event is not deferred, the event instance is ready to be dispatched again.

Note – it is the responsibility of the dispatching mechanism to serialize the events to
be dispatched in a sequence, since the step semantics is assumes a single event
dispatch. Therefore, if following an RTC-step more than a single pending event
becomes ready (or an external event has occurred) it is guaranteed that there is no
conflict.

State

A state can be active or inactive during execution. A state becomes active when it is
entered as a result of some transition, and becomes inactive if it is exited as a result of
a transition.

A state can be exited and entered as a result of the same transition (e.g., self
transition).

Whenever a state is entered, it executes its entry action sequence. Whenever a state is
exited, it executes its exit action sequence.

CompositeState

Legal state configuration

Every active composite state during execution must follow the legal active state
configuration with respect to its substates. This means that the following constraints
are always met during execution (except for transition execution period which is
transient):

• If the composite state is not a concurrent state, exactly one of its substates is active.

• If the composite state is concurrent, all of its substates (regions) are active.

To avoid violation of the legal configuration constraints during execution, the dynamic
semantics upon entering and exiting composite states is defined such that a well-
formed state machine always satisfies them.

2-124 OMG-UML V1.2 May 1998

2

Entering a composite state

Entering a non-concurrent composite state

Upon entering a composite state the entry action sequence executes similar to simple
state.

• default entry: If the transition hits the edge of the composite state, then the default
(initial) transition executes to enter one of the substates of the composite state.
Note that initial transitions must always be enabled (in case of branches). A
disabled initial transition is an ill-defined execution state and its handling is an
implementation issue.

• explicit entry: If the transition "passes through" the state towards one of its
substates, then the explicit substate becomes active, and recursively follows the
entering procedure.

• history entry: if the transition is entering a history pseudo state of a composite state,
the active substate is determined as the most recent active substate prior to the
entry. If it is the first time the state is entered, then the active substate is determined
by the transition outgoing from the history pseudo state. If no such transition is
specified, the situation is illegal and its resolution is implementation dependent. The
active substate determined by history proceeds with its default entry.

• deep history entry: similar to history, but the active substate also executes deep
history entry (recursively)

Entering a concurrent composite state

Whenever a concurrent composite state is entered, each one of its substates (the
"regions") are also entered, either by default or explicitly. If the transition hits the edge
of the composite state, then all the regions are default entered. If the transition
explicitly enters one or more regions (fork), these regions are entered explicitly and the
others by default.

Exiting a composite state

Exiting non-concurrent state

The active substate(s) is exited (recursively). After exiting the active substate, the exit
action is executed.

Exiting a concurrent state

Each one of the regions is exited. Following that, the exit actions are executed.

Pseudostate

A Pseudostate represents family of nodes in the state machine that are attached to
states and transitions as compositional elements that carry additional semantics.

A Pseudostate can be one of the following:

OMG-UML V1.2 State Machines March 1998 2-125

2

• initial represents a default vertex that is the source for a single transition to the
"default" state. There can be at most one initial vertex in a composite state or state
machine.

• deepHistory is a vertex that is used to represent, in shorthand form, the most recent
active configuration of a state and its substates. A composite state can have at most
one deep history vertex. A transition coming into the history vertex is equivalent to
a transition coming into the most recent active configuration of a state and the
transitive closure of all its substates. A transition originating from the history
connector leads to the default history state. This transition is taken in case no
history exists and a transition to history is taken.

• shallowHistory is a vertex that is used to represent, in shorthand form, the most
recent active configuration of a state but not its substates. A composite state can
have at most one shallow history vertex. A transition coming into the shallow
history vertex is equivalent to a transition coming into the most recent active
substate of a state. (Note that a state can have both deepHistory and shallowHistory
transitions.)

• join vertices combine several transition segments coming from source vertices in
different orthogonal components. The segments entering a join vertex cannot have
guards.

• fork vertices connect an incoming transition to two or more orthogonal target
vertices. The segments outgoing from a fork vertex must not have guards.

• branch vertices split a single segment into two or more transition branches labeled
by guards. The guards determine which of the branches are enabled. A predefined
guard denoted "else" may be defined for at most one branch. This branch is enabled
if all the guards labeling the other branches are false.

• final represents a simple state with some additional semantics. Unlike all other
pseudo states, this is not a transient state. When the final state is entered, its parent
composite state is terminated, or that it satisfies the termination condition. In case
that the parent of the final state is the top state, the entire statechart terminates, and
this implies the termination of "life" of the entity that the statechart specifies. If the
statechart specifies the behavior of a classifier, it implies the "termination" of that
instance. In case that the parent state of the final state is not the top state, it simply
means that the terminate transitions are enabled.

A terminate transition is a transition is a transition outgoing a non-pseudo state which
does not have a label (event or guard). It is enabled if its source state has reached a
final state.

SubmachineState

A submachine state is an organizational concept and does not introduce additional
behavioral semantics. The submachine state facilitates reuse of state machine segments
similar to the way procedures and templates are used in conventional programming
language. A submachine state also facilitates decomposition of complex state machines
into a set of simpler machine.

2-126 OMG-UML V1.2 May 1998

2

The semantics of a submachine state is equivalent to the semantics of replacing the
submachine state with the state machine related by the submachine association, where
the top state of the submachine merges with the submachine state, resulting in a
composite state. Therefore, it is possible that the submachine state has entry or exit
actions and/or internal transitions, they are attached to the resulting CompositeState.

A submachine state may also be thought of as a state machine "subroutine", in which
one machine "calls" another machine and then "returns" to the original machine.

Transitions

Transitions vs. compound transitions

In the general case a transition represents a fragment of a compound transition. A
compound transition is a cluster of simple transitions connected by join, fork, and
branch transitions. In case of branch nodes, only one segment is selected for each
branch, based on the guard. The dynamic semantics specify the execution of a
compound transition, which is atomic in terms of execution (join, fork, and branch are
pseudostates, not states).

Note that a compound transition can have at most one trigger, since join, fork and
branch segments cannot have triggers.

A transition that fires always leads from one legal state configuration to another legal
state configuration. Transitions originating from a composite state, once fired, always
cause exiting the composite state and its constituents.

High-level ("interrupt") transitions

Transitions originating from composite states are sometimes referred to as "high-level"
transitions or "interrupts." Once selected to fire (as explained below), they result in
exiting of all the internal substates and executing their exit actions. Note however, that
since the state machine semantics are run-to-completion, strictly speaking they are not
really interrupts, but rather generalized or "group" transitions. (The term "interrupt"
stems from classical statecharts where so-called "do activities" of states would be
aborted as a result of high-level transitions.)

Enabled (compound) transitions

A transition is enabled if both of the following hold:

• All source states of the transition are in the current active state configuration. A
completion transition (without a trigger) requires its source state to be in the
termination state, in case it is a composite state.

• The trigger matches the event instance posted to the state machine. Null triggers
match any event, in particular completion event. A specialized event matches a
trigger based on a generalized event.

• There is a path of transition segments from the source to the target states, along
which all the guards are satisfied (transition without guards are always satisfied). If
more than one path is possible, only one is selected (non-deterministically).

OMG-UML V1.2 State Machines March 1998 2-127

2

Note that guards are evaluated prior to the invocation of any action related to the
transition.

Since guards are not interpreted, their evaluation may include expressions causing side
effects. Guards causing side effects are considered bad practice, since their evaluation
strategy, in terms of when guards are evaluated and in which order, is not defined and
is a function of the implementation.

(Compound) Transition execution

Transition execution semantics are defined such that the resulting state configuration is
always a legal one. This principle is especially important once we deal with transitions
entering/exiting boundaries of concurrent states.

LCA, main source, and main target

Every compound transition causes the exit of one (composite) state, and proper
entering of another composite state. These two states are designated as the main source
and the main target of the transition.

The Least Common Ancestor (LCA) state of a transition is the lowest state that
contains all the explicit source states and explicit target states of the compound
transition. In case of branch segments, only the states related to the selected path are
considered explicit targets ("dead" branches are not considered).

The main source is a direct substate of the LCA that contains the explicit sources. The
main target is a substate of the LCA that contains the explicit targets.

Examples:

1. The common simple case: A transition t between two simple states s1 and s2, in a
composite state s.

Here LCA(t) is s, the main source is s1 and the main target is s2.

2. A more esoteric case: An unstructured transition from one region to another.

Here LCA(t) is the parent of s, the main source is s and the main target is s.

Transition execution sequence

Once a transition is enabled and is selected to fire, the following steps are carried out
in order:

• The main source state is properly exited (as defined in the composite states exiting
semantics above).

s

S1 S2

2-128 OMG-UML V1.2 May 1998

2

• Actions are executed in sequence following their linear order along the segments of
the transition: The "closer" the action to the source state, the earlier it is executed.

• The main target state is properly entered (as defined in the composite state entry
semantics above).

2.13.5 Standard Elements

The predefined stereotypes, constraints and tagged values for the State Machines
package are listed in Table 2-6 and defined in Appendix A - UML Standard Elements.

2.13.6 Notes

Example: Modeling Class Behavior

In the software that is implemented as a result of a state modeling design, the state
machine may or may not be actually visible in the (generated or hand-crafted) code.
The state machine will not be visible if there is some kind of run-time system that
supports state machine behavior. In the more general case, however, the software code
will contain specific statements that implement the state machine behavior.

A C++ example is shown below.

class bankAccount {
private:
int balance;
public;
void deposit (amount)
{
 if (balance > 0) balance = balance + amount’ // no change
 else
 balance = balance + amount - 1; // $1 charge for the trans-
action
}
void withdrawal (amount) {
if (balance>0) balance = balance - amount ;
}
}

In the above example, the class has an abstract state manifested by the balance
attribute, controlling the behavior of the class. This is modeled by the state machine in
Figure 2-26 on page 2-129.

Table 2-6 State Machines - Standard Elements

Model Element Stereotypes Constraints Tagged Values

Event «create»
«destroy»

OMG-UML V1.2 State Machines March 1998 2-129

2

Figure 2-26 State Machine for Modeling Class Behavior

Since state machines describe behaviors of generalizable elements, primarily classes,
state machine refinement is used capture the relationships between the corresponding
state machines. The refinement mechanism itself is part of the Auxiliary Elements
package, and define general refinement relationships between arbitrary model
composites.

Example: State machine refinement

Since state machines describe behaviors of generalizable elements, primarily classes,
state machine refinement is used capture the relationships between the corresponding
state machines. The refinement relationships are facilitated by the refinement
metaclass defined in the auxiliary elements package. State machines use refinement in
three different mappings, specified by the mapping attribute of the refinement meta-
class. The mappings are refinement, substitution, and deletion.

To illustrate state machine refinement, consider the following example where one state
machine attached to a class denoted ‘Supplier,’ is refined by another state machine
attached to a class denoted as ‘Client.’

credit

debit

withdrawal

deposit/balance
+=amount

deposit

[amount>-balance]/

balance+=amount-1

else/balance -= amount

else/balance
+=amount-1

[amount>balance]/
balance -= amount

2-130 OMG-UML V1.2 May 1998

2

Figure 2-27 State Machine Refinement Example

In the example above, the client state (Sa(new)) in the subclass substitutes the simple
substate (Sa1) by a composite substate (Sa1(new)). This new composite substate has a
component substate (Sa11). Furthermore, the new version of Sa1 deletes the substate
Sa2 and also adds a new substate Sa4. Substate Sa3 is inherited and is therefore
common to both versions of Sa. For clarity, we have used a gray shading to identify
components that have been inherited from the original. (This is for illustration
purposes and is not intended as a notational recommendation.)

It is important to note that state machine refinement as defined here does not specify or
favor any specific policy of state machine refinement. Instead, it simply provides a
flexible mechanism that allows subtyping, (behavioral compatibility), inheritance
(implementation reuse), or general refinement policies.

We provide a brief discussion of potentially useful policies that can be implemented
with the state machine refinement mechanism. These policies could be indicated by
attaching standard stereotypes (i.e., «subtype» and «inherits») to the refinement
relationship between state machines.

Subtyping

The refinement policy for subtyping is based on the rationale that the subtype
preserves the pre/post condition relationships of applying events/operations on the
type, as specified by the state machine. The pre/post conditions are realized by the
states, and the relationships are realized by the transitions. Preserving pre/post
conditions guarantee the substitutability principle.

States and transitions are only added, not deleted. Refinement is interpreted as follows:

• A refined State has the same outgoing transitions, but may add others, and a
different set of incoming transitions. It may have a bigger set of substates, and it
may change its concurrency property from false to true.

Sa

Sa2

Sa1

Sa3

Sa (new)

Sa4
Sa1 (new)

Sa3
Sa11

- Sa2 deleted

- Sa4 added

- Sa1 refined
into composite

Supplier (refined) Client (refined)

OMG-UML V1.2 State Machines March 1998 2-131

2

• A refined Transition may go to a new target state which is a substate of the state
specified in the base class. This comes to guarantee the post condition specified by
the base class.

• A refined Guard has the same guard condition, but may add disjunctions. This
guarantees that pre-conditions are weakened rather than strengthened.

• A refined ActionSequence contains the same actions (in the same sequence), but
may have additional actions. The added actions should not hinder the invariant
represented by the target state of the transition.

(Strict) Inheritance

The rationale behind this policy is to encourage reuse of implementation rather than
preserving behavior. Since most implementation environment utilize strict inheritance
(i.e. features can be replaced or added, but not deleted), the inheritance policy follows
this line by disabling refinements which may lead to non-strict inheritance once the
state machine is implemented.

States and transitions can be added. Refinement is interpreted as follows:

• A refined State has some of the same incoming transitions (i.e., drop some, add
some) but a greater or bigger set of outgoing transitions. It may have more
substates, and may change its concurrency attribute.

• A refined Transition may go to a new target state but should have the same source.

• A refined Guard has may have a different guard condition

• A refined ActionSequence contains some of the same actions (in the same
sequence), and may have additional actions

General Refinement

In this most general case, states and transitions can be added and deleted (i.e., ‘null’
refinements). Refinement is interpreted without constraints (i.e., there are no formal
requirements on the properties and relationships of the refined state machine element
and the refining element):

• A refined State may have different outgoing and incoming transitions (i.e., drop all,
add some)

• A refined Transition may leave from a different source and go to a new target state

• A refined Guard has may have a different guard condition

• A refined ActionSequence need not contain the same actions (or it may change their
sequence), and may have additional actions

The refinement of the composite state in the example above is an illustration of general
refinement.

2-132 OMG-UML V1.2 May 1998

2

It should be noted that if a type has multiple supertype relationships in the structural
model, then the default state machine for the type consists of all the state machines of
its supertypes as orthogonal state machine regions. This may be explicitly overridden
through refinement if required.

Classical statecharts

The major difference between classical (Harel) statecharts and object state machines
result from the external context of the state machine. Object state machines primarily
come to represent behavior of a type. Classical statechart specify behaviors of
processes. The following list of differences result from the above rationale:

• Events carry parameters, rather than being primitive signals

• Call events (operation triggers) are supported to model behaviors of types

• Event conjunction is not supported, and the semantics is given in respect to a single
event dispatch, to better match the type context as opposed to a general system
context.

• Classical statecharts have an elaborated set of predefined actions, conditions and
events which are not mandated by object state machines, such as entered(s),
exited(s), true(condition), tr!(c) (make true), fs!(c).

• Operations are not broadcast but can be directed to an object-set.

• The notion of activities (processes) does not exist in object state machines.
Therefore all predefined actions and events that deal with activities are not
supported, as well as the relationships between states and activities.

• Transition compositions are constrained for practical reasons. In classical
statecharts any composition of pseudo states, simple transitions, guards and labels is
allowed.

• Object state machine support the notion of synchronous communication between
state machines.

• Actions on transitions are executed in their given order.

• Classical statecharts are based on the zero-time assumption, meaning transitions
take zero time to execute. The whole system execution is based on synchronous
steps where each step produces new events that will be processed at the next step.
In OO state machines, this assumptions are relaxed and replaced with these of
software execution model, based on threads of execution and that execution of
actions do take time.

2.13.7 Activity Models

Activity models define an extended view of the State Machine package. State machines
and activity models are both essentially state transition systems, and share many
metamodel elements. This section describes the concepts in the State Machine package
that are specific to activity models. It should be noted that the activity models

OMG-UML V1.2 State Machines March 1998 2-133

2

extension has few semantics of its own. It should be understood in the context of the
State Machine package, including its dependencies on the Foundation package and the
Common Behavior package.

An activity model is a special case of a state machine model that is used to model
processes involving one or more classifiers. Most of the states in such a model are
action states that represent atomic actions, i.e., states that invoke actions and then
wait for their REVIEWER: PLEASE FINISH THIS SENTENCE. Transitions
into action states are triggered by events, which can be

• the completion of a previous action state,

• the availability of an object in a certain state,

• the occurrence of a signal; or

• the satisfaction of some condition.

By defining a small set of additional subtypes to the basic state machine concepts, the
well-formedness of activity models can be defined formally, and subsequently mapped
to the dynamic semantics of state machines. In addition, the activity specific subtypes
eliminate ambiguities that might otherwise arise in the interchange of activity models
between tools.

2.13.7.1 Abstract Syntax

The abstract syntax for activity models is expressed in graphic notation in Figure 2-1
on page 2-134.

2-134 OMG-UML V1.2 May 1998

2

Figure 2-1 Activity Models

ActivityModel

An activity model is a special case of a state machine that defines a computational
process in terms of the control-flow and object-flow among its constituent actions. It
does not extend the semantics of state machines but it does define shorthand forms that
are convenient for modeling computational processes.

The primary basis for ActivityModels is to describe a state model of an activity or
process involving one or more Classifiers. ActivityModels can be attached to
Packages, Classifiers (including UseCases) and BehavioralFeatures. Most of the States
in an activity model are ActionStates (i.e., states in which an action is being
performed, typically the execution operations). As in any state machine, if an outgoing
transition is not explicitly triggered by an event then it is implicitly triggered by the
completion of the contained actions. An ActivityState represents structured subactivity
that has some duration and internally consists of a set of actions. That is, an
ActivityState is a "hierarchical action" with an embedded activity submodel that
ultimately resolves to individual actions.

ObjectFlowState

Pseudostate

StateVertex

ActionState

SimpleState

Activi tyState

1

ActivityModel partition

0..*

contents*
0..1

Partition

1 0..*

context

0..1

ModelElement
(from Core)

*
0..1

behavior

*
0..1

StateMachine

0..1*

top

1

typeState 1

*

0..*

inState

1

State

0..1

1

type1

Classifier
(from Core)

*

ClassifierInState

1

*

0..*

1

1

*

OMG-UML V1.2 State Machines March 1998 2-135

2

Ordinary "wait states" can be included to model situations in which the computation
waits for an external event. Branches, forks, and joins may also be included to model
decisions and concurrent activity.

ActivityModels include the concept of Partitions to organize states according to
various criteria, such as the real-world organization responsible for their performance.

Activity modeling can be applied in the context of organizational modeling for
business process engineering and workflow modeling. In this context, events often
originate from ‘outside’ the system (e.g., ‘customer call’). Activity models can also be
applied to system modeling to specify the dynamics of operations and system level
processes when a full interaction model is not needed.

Associations

ActionState

An action state represents the execution of an atomic action, typically the invocation of
an operation.

An ActionState is a SimpleState with an entry action whose only exit Transition is
triggered by the implicit event of completing the execution of the entry action. The
state therefore corresponds to the execution of the entry action itself and the outgoing
Transition is activated as soon as the action has completed its execution.

An ActionState may perform more than one Action as part of its entry
ActionSequence. An ActionState may not have an exit transition, internal transitions,
or external transitions triggered by anything other than the implicit action completion
event.

Associations

ActivityState

An activity state represents the execution of a non-atomic sequence of steps that has
some duration (i.e., internally it consists of a set of actions and possibly waiting for
events). That is, an activity state is a "hierarchical action," where an associated sub-
activity model is executed.

An ActivityState is a SubmachineState that executes a nested activity model. When an
input transition to the ActivityState is triggered, execution begins with the initial state
of the nested ActivityModel. The outgoing Transition of an ActivityState is enabled
when the final state of the nested ActivityModel is reached (i.e., when it completes its
execution).

partition A set of Partitions each of which contains some of the model
elements of the model.

entry (Inherited from State) Specifies the invoked actions.

2-136 OMG-UML V1.2 May 1998

2

The semantics of an ActivityState are equivalent to the model obtained by statically
substituting the contents of the nested model as a composite state replacing the activity
state.

Associations

ClassifierInState

A classifier in state characterizes instances of a given classifier for a particular state. In
an activity model, it may be input and/or output to an action through an object flow
state.

ClassifierInState is a subtype of Classifier and may be used in static structural models
and collaborations (e.g., it can be used to show associations that are only relevant
when objects of a class are in a given state).

Associations

ObjectFlowState

An object flow state defines an object flow between actions in an activity model. It
signifies the availability of an instance of a classifier in a given state, usually as the
result of an operation. This state indicates that an instance of the given class having the
given state is available when the state is occupied.

The generation of an object by an action in an ActionState may be modeled by an
ObjectFlowState that is triggered by the completion of the ActionState. The use of the
object in a subsequent ActionState may be modeled by connecting the output transition
of the ObjectFlowState as an input transition to the ActionState. Generally each action
places the object in a different state that is modeled as a distinct ObjectFlowState.

submachine (Inherited from SubmachineState) Designates an activity model
that is conceptually nested within the activity state. The activity
state is conceptually equivalent to a CompositeState whose
contents are the states of the nested ActivityModel. The nested
activity model must have an initial state and a final state.

type Designates a Classifier that characterizes instances.

inState Designates a State that characterizes instances. The state must be
a valid state of the corresponding Classifier.

OMG-UML V1.2 State Machines March 1998 2-137

2

Associations

Partition

A partition is a mechanism for dividing the states of an activity model into groups.
Partitions often correspond to organizational units in a business model. They may be
used to allocate characteristics or resources among the states of an activity model.

Associations

It should be noted that Partitions do not impact the dynamic semantics of the model
but they help to allocate properties and actions for various purposes.

PseudoState

A pseudo state is an abstraction of different types of nodes in a state machine graph
which function as transient points in transitions from one state to another, such as
branching and forking.

Final PseudoStates are used for modeling hierarchical activities. A transition to a final
PseudoState within an ActivityModel can be used to indicate completion of a sub-
ActivityModel such that execution is resumed at the superstate level (i.e. outgoing
superstate transitions will be activated). A nested activity model must have both an
initial state and a final state or states.

2.13.7.2 Well-Formedness Rules

ActivityModel

[1] An ActivityModel specifies the dynamics of

(i) a Package, or

(ii) a Classifier (including UseCase), or

(iii) a BehavioralFeature.

(self.context.oclIsTypeOf(Package) xor

 self.context.oclIsKindOf(Classifier) xor

 self.context.oclIsKindOf(BehavioralFeature))

typeState Designates the class (or other classifier) and state of the
object.

contents Specifies the states that belong to the partition. They need not
constitute a nested region.

2-138 OMG-UML V1.2 May 1998

2

[2] An ActivityModel that specifies the dynamics of a BehavioralFeature or that is
nested has exactly one initial State, representing the invocation of the
BehavioralFeature or subactivity.

ActionState

 [1] An ActionState has exactly one outgoing Transition.

self.outgoing->size = 1

[2] An ActionState has a non-empty Entry ActionSequence.

self.entry.action->size > 0

[3] An ActionState does not have an internal Transition or an Exit ActionSequence.

self.internalTransition->size = 0 and self.exit->size = 0

ObjectFlowState

 [1] The ClassifierInState of the ObjectFlowState is the type of an input Parameter to
an Operation invoked in the ActionStates which have the ObjectFlowState on an
incoming Transition.

self.outgoing.target->select(oclIsTypeOf(ActionState)).

invoked.parameter->select(

kind = #in or kind = #inout).type-
>includes(self.typeState.type)

[2] The ClassifierInState of the ObjectFlowState is the type of an output Parameter of
an Operation invoked in the ActionStates which have the ObjectFlowState on an
outgoing Transition.

self.incoming.source->select(oclIsTypeOf(ActionState)).

invoked.parameter->select(

kind = #out or kind = #inout or kind = #return).

type->includes(self.typeState.type)

PseudoState

[1] In ActivityModels, Transitions incoming to (and outgoing from) join and fork
PseudoStates have as sources (targets) any StateVertex. That is, joins and forks are
syntactically not restricted to be used in combination with CompositeStates, as is the
case in StateMachines.

self.stateMachine.oclIsTypeOf(ActivityModel) implies

((self.kind = #join or self.kind = #fork) implies

(self.incoming->forAll(source.oclIsKindOf(SimpleState) or

 source.oclIsTypeOf(PseudoState)) and

(self.outgoing->forAll(source.oclIsKindOf(SimpleState) or

 source.oclIsTypeOf(PseudoState)))))

OMG-UML V1.2 State Machines March 1998 2-139

2

[2] All of the paths leaving a fork must eventually rejoin in a subsequent join or joins.
Furthermore, if there are multiple layers of joins they must be well nested. Therefore
the concurrency structure of an activity model is in fact equally restrictive as that of an
ordinary state machine, even though the composite states need not be explicit.

2.13.7.3 Semantics

ActivityModel

The dynamic semantics of activity models can be expressed in terms of state machines.
This means that the process structure of activities formally must be equivalent to
orthogonal regions (in composite states). That is, transitions crossing between parallel
paths (or threads) are not allowed. As such, an activity specification that contains
‘unconstrained parallelism’ as is used in general activity models is considered
‘incomplete’ in terms of UML.

All events that are not relevant in a state must be deferred so they are consumed when
become relevant. This is facilitated by the general deferral mechanism of state
machines.

ActionState

As soon as the incoming transition of an ActionState is triggered (either through a
single transition or through an conjunction of transitions connected to a ‘join’), its
entry action starts executing. Once the entry action has finished executing, the action is
considered completed. Hence, formally, an activated action state signifies that the
execution of an action is ongoing. When the action is complete then the outgoing
transition (either a simple transition or a ‘fork’) is enabled.

ObjectFlowState

The activation of an ObjectFlowState signifies that an instance of the associated
Classifier is available in a specified State (i.e., a state change has occurred as a result
of a previous operation). This may enable a subsequent action state that requires the
instance as input. The execution of the action consumes the value. If the
ObjectFlowState leads into a join pseudostate, then the ObjectFlowState remains
activated until the other predecessors of the join have completed.

Unless there is an explicit ‘fork’ that creates orthogonal object states, only one of an
ObjectFlowState’s outgoing transitions will fire, based on the activation of the first
ActionState that requires it as input. The invocation of the ActionState will generally
result in a state change of the object, resulting in a new ObjectFlowState.

2.13.7.4 Notes

Object-flow states in activity models are a specialization of the general dataflow aspect
of process models. Object-flow activity models extend the semantics of standard
dataflow relationships in three areas:

2-140 OMG-UML V1.2 May 1998

2

1. The operations in action states in activity models are operations of classes or types
(e.g., ‘Trade’ or ‘OrderEntryClerk’). They are not hierarchical ‘functions’ operating
on a dataflow.

2. The ‘contents’ of object flow states are typed. They are not unstructured data
definitions as in data stores.

3. The state of the object flowing as input and output between operations is defined
explicitly. It is the event of the availability of an object in a specific state that forms
a trigger for the operation that requires the object as input. Object flow states are
not stateless, passive data definitions as are data stores.

Part 4 - General Mechanisms

2.14 Model Management

This section defines the mechanisms of general applicability to models. This version of
UML contains one general mechanisms package, Model Management. The Model
Management package specifies how model elements are organized into models,
packages, and systems.

2.14.1 Overview

The Model Management package is a subpackage of the Behavioral Elements package.
It defines Model, Package, and Subsystem elements that serve mainly as grouping
units for other ModelElements. The package uses constructs defined in the Foundation
package of UML as well as in the Common Behavior package.

Packages are used within a Model to group ModelElements. A Subsystem is a special
kind of Package with an additional specification of the behavior offered by
ModelElements in the Subsystem.

In this section the term modeled system denotes the physical entity being modeled with
UML (i.e., the term is not one of the constructs in the modeling language). It can
denote a computer system, like a seat assignment system, a banking system, or a
telephone exchange system. It can also describe business processes, like a sales
process, or a development process. An analogy with the construction of houses would
be that house would correspond to modeled system, while blue print would correspond
to model, and element used in a blue print would correspond to model element in
UML.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Model Management package.

OMG-UML V1.2 Model Management March 1998 2-141

2

2.14.2 Abstract Syntax

The abstract syntax for the Model Management package is expressed in graphic
notation in Figure 2-1.

Figure 2-1 Model Management

ElementReference

An element reference defines the visibility and alias of a model element referenced by
a package.

In the metamodel an ElementReference reifies the relationship between a Package and
a ModelElement. It defines the alias for the ModelElement inside the Package and the
visibility of the ModelElement relative to the Package.

ElementReference
vis ibility : VisibilityKind
alias : Name Generalizab leElement

(from Core)

Subsystem
is Instantiable : Boolean

Model

ElementOwnership
vis ibility : VisibilityKind

ownedElement

*

namespace

0..1
Namespace
(from Core)

* Package

referencedElement

*

ModelElement
(from Core)

*

0..1

*

*

Classifier
(from Core)

2-142 OMG-UML V1.2 May 1998

2

Attributes

Associations

No extra associations.

Model

A model is an abstraction of a modeled system, specifying the modeled system from a
certain viewpoint and at a certain level of abstraction. A model is complete in the
sense that it fully describes the whole modeled system at the chosen level of
abstraction and viewpoint.

In the metamodel, Model is a subclass of Package. It contains a containment hierarchy
of ModelElements that together describe the modeled system. A Model also contains a
set of ModelElements, like Actors, which represents the environment of the system,
together with their interrelationships, such as Dependencies and Generalizations, and
Constraints.

Different Models can be defined for the same modeled system, specifying it from
different viewpoints, like a logical model, a design model, a use-case model, etc. Each
Model is self-contained within its viewpoint of the modeled system and within the
chosen level of abstraction.

Attributes

No extra attributes.

Associations

No extra associations.

Package

A package is a grouping of model elements.

In the metamodel, a Package is a GeneralizableElement. A Package contains
ModelElements like Packages, Classifiers, and Associations. A Package may also
contain Constraints and Dependencies between ModelElements of the Package.

A Package may have «import» dependencies to other Packages, allowing
ModelElements in the other Packages to be used by ModelElements in the first
Package. The ModelElements available in a Package are those owned by the Package

alias The alias defines a local name of the referenced ModelElement, to
be used within the Package.

visibility Each referenced ModelElement is either public, protected, or
private relative to the referencing Package.

OMG-UML V1.2 Model Management March 1998 2-143

2

together with those referenced (i.e., owned by other, imported Packages). Furthermore,
each ModelElement of a Package has a visibility relative to the Package stating if the
ModelElement is visible outside the Package or to a specialization of the Package.

Attributes

No extra attributes.

Associations

Subsystem

A subsystem is a grouping of model elements, of which some constitute a specification
of the behavior offered by the other contained model elements.

In the metamodel, Subsystem is a subclass of both Package and Classifier, whose
Features are all Operations. The contents of a Subsystem is divided into two subsets:
1) specification elements and 2) realization elements. The former provides, together
with the Operations of the Subsystem, a specification of the behavior contained in the
Subsystem, while the ModelElements in the latter subset jointly provide a realization
of the specification.

The specification elements are UseCases together with their offered Interfaces,
Constraints and relationships. The realization elements are Classes and Subsystems
together with their associated Interfaces, Constraints, and relationships. The
relationship between the specification elements and the realization elements is defined
with a set of Collaborations.

Attributes

Associations

No extra associations.

2.14.3 Well-Formedness Rules

The following well-formedness rules apply to the Model Management package.

ElementReference

No extra well-formedness rules.

referencedElement A Package references ModelElements in other imported Packages.

isInstantiable States whether a Subsystem is instantiable or not. If true, then the
instances of the model elements within the subsystem form an
implicit composition to an implicit subsystem instance, whether or
not it is actually implemented.

2-144 OMG-UML V1.2 May 1998

2

Model

No extra well-formedness rules.

Package

[1] A Package may only own or reference Packages, Subsystems, Classifiers, Asso-
ciations, Generalizations, Dependencies, Constraints, Collaborations, Messages,and
Stereotypes.

self.contents->forAll (c |

c.oclIsKindOf(Package)or

c.oclIsKindOf(Subsystem) or

c.oclIsKindOf(Classifier)or

c.oclIsKindOf(Association)or

c.oclIsKindOf(Generalization)or

c.oclIsKindOf(Dependency)or

c.oclIsKindOf(Constraint)or

c.oclIsKindOf(Collaboration)or

c.oclIsKindOf(Message)or

c.oclIsKindOf(Stereotype))

[2] No referenced element (excluding Association) may have the same name or alias
as any element owned by the Package or one of its supertypes.

self.allReferencedElements->reject(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementReference.alias <> ’’ implies

not (self.allContents - self.allReferencedElements)-
>reject(ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.elementReference.alias))

and

(re.elementReference.alias = ’’ implies

not (self.allContents - self.allReferencedElements)-
>reject (ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.name)))

[3] Referenced elements (excluding Association) may not have the same name or
alias.

self.allReferencedElements->reject(re |

not re.oclIsKindOf (Association))->forAll(r1, r2 |

(r1.elementReference.alias <> ’’ and
r2.elementReference.alias <> ’’ and

r1.elementReference.alias = r2.elementReference.alias
implies r1 = r2)

OMG-UML V1.2 Model Management March 1998 2-145

2

and

(r1.elementReference.alias = ’’ and
r2.elementReference.alias = ’’ and

r1.name = r2.name implies r1 = r2)

and

(r1.elementReference.alias <> ’’ and
r2.elementReference.alias = ’’ implies

r1.elementReference.alias <> r2.name))

[4] No referenced element (Association) may have the same name or alias combined
with the same set of associated Classifiers as any Association owned by the Package
or one of its supertypes.

self.allReferencedElements->select(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementReference.alias <> ’’ implies

not (self.allContents - self.allReferencedElements)-
>select(ve |

ve.oclIsKindOf(Association))->exists(ve :
Association |

ve.name = re.elementReference.alias

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).type = ve.connection-
>at(i).type)))

and

(re.elementReference.alias = ’’ implies

not (self.allContents - self.allReferencedElements)-
>select(ve |

not ve.oclIsKindOf(Association))->exists(ve :
Association |

ve.name = re.name

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).type = ve.connection-
>at(i).type))))

[5] Referenced elements (Association) may not have the same name or alias com-
bined with the same set of associated Classifiers.

self.allReferencedElements->select (re |

re.oclIsKindOf (Association))->forAll (r1, r2 : Association |

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

2-146 OMG-UML V1.2 May 1998

2

r1.connection->at (i).type = r2.connection->at (i).type
and

r1.elementReference.alias <> ’’ and
r2.elementReference.alias <> ’’ and

r1.elementReference.alias = r2.elementReference.alias
implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

 Sequence {1..r1.connection->size}->forAll (i |

 r1.connection->at (i).type = r2.connection->at (i).type
and

 r1.elementReference.alias = ’’ and
r2.elementReference.alias = ’’ and

 r1.name = r2.name implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).type = r2.connection->at (i).type
and

r1.elementReference.alias <> ’’ and
r2.elementReference.alias = ’’ implies

r1.elementReference.alias <> r2.name)))

[6] The referenced elements of a Package are the public elements of imported Pack-
ages, transitively.

self.referencedElement = self.requirement->select (d |

d.stereotype.name =
’import’).supplier.oclAsType(Package).allVisibleElements

[7] A Package imports all its owned Packages.

self.requirement->select (s |

s.stereotype.name = ’import’).supplier->includesAll(

self.ownedElement->select (e | e.oclIsKindOf (Package)

 Additional Operations

[1] The operation contents results in a Set containing the ModelElements owned by
or imported by the Package.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.referencedElement)

[2] The operation allReferencedElements results in a Set containing the ModelEle-
ments referenced by the Package or one of its supertypes.

allReferencedElements : Set(ModelElement)

allReferencedElements = self.referencedElement->union(

self.supertype.oclAsType(Package).allReferencedElements-
>select(re |

OMG-UML V1.2 Model Management March 1998 2-147

2

re.elementReference.visibility = #public or
re.elementReference.visibility = #protected))

Subsystem

[1] For each Operation in an Interface offered by a Subsystem, the Subsystem itself
or at least one contained UseCase must have a matching Operation.

self.specification.allOperations->forAll(interOp |

self.allOperations-
>union(self.allSpecificationElements.allOperations)->exists

(op | op.hasSameSignature(interOp)))

[2] The Features of a Subsystem may only be Operations.

self.feature->forAll(f | f.oclIsKindOf(Operation))

[3] Each Operation must be realized by a Collaboration.

not self.isAbstract implies self.allOperations->forAll(op |

self.allContents->select(c |

c.oclIsKindOf(Collaboration))->exists(c :
Collaboration|

c.representedOperation = op)
)

[4] Each specification element must be realized by a Collaboration.

not self.isAbstract implies self.allSpecificationElements->forAll(
s |

self.allContents->select(c |

c.oclIsKindOf(Collaboration))->exists(c : Collaboration|

c.representedClassifier = s))

Additional Operations

[1] The operation allSpecificationElements results in a Set containing the ModelEle-
ments specifying the behavior of the Subsystem.

allSpecificationElements : Set(UseCase)

allSpecificationElements = self.allContents->select(c |
c.oclIsKindOf(UseCase))

2.14.4 Semantics

Package

Figure 2-2 Package Illustration

*

*
ModelElement

*
Package

*

*

*

Generalization
*

*

2-148 OMG-UML V1.2 May 1998

2

The purpose of the package construct is to provide a general grouping mechanism. A
package cannot be instantiated, thus it has no runtime semantics. In fact, its only
semantics is to define a namespace for its contents. The package construct can be used
for element organization of any purpose; the criteria to use for grouping elements
together into one package are not defined within UML.

A package owns a set of model elements, with the implication that if the package is
removed from the model, so are the elements owned by the package. Elements owned
by the same package must have unique names within the package, although elements
in different packages may have the same name.

There may be relationships between elements contained in the same package, but not a
priori between an element in one package and an element outside that package. In
other words, elements outside a package are by default not available to elements inside
the package. There are two ways of making them available inside the package: 1) by
importing their containing packages or 2) by defining generalizations to these other
packages.

An import dependency (a Dependency with the stereotype «import») from one package
to another means that the first package references all the elements with sufficient
visibility in the second package. Referenced elements are not owned by the package;
however, they may be used in associations, generalizations, attribute types, and other
relationships. A package defines the visibility of its contained elements to be private,
protected, or public. Private elements are not available at all outside the containing
package. Protected elements are available only to packages with generalizations to the
containing package, and public elements are available also to importing packages.
Note that the visibility mechanism does not restrict the availability of an element to
peer elements in the same package.

When an element is referenced by a package it extends the namespace of that package.
It is possible to give a referenced element an alias so that it will not conflict with the
names of the other elements in the namespace, including other referenced elements.
The alias will be the name of that element in the namespace. The element will not
appear under both the alias and its original name. If an element is not given an alias,
then it must be identified using its pathname (i.e., the concatenation of the names of
the enclosing packages starting with the top-most package). Furthermore, an element
may have the same or a more restrictive visibility in a package referencing it than it
has in the package owning it (e.g., an element that is public in one package may be
protected or private to a package referencing the element).

A package importing another package references all the public contents of the
namespace defined by the imported package, including elements of packages imported
by the imported package. This implies that import of packages is transitive, more
specifically in the following sense: Assume package A imports package B, which in
turn imports package C, then the public elements of C which are public in B are also
available to A.

OMG-UML V1.2 Model Management March 1998 2-149

2

Packages are automatically imported by their containing package. Because of the
recursiveness of import, even elements contained within several levels of packages are
available, according to the visibility of contained elements. The visibility of an element
contained within several levels of packages is the most restrictive of the visibilities of
all containing packages.

A package can have generalizations to other packages. This means that the public and
protected elements owned or referenced by a package are also available to its heirs,
and can be used in the same way as any element referenced by the heirs themselves.
Elements made available to another package by the use of a generalization appear
under their real names, not under aliases. Moreover, they have the same visibility in
the heir as they have in the owning package.

A package can be used to define a framework, consisting of patterns in the form of
collaborations where (some of) the base elements are the parameters of the patterns.
Apart from that, a framework package is described as an ordinary package.

Subsystem

Figure 2-3 Subsystem Illustration

The purpose of the subsystem construct is to provide a grouping mechanism with the
possibility to specify the behavior of the contents. A subsystem may or may not be
instantiable. A non-instantiable subsystem merely defines a namespace for its contents.
The contents of a subsystem have the same semantics as that of a package, thus it
consists of ownedElements and referencedElements, with unique names or aliases
within the subsystem.

The contents of a subsystem is divided into two subsets: 1) specification elements and
2) realization elements. The specification elements are used for giving an abstract
specification of the behavior offered by the realization elements.

The specification of a subsystem consists of the specification subset of the contents
together with the subsystem’s features (operations). It specifies the behavior performed
jointly by instances of classifiers in the realization subset, without revealing anything
about the contents of this subset. The specification is made in terms of use cases and/or
operations, where use cases are used to specify complete sequences performed by the
subsystem (i.e., by instances of its contents) interacting with its surroundings, while
operations only specify fragments. Furthermore, the specification part of a subsystem
also includes constraints, relationships between the use cases, etc.

A subsystem has no behavior of its own. All behavior defined in the specification of
the subsystem is jointly offered by the elements in the realization subset of the
contents. In general, since they are classifiers, subsystems can appear anywhere a

*
Interface

*
Operation

*

*

Generalization
*

Subsystem

*

*

*

* *

ModelElement
*

*

2-150 OMG-UML V1.2 May 1998

2

classifier is expected. The general interpretation of this is that since the subsystem
itself cannot be instantiated or have any behavior of its own, the requirements posed on
the subsystem in the context where it occurs is fulfilled by its contents. The same is
true for associations (i.e., any association connected to a subsystem is actually
connected to one of the classifiers it contains).

The correspondence between the specification part and the realization part of a
subsystem is specified with a set of collaborations, at least one for each operation of
the subsystem and for each contained use case. Each collaboration specifies how
instances of the realization elements cooperate to jointly perform the behavior
specified by the use case or operation (i.e., how the higher level of abstraction is
transformed into the lower level of abstraction). A message instance received by an
instance of a use case (higher level of abstraction) corresponds to an instance
conforming to one of the classifier roles in the collaboration receiving that message
instance (lower level of abstraction). This instance communicates with other instances
conforming to other classifier roles in the collaboration, and together they perform the
behavior specified by the use case. All message instances that can be received and sent
by instances of the use cases are also received and sent by the conforming instances,
although at a lower level of abstraction. Similarly, application of an operation of the
subsystem actually means that a message instance is sent to a contained instance which
then performs a method.

Importing subsystems is done in the same way as packages, using the visibility
property to define whether elements are public, protected, or private to the subsystem.

A subsystem can have generalizations to other subsystems. This means that the public
and protected elements in the contents of a subsystem are also available to its heirs. In
a concrete (i.e., non-abstract) subsystem all elements in the specification, including
elements from ancestors, must be completely realized by cooperating realization
elements, as specified with a set of collaborations. This may not be true for abstract
subsystems.

Subsystems may offer a set of interfaces. This means that for each operation defined in
an interface, the subsystem offering the interface must have a matching operation,
either as a feature of the subsystem itself or of a use case. The relationship between
interface and subsystem is not necessarily one-to-one. A subsystem may realize several
interfaces and one interface may be realized by more than one subsystem.

A subsystem can be used to define a framework, consisting of patterns in the form of
collaborations where (some of) the base elements are the parameters of the patterns.
Furthermore, the specification of a framework subsystem may also be parameterized.

Model

Figure 2-4 Model Illustration

PackageModelElement Model

**

OMG-UML V1.2 Model Management March 1998 2-151

2

The purpose of a model is to describe the modeled system at a certain level of
abstraction and from a specific viewpoint, such as a logical or a behavioral view of the
modeled system.

A model describes the modeled system completely in the sense that it covers the whole
modeled system, although only those aspects relevant within the chosen level of
abstraction and viewpoint are represented in the model. The model consists of a
containment hierarchy where the top-most package represents the boundary of the
modeled system.

The model may also contain model elements describing relevant parts of the system’s
environment. The environment may be modeled by actors and their interfaces. These
model elements and the model elements representing the modeled system may be
associated with each other. Such associations are owned either by the model or by the
top-most package. The contents of a model is the transitive closure of its owned model
elements, like packages, classifiers, and relationships.

Relationships between model elements in different models have no impact on the
model elements’ meaning in their containing models because of the self-containment
of models. Note that even if inter-model relationships do not express any semantics in
relation to the models, they may have semantics in relation to the reader or in deriving
model elements as part of the overall development process.

A model may be a specialization of another model. This implies that all elements in the
ancestor are also available in the specialized model under the same name as in the
ancestor.

2.14.5 Standard Elements

The predefined stereotypes, constraints, and tagged values for the Model Management
package are listed in Table 2-7 and defined in Appendix A - UML Standard Elements.

2.14.6 Notes

Because this is a logical model of the UML, distribution or sharing of models between
tools is not described.

Table 2-7 Model Management - Standard Elements

Model Element Stereotypes Constraints Tagged Values

Model «useCaseModel»

Package «facade»
«framework»
«stub»
«system»
«topLevelPackage»

2-152 OMG-UML V1.2 May 1998

2

The visibility of an element in an importing package/subsystem may be more
restrictive than its visibility in the owning namespace. This is useful for example when
a namespace makes parts of its contents public to the surrounding namespace, but
these elements are not available to the outside of the surrounding namespace.

In UML, there are three different ways to model a group of elements contained in
another element; by using a package, a subsystem, or a class. Some pragmatics on their
use include:

• Packages are used when nothing but a plain grouping of elements is required.

• Subsystems provide grouping suitable for top-down development, since the
requirements on the behavior of their contents can be expressed before the
realization of this behavior is defined. The specification of a subsystem may also be
seen as a provider of "high level APIs" of the subsystem.

• Classes are used when the container itself should be instantiable, so that it is
possible to define composite objects.

 OMG-UML V1.2 May 1998 3-1

UML Notation Guide 3

This guide describes the notation for the visual representation of the Unified Modeling
Language (UML). This notation document contains brief summaries of the semantics
of UML constructs, but the UML Semantics chapter must be consulted for full details.

Contents

This chapter contains the following topics.

Topic Page

Part 1 - Background

“Introduction” 3-5

Part 2 - Diagram Elements

“Graphs and Their Contents” 3-6

“Drawing Paths” 3-7

“Invisible Hyperlinks and the Role of Tools” 3-7

“Background Information” 3-8

“String” 3-8

“Name” 3-9

“Label” 3-10

“Keywords” 3-11

“Expression” 3-11

“Note” 3-13

“Type-Instance Correspondence” 3-14

Part 3 - Model Management

3-2 OMG-UML V1.2 May 1998

3

“Packages and Model Organization” 3-15

Part 4 - General Extension Mechanisms

“Constraint and Comment” 3-18

“Element Properties” 3-21

“Stereotypes” 3-22

Part 5 - Static Structure Diagrams

“Class Diagram” 3-25

“Object Diagram” 3-26

“Classifier” 3-26

“Class” 3-26

“Name Compartment” 3-28

“List Compartment” 3-29

“Attribute” 3-32

“Operation” 3-35

“Type Vs. Implementation Class” 3-38

“Interfaces” 3-39

“Parameterized Class (Template)” 3-41

“Bound Element” 3-43

“Utility” 3-45

“Metaclass” 3-45

“Class Pathnames” 3-46

“Importing a Package” 3-47

“Object” 3-48

“Composite Object” 3-51

“Association” 3-52

“Binary Association” 3-52

“Association End” 3-55

“Multiplicity” 3-59

“Qualifier” 3-60

“Association Class” 3-62

“N-ary Association” 3-63

“Composition” 3-65

“Links” 3-68

Topic Page

OMG-UML V1.1 March 1998 3-3

3

“Generalization” 3-70

“Dependency” 3-74

“Derived Element” 3-76

Part 6 - Use Case Diagrams

“Use Case Diagram” 3-77

“Use Case” 3-79

“Actor” 3-79

“Use Case Relationships” 3-80

Part 7 - Sequence Diagrams

“Kinds of Interaction Diagrams” 3-81

“Sequence Diagram” 3-82

“Object Lifeline” 3-86

“Activation” 3-87

“Message” 3-87

“Transition Times” 3-89

Part 8 - Collaboration Diagrams

“Collaboration” 3-90

“Collaboration Diagram” 3-91

“Pattern Structure” 3-93

“Collaboration Contents” 3-94

“Interactions” 3-96

“Collaboration Roles” 3-96

“Multiobject” 3-98

“Active object” 3-99

“Message flows” 3-101

“Creation/Destruction Markers” 3-105

Part 9 - Statechart Diagrams

“Statechart Diagram” 3-106

“States” 3-107

“Composite States” 3-109

“Events” 3-111

“Simple Transitions” 3-114

“Complex Transitions” 3-116

Topic Page

3-4 OMG-UML V1.2 May 1998

3

“Transitions to Nested States” 3-117

“Sending Messages” 3-120

“Internal Transitions” 3-123

Part 10 - Activity Diagrams

“Activity Diagram” 3-124

“Action state” 3-126

“Decisions” 3-127

“Swimlanes” 3-128

“Action-Object Flow Relationships” 3-130

“Control Icons” 3-132

Part 11 - Implementation Diagrams

“Component Diagram” 3-135

“Deployment Diagrams” 3-136

“Nodes” 3-138

“Components” 3-139

“Location of Components and Objects within Objects” 3-141

Topic Page

OMG-UML V1.1 Introduction March 1998 3-5

3

Part 1 - Background

3.1 Introduction

This chapter is arranged in parts according to semantic concepts subdivided by
diagram types. Within each diagram type, model elements that are found on that
diagram and their representation are listed. Note that many model elements are usable
in more than one diagram. An attempt has been made to place each description where
it is used the most, but be aware that the document involves implicit cross-references
and that elements may be useful in places other than the section in which they are
described. Be aware also that the document is nonlinear: there are forward references
in it. It is not intended to be a teaching document that can be read linearly, but a
reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important
model elements and notational constructs. Note that some of these constructs are used
within other constructs; do not be misled by the flattened structure of the chapter.
Within each section the following subsections may be found:

• Semantics: Brief summary of semantics. For a fuller explanation and discussion of
fine points, see the UML Semantics chapter in this document.

• Notation: Explains the notational representation of the semantic concept (“forward
mapping to notation”).

• Presentation options: Describes various options in presenting the model
information, such as the ability to suppress or filter information, alternate ways of
showing things, and suggestions for alternate ways of presenting information within
a tool.

Dynamic tools need the freedom to present information in various ways and the
authors do not want to restrict this excessively. In some sense, we are defining the
“canonical notation” that printed documents show, rather than the “screen notation.”
The ability to extend the notation can lead to unintelligible dialects, so we hope this
freedom will be used in intuitive ways. The authors have not sought to eliminate all
the ambiguity that some of these presentation options may introduce, because the
presence of the underlying model in a dynamic tool serves to easily disambiguate
things. Note that a tool is not supposed to pick just one of the presentation options
and implement it. Tools should offer users the options of selecting among various
presentation options, including some that are not described in this document.

• Style guidelines: Include suggestions for the use of stylistic markers, such as fonts,
naming conventions, arrangement of symbols, etc., that are not explicitly part of the
notation, but that help to make diagrams more readable. These are similar to text
indentation rules in C++ or Smalltalk. Not everyone will choose to follow these
suggestions, but the use of some consistent guidelines of your own choosing is
recommended in any case.

• Example: Shows samples of the notation. String and code examples are given in the
following font: This is a string sample.

3-6 OMG-UML V1.2 May 1998

3

• Mapping: Shows the mapping of notation elements to metamodel elements
(“reverse mapping from notation”). This indicates how the notation would be
represented as semantic information. Note that, in general, diagrams are interpreted
in a particular context in which semantic and graphic information is gathered
simultaneously. The assumption is that diagrams are constructed by an editing tool
that internalizes the model as the diagram is constructed. Some semantic constructs
have no graphic notation and would be shown to a user within a tool using a form
or table.

Part 2 - Diagram Elements

3.2 Graphs and Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes
connected by paths. The information is mostly in the topology, not in the size or
placement of the symbols (there are some exceptions, such as a sequence diagram with
a metric time axis). There are three kinds of visual relationships that are important::

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries), and

3. visual attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of
the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes), but they are still rendered as
icons on a 2-dimensional surface. In the near future, true 3-dimensional layout and
navigation may be possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons - An icon is a graphical figure of a fixed size and shape. It does not expand to
hold contents. Icons may appear within area symbols, as terminators on paths or as
standalone symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they
can expand to hold other things, such as lists of strings or other symbols. Many of
them are divided into compartments of similar or different kinds. Paths are
connected to two-dimensional symbols by terminating the path on the boundary of
the symbol. Dragging or deleting a 2-d symbol affects its contents and any paths
connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a
path is a single topological entity, although its segments may be manipulated
graphically. A segment may not exist apart from its path. Paths are always attached

OMG-UML V1.1 Drawing Paths March 1998 3-7

3

to other graphic symbols at both ends (no dangling lines). Paths may have
terminators, that is, icons that appear in some sequence on the end of the path and
that qualify the meaning of the path symbol.

4. Strings - Present various kinds of information in an “unparsed” form. UML assumes
that each usage of a string in the notation has a syntax by which it can be parsed
into underlying model information. For example, syntaxes are given for attributes,
operations, and transitions. These syntaxes are subject to extension by tools as a
presentation option. Strings may exist as singular elements of symbols or
compartments of symbols, as elements in lists (in which case the position in the list
conveys information), as labels attached to symbols or paths, or as stand-alone
elements on a diagram.

3.3 Drawing Paths

A path consists of a series of line segments whose endpoints coincide. The entire path
is a single topological unit. Line segments may be orthogonal lines, oblique lines, or
curved lines. Certain common styles of drawing lines exist: all orthogonal lines, or all
straight lines, or curves only for bevels. The line style can be regarded as a tool
restriction on default line input. When line segments cross, it may be difficult to know
which visual piece goes with which other piece; therefore, a crossing may optionally
be shown with a small semicircular jog by one of the segments to indicate that the
paths do not intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the
same kind may connect to a single symbol. In some circumstances (described for the
particular relationship) the line segments connected to the symbol can be combined
into a single line segment, so that the path from that symbol branches into several
paths in a kind of tree. This is purely a graphical presentation option; conceptually the
individual paths are distinct. This presentation option may not be used when the
modeling information on the segments to be combined is not identical.

3.4 Invisible Hyperlinks and the Role of Tools

A notation on a piece of paper contains no hidden information. A notation on a
computer screen may contain additional invisible hyperlinks that are not apparent in a
static view, but that can be invoked dynamically to access some other piece of
information, either in a graphical view or in a textual table. Such dynamic links are as
much a part of a dynamic notation as the visible information, but this guide does not
prescribe their form. We regard them as a tool responsibility. This document attempts
to define a static notation for the UML, with the understanding that some useful and
interesting information may show up poorly or not at all in such a view. On the other
hand, we do not know enough to specify the behavior of all dynamic tools, nor do we
want to stifle innovation in new forms of dynamic presentation. Eventually some of the
dynamic notations may become well enough established to standardize them, but we
do not feel that we should do so now.

3-8 OMG-UML V1.2 May 1998

3

3.5 Background Information

3.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may
have its own presentation choices. For example, one symbol for a class may show the
attributes and operations and another symbol for the same class may suppress them.
Tools may provide style sheets attached either to individual symbols or to entire
diagrams. The style sheets would specify the presentation choices. (Style sheets would
be applicable to most kinds of symbols, not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some
information is best presented in a textual or tabular format. For example, much detailed
programming information is best presented as text lists. The UML does not assume
that all of the information in a model will be expressed as diagrams; some of it may
only be available as tables. This document does not attempt to prescribe the format of
such tables or of the forms that are used to access them, because the underlying
information is adequately described in the UML metamodel and the responsibility for
presenting tabular information is a tool responsibility. It is assumed that hidden links
may exist from graphical items to tabular items.

3.6 String

A string is a sequence of characters in some suitable character set used to display
information about the model. Character sets may include non-Roman alphabets and
characters.

3.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode
information about the model, although some strings may exist purely on the diagrams.
UML assumes that the underlying character set is sufficient for representing multibyte
characters in various human languages; in particular, the traditional 8-bit ASCII
character set is insufficient. It is assumed that the tool and the computer manipulate
and store strings correctly, including escape conventions for special characters, and this
document will assume that arbitrary strings can be used without further fuss.

3.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be
displayed directly. The display of nonprintable characters is unspecified and platform-
dependent. Depending on purpose, a string might be shown as a single-line entity or as
a paragraph with automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string
itself. They may code for various model properties, some of which are suggested in
this document and some of which are left open for the tool or the user.

OMG-UML V1.1 Name March 1998 3-9

3

3.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size,
automatic wrapping, or insertion of scroll bars. It is assumed that there is a way to
obtain the full string dynamically.

3.6.4 Example

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks, in
which blocks of cards may stick together during several riffles, the operation is
actually simulated by cutting the deck and merging the cards with an imperfect merge.

3.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on
context. In some circumstances, the visual string is parsed into multiple model
elements. For example, an operation signature is parsed into its various fields. Further
details are given with each kind of symbol.

3.7 Name

3.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some
scope. A pathname is used to find a model element starting from the root of the system
(or from some other point). A name is a selector (qualifier) within some scope—the
scope is made clear in this document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are
various kinds of pathnames described in this document, each in its proper place and
with its particular delimiter.

3.7.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single
line and will not contain nonprintable characters. Tools and languages may impose
reasonable limits on the length of strings and the character set they use for names,
possibly more restrictive than those for arbitrary strings, such as comments.

3-10 OMG-UML V1.2 May 1998

3

3.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix.dimension

3.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with
String. Further details are given with the particular element.

3.8 Label

A label is a string that is attached to a graphic symbol.

3.8.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational
term.

3.8.2 Notation

A label is a string that is attached graphically to another symbol on a diagram. Visually
the attachment normally is by containment of the string (in a closed region) or by
placing the string near the symbol. Sometimes the string is placed in a definite position
(such as below a symbol) but most of the time the statement is that the string must be
“near” the symbol. A tool maintains an explicit internal graphic linking between a
label and a graphic symbol, so that the label drags with the symbol, but the final
appearance of the diagram is a matter of aesthetic judgment and should be made so
that there is no confusion about which symbol a label is attached to. Although the
attachment may not be obvious from a visual inspection of a diagram, the attachment
is clear and unambiguous at the graphic level (and poses no ambiguity in the semantic
mapping).

OMG-UML V1.1 Keywords March 1998 3-11

3

3.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various
aids (such as a line in a given color, flashing of matched elements, etc.) as a
convenience.

3.8.4 Example

Figure 3-1 Attachment by Containment and Attachment by Adjacency

3.9 Keywords

The number of easily-distinguishable visual symbols is limited. The UML notation
makes use of text keywords in places to distinguish variations on a common theme,
including metamodel subclasses of a base class, stereotypes of a metamodel base class,
and groups of list elements. From the user’s perspective, the metamodel distinction
between metamodel subclasses and stereotypes is often unimportant, although it is
important to tool builders and others who implement the metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be
treated as reserved words in the notation. Others are available for users to employ as
stereotype names. The use of a stereotype name that matches a predefined keyword is
ill-formed.

3.10 Expression

3.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield
values when evaluated at run-time. These include expressions for types, boolean
values, and numbers. UML does not include an explicit linguistic analyzer for
expressions. Rather, expressions are expressed as strings in a particular language. The

BankAccount

account

3-12 OMG-UML V1.2 May 1998

3

OCL constraint language is used within the UML semantic definition and may also be
used at the user level; other languages (such as programming languages) may also be
used.

UML avoids specifying the syntax for constructing type expressions because they are
so language-dependent. It is assumed that the name of a class or simple data type will
map into a simple Classifier reference, but the syntax of complicated language-
dependent type expressions, such as C++ function pointers, is the responsibility of the
specification language.

3.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of
the string is the responsibility of a tool and a linguistic analyzer for the language. The
assumption is that the analyzer can evaluate strings at run-time to yield values of the
appropriate type, or can yield semantic structures to capture the meaning of the
expression. For example, a type expression evaluates to a Classifier reference, and a
boolean expression evaluates to a true or false value. The language itself is known to a
modeling tool but is generally implicit on the diagram, under the assumption that the
form of the expression makes its purpose clear.

3.10.3 Example

BankAccount

BankAccount * (*) (Person*, int)

array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

3.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of
Expression, such as ObjectSetExpression or TimeExpression).

3.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints
within the UML metamodel itself. The OCL language may be supported by tools for
user-written expressions as well. Other possible languages include various computer
languages as well as plain text (which cannot be parsed by a tool, of course, and is
therefore only for human information).

OMG-UML V1.1 Note March 1998 3-13

3

3.10.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can
be chained together. The leftmost element must be an expression for an object or a set
of objects. The expressions are meant to work on sets of values when applicable. For
more details and syntax see the OCL description.

3.10.7 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

3.11 Note

A note is a graphical symbol containing textual information (possibly including
embedded images). It is a notation for rendering various kinds of textual information
from the metamodel, such as constraints, comments, method bodies, and tagged values.

3.11.1 Semantics

A note is a notational item. It shows textual information within some semantic
element.

3.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It
contains arbitrary text. It appears on a particular diagram and may be attached to zero
or more modeling elements by dashed lines.

item ‘.’ selector the selector is the name of an attribute in the item or the
name of a role of the target end of a link attached to the
item. The result is the value of the attribute or the related
object(s). The result is a value or a set of values
depending on the multiplicities of the item and the
association.

item ‘.’ selector ‘[‘ qualifier-
value ‘]’

the selector designates a qualified association that
qualifies the item. The qualifier-value is a value for the
qualifier attribute. The result is the related object selected
by the qualifier. Note that this syntax is applicable to
array indexing as a form of qualification.

set ‘->’ ‘select’ ‘(‘ boolean-
expression ‘)’

the boolean-expression is written in terms of objects
within the set. The result is the subset of objects in the set
for which the boolean expression is true.

3-14 OMG-UML V1.2 May 1998

3

3.11.3 Presentation Options

A note may have a stereotype.

A note with the stereotype “constraint” or a more specific form of constraint (such as
the code body for a method) designates a constraint that is part of the model and not
just part of a diagram view. Such a note is the view of a model element (the
constraint). Other kinds of notes are purely notation, they have no underlying model
element.

3.11.4 Example

See also Figure 3-5 on page 3-20 for a note symbol containing a constraint.

Figure 3-2 Note

3.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs;
it must be created in context that is known to a tool, and the tool must maintain the
mapping. The string in the note maps to the body of the corresponding modeling
element. A note may represent:

• a constraint,

• a tagged value,

• the body of a method, or

• other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

3.12 Type-Instance Correspondence

A major purpose of modeling is to prepare generic descriptions that describe many
specific items. This is often known as the type-instance dichotomy. Many or most of
the modeling concepts in UML have this dual character, usually modeled by two paired
modeling elements, one represents the generic descriptor and the other the individual
items that it describes. Examples of such pairs in UML include: Class-Object,
Association-Link, Parameter-Value, Operation-Call, and so on.

This model was built
by Alan Wright after
meeting with the
mission planning team.

OMG-UML V1.1 Packages and Model Organization March 1998 3-15

3

Although diagrams for type-like elements and instance-like elements are not exactly
the same, they share many similarities. Therefore, it is convenient to choose notation
for each type-instance pair of elements such that the correspondence is visually
apparent immediately. There are a limited number of ways to do this, each with
advantages and disadvantages. In UML, the type-instance distinction is shown by
employing the same geometrical symbol for each pair of elements and by underlining
the name string (including type name, if present) of an instance element. This visual
distinction is generally easily apparent without being overpowering even when an
entire diagram contains instance elements.

Figure 3-3 Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s
option, such as color, fill patterns, or so on.

Part 3 - Model Management

3.13 Packages and Model Organization

3.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested
within other packages. A package may contain both subordinate packages and ordinary
model elements. Some packages may be Subsystems or Models. The entire system
description can be thought of as a single high-level subsystem package with everything
else in it. All kinds of UML model elements and diagrams can be organized into
packages.

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414

3-16 OMG-UML V1.2 May 1998

3

Note that packages own model elements and model fragments and are the basis for
configuration control, storage, and access control. Each element can be directly owned
by a single package, so the package hierarchy is a strict tree. However, packages can
reference other packages, so the usage network is a graph.

There are several predefined stereotypes of Model and Subsystem. See the Meta Object
Facility (MOF) Specification for details. In particular, the stereotype «system» of
Subsystem denotes the entire set of models for the complete system being modeled. It
is the root of the package hierarchy and the only model element that is not owned by
some other model element.

3.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached on
one corner (usually the left side of the upper side of the large rectangle). It is a manila
folder shape.

• If contents of the package are not shown, then the name of the package is placed
within the large rectangle.

• If contents of the package are shown, then the name of the package may be placed
within the tab.

A keyword string may be placed above the package name. The keywords subsystem
and model indicate that the package is a metamodel Subsystem or Model. The
predefined stereotypes system, facade, framework, and top package are also notated
with keywords. User-defined stereotypes of one of these predefined kinds of package
are also notated with keywords, but they must not conflict with the predefined
keywords.

A list of properties may be placed in braces after or below the package name.
Example: {abstract}. See Section 3.15, “Element Properties,” on page 3-21 for details
of property syntax.

The contents of the package may be shown within the large rectangle.

The visibility of a package element outside the package may be indicated by preceding
the name of the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#’ for
protected). If the element is an inner package, the visibilities of its elements, as
exported by the outer package, are obtained by:

• combining the visibilities of an element within the package, with

• the visibility of the package itself.

The most restrictive visibility results. Relationships may be drawn between package
symbols to show relationships between some of the elements in the packages. In
particular, dependency between packages implies that one or more dependencies
among the elements exists.

OMG-UML V1.1 Packages and Model Organization March 1998 3-17

3

3.13.3 Presentation Options

A tool may also show visibility by selectively displaying those elements that meet a
given visibility level (e.g., all of the public elements only).

A tool may show visibility by a graphic marker, such as color or font.

3.13.4 Style Guidelines

It is expected that packages with large contents will be shown as simple icons with
names, in which the contents may be dynamically accessed by “zooming” to a detailed
view.

3.13.5 Example

Figure 3-4 Packages and Their Dependencies

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Editor

Microsoft
Windows

Motif

WindowsCore

MotifCore

«subsystem»

3-18 OMG-UML V1.2 May 1998

3

3.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is
the name of the Package element. If the package has a keyword that is a predefined
keyword, then the package symbol maps into the corresponding subclass of Package or
into the corresponding stereotype of Package; otherwise, it maps into a user-defined
stereotype of Package.

A symbol directly contained within the package symbol (i.e., not contained within
another symbol) maps into a model element owned by the package element. However,
a symbol whose name is a pathname maps into a reference to a model element owned
by another package. Only the reference is owned by the current package. Relationships
from the package symbol boundary map into relationships to the package element.

Part 4 - General Extension Mechanisms

The elements in this section are general purpose mechanisms that may be applied to
any modeling element. The semantics of a particular use depends on a convention of
the user or an interpretation by a particular constraint language or programming
language; therefore, they constitute an extensibility device for UML.

3.14 Constraint and Comment

3.14.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions
and propositions that must be maintained as true; otherwise, the system described by
the model is invalid (with consequences that are outside the scope of UML). Certain
kinds of constraints (such as an association “or” constraint) are predefined in UML,
others may be user-defined. A user-defined constraint is described in words in a given
language, whose syntax and interpretation is a tool responsibility. A constraint
represents semantic information attached to a model element, not just to a view of it.

A comment is a text string (including references to human-readable documents)
attached directly to a model element. This is equivalent syntactically to a constraint
written in the language “text” whose meaning is significant to humans, but which is
not conceptually executable (except inasmuch as humans are regarded as the
instruments of interpretation). A comment can attach arbitrary textual information to
any model element of presumed general importance.

3.14.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that
individual tools may provide one or more languages in which formal constraints may
be written. One predefined language for writing constraints is OCL (see Object

OMG-UML V1.1 Constraint and Comment March 1998 3-19

3

Constraint Language Specification, chapter 4); otherwise, the constraint may be written
in natural language. A constraint may be a “comment.” In that case, it is written in text
(possibly including pictures or other viewable documents) for “interpretation” by a
human. Each constraint is written in a specific language, although the language is not
generally displayed on the diagram (the tool must keep track of it).

For an element whose notation is a text string (such as an attribute, etc.), the constraint
string may follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes
within a class), a constraint string may appear as an element in the list. The constraint
applies to all succeeding elements of the list until another constraint string list element
or the end of the list. A constraint attached to an individual list element does not
supersede the general constraint, but may augment or modify individual constraints
within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint
string may be placed near the symbol, preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations), the constraint is
shown as a dashed arrow from one element to the other element labeled by the
constraint string (in braces). The direction of the arrow is relevant information within
the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol
and attached to each of the symbols by a dashed line. This notation may also be used
for the other cases. For three or more paths of the same kind (such as generalization
paths or association paths), the constraint may be attached to a dashed line crossing all
of the paths.

A comment is shown by a text string placed within a note symbol that is attached to a
model element. The braces are omitted to show that this is purely a textual comment.
(The braces indicate a constraint expressed in some interpretable constraint language.)

3-20 OMG-UML V1.2 May 1998

3

3.14.3 Example

Figure 3-5 Constraints Illustration

3.14.4 Mapping

The constraint string maps into the body expression in a Constraint element. The
mapping depends on the language of the expression, which is known to a tool but
generally not displayed on a diagram. If the string lacks braces (i.e., a Comment), then
it maps into an expression in the language “text.”

A constraint string following a list entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate
Constraint attached to each succeeding model element corresponding to subsequent list
entries (until superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a
hidden link by a tool operating in context. The tool must maintain the graphical
linkage implicitly. The constraint string maps into a Constraint attached to the element
corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the
two elements corresponding to the symbols connected by the arrow.

A constraint string in a note symbol maps into a Constraint attached to the elements
corresponding to the symbols connected to the note symbol by dashed lines.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.

OMG-UML V1.1 Element Properties March 1998 3-21

3

3.15 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In
addition, users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes
properties represented by attributes in the metamodel as well as both predefined and
user-defined tagged values.

3.15.1 Semantics

Note that we use property in a general sense to mean any value attached to a model
element, including attributes, associations, and tagged values. In this sense it can
include indirectly reachable values that can be found starting at a given element.

A tagged value is a keyword-value pair that may be attached to any kind of model
element (including diagram elements as well as semantic model elements). The
keyword is called a tag. Each tag represents a particular kind of property applicable to
one or many kinds of model elements. Both the tag and the value are encoded as
strings. Tagged values are an extensibility mechanism of UML permitting arbitrary
information to be attached to models. It is expected that most model editors will
provide basic facilities for defining, displaying, and searching tagged values as strings
but will not otherwise use them to extend the UML semantics. It is expected, however,
that back-end tools such as code generators, report writers, and the like will read
tagged values to alter their semantics in flexible ways.

3.15.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-
delimited sequence of property specifications all inside a pair of braces ({ }).

A property specification has the form

keyword = value

where keyword is the name of a property (metamodel attribute or arbitrary tag) and
value is an arbitrary string that denotes its value. If the type of the property is Boolean,
then the default value is true if the value is omitted. That is, to specify a value of true
you may include just the keyword. To specify a value of false, you omit the name
completely. Properties of other types require explicit values. The syntax for displaying
the value is a tool responsibility in cases where the underlying model value is not a
string or a number.

Note that property strings may be used to display built-in attributes as well as tagged
values.

3-22 OMG-UML V1.2 May 1998

3

3.15.3 Presentation Options

A tool may present property specifications on separate lines with or without the
enclosing braces, provided they are marked appropriately to distinguish them from
other information. For example, properties for a class might be listed under the class
name in a distinctive typeface, such as italics or a different font family.

3.15.4 Style Guidelines

It is legal to use strings to specify properties that have graphical notations; however,
such usage may be confusing and should be used with care.

3.15.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

3.15.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a
tagged value (predefined or user-defined). A tool must enforce the correspondence to
built-in attributes.

3.16 Stereotypes

3.16.1 Semantics

A stereotype is, in effect, a new class of modeling element that is introduced at
modeling time. It represents a subclass of an existing modeling element with the same
form (attributes and relationships) but with a different intent. Generally a stereotype
represents a usage distinction. A stereotyped element may have additional constraints
on it from the base class. It is expected that code generators and other tools will treat
stereotyped elements specially. Stereotypes represent one of the built-in extensibility
mechanisms of UML.

3.16.2 Notation

The general presentation of a stereotype is to use the symbol for the base element but
to place a keyword string above the name of the element (if any). The keyword string
is the name of the stereotype within matched guillemets, which are the quotation mark
symbols used in French and certain other languages (for example, «foo»).

Note – A guillemet looks like a double angle-bracket, but it is a single character in
most extended fonts. Most computers have a Character Map utility. Double angle-
brackets may be used as a substitute by the typographically challenged.

OMG-UML V1.1 Stereotypes March 1998 3-23

3

The keyword string is generally placed above or in front of the name of the model
element being described. The keyword string may also be used as an element in a list,
in which case it applies to subsequent list elements until another stereotype string
replaces it, or an empty stereotype string («») nullifies it. Note that a stereotype name
should not be identical to a predefined keyword applicable to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a
graphic marker (such as texture or color) can be associated with a stereotype. The
UML does not specify the form of the graphic specification, but many bitmap and
stroked formats exist (and their portability is a difficult problem). The icon can be used
in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of
the symbol for the base model element that the stereotype is based on. For example,
in a class rectangle it is placed in the upper right corner of the name compartment.
In this form, the normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing
the element name or with the name above or below the icon. Other information
contained by the base model element symbol is suppressed. More general forms of
icon specification and substitution are conceivable, but we leave these to the
ingenuity of tool builders, with the warning that excessive use of extensibility
capabilities may lead to loss of portability among tools.

UML avoids the use of graphic markers, such as color, that present challenges for
certain persons (the color blind) and for important kinds of equipment (such as
printers, copiers, and fax machines). None of the UML symbols require the use of such
graphic markers. Users may use graphic markers freely in their personal work for their
own purposes (such as for highlighting within a tool) but should be aware of their
limitations for interchange and be prepared to use the canonical forms when necessary.

The classification hierarchy of the stereotypes themselves could be displayed on a
class diagram; however, this would be a metamodel diagram and must be distinguished
(by user and tool) from an ordinary model diagram. In such a diagram each stereotype
is shown as a class with the stereotype «stereotype» (yes, this is a self-referential
usage). Generalization relationships may show the extended metamodel hierarchy.
Because of the danger of extending the internal metamodel hierarchy, a tool may, but
need not, expose this capability on class diagrams. This is not a capability required by
ordinary modelers.

3-24 OMG-UML V1.2 May 1998

3

3.16.3 Example

Figure 3-6 Varieties of Stereotype Notation

3.16.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the
Element corresponding to the symbol containing the name and the Stereotype of the
given name. The use of a stereotype icon within a symbol maps into the stereotype
relationship between the Element corresponding to the symbol containing the icon and
the Stereotype represented by the symbol. A tool must establish the connection when
the symbol is created and there is no requirement that an icon represent uniquely one
stereotype. The use of a stereotype icon, instead of a symbol, must be created in a
context in which a tool implies a corresponding model element and a Stereotype
represented by the icon. The element and the stereotype have the stereotype
relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«calls»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)

OMG-UML V1.1 Class Diagram March 1998 3-25

3

Part 5 - Static Structure Diagrams

Class diagrams show the static structure of the model, in particular, the things that
exist (such as classes and types), their internal structure, and their relationships to other
things. Class diagrams do not show temporal information, although they may contain
reified occurrences of things that have or things that describe temporal behavior. An
object diagram shows instances compatible with a particular class diagram.

REVIEWER: Instead of using ‘thing’ in the above paragraph, can we use a
different word?

This section discusses classes and their variations, including templates and instantiated
classes, and the relationships between classes (association and generalization) and the
contents of classes (attributes and operations).

3.17 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static
relationships. Note that a “class” diagram may also contain interfaces, packages,
relationships, and even instances, such as objects and links. Perhaps a better name
would be “static structural diagram” but “class diagram” is shorter and well
established.

3.17.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class
diagrams do not represent divisions in the underlying model.

3.17.2 Notation

A class diagram is a collection of (static) declarative model elements, such as classes,
interfaces, and their relationships, connected as a graph to each other and to their
contents. Class diagrams may be organized into packages either with their underlying
models or as separate packages that build upon the underlying model packages.

3.17.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within
the static structural model may be represented by one or more class diagrams. The
division of the presentation into separate diagrams is for graphical convenience and
does not imply a partitioning of the model itself. The contents of a diagram map into
elements in the static semantic model. If a diagram is part of a package, then its
contents map into elements in the same package.

3-26 OMG-UML V1.2 May 1998

3

3.18 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static
object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is fairly limited, mainly
to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can
contain objects, so a class diagram with objects and no classes is an “object diagram.”
The phrase is useful, however, to characterize a particular usage achievable in various
ways.

3.19 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these
have similar syntax and are therefore all notated using the rectangle symbol with
keywords used as necessary. Because classes are most common in diagrams, a
rectangle without a keyword represents a class, and the other subclasses of Classifier
are indicated with keywords. In the sections that follow, the discussion will focus on
Class, but most of the notation applies to the other element kinds as semantically
appropriate and as described later under their own sections.

3.20 Class

A class is the descriptor for a set of objects with similar structure, behavior, and
relationships. UML provides notation for declaring classes and specifying their
properties, as well as using classes in various ways. Some modeling elements that are
similar in form to classes (such as interfaces, signals, or utilities) are notated using
keywords on class symbols; some of these are separate metamodel classes and some
are stereotypes of Class. Classes are declared in class diagrams and used in most other
diagrams. UML provides a graphical notation for declaring and using classes, as well
as a textual notation for referencing classes within the descriptions of other model
elements.

3.20.1 Semantics

A class represents a concept within the system being modeled. Classes have data
structure and behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name
must be unique (among class names) within its package.

3.20.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by
horizontal lines. The top name compartment holds the class name and other general
properties of the class (including stereotype); the middle list compartment holds a list
of attributes; the bottom list compartment holds a list of operations.

OMG-UML V1.1 Class March 1998 3-27

3

See “Name Compartment” on page 3-28 and “List Compartment” on page 3-29 for
more details.

References

By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. Compartment names can be used to
remove ambiguity, if necessary (“List Compartment” on page 3-29). A full pathname
can be specified by chaining together package names separated by double colons (::).

3.20.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A
separator line is not drawn for a missing compartment. If a compartment is suppressed,
no inference can be drawn about the presence or absence of elements in it.

Additional compartments may be supplied as a tool extension to show other predefined
or user-defined model properties (for example, to show business rules, responsibilities,
variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings. More complicated formats are possible, but UML does not
specify such formats; they are a tool responsibility. Appearance of each compartment
should preferably be implicit based on its contents. Compartment names may be used,
if needed.

Tools may provide other ways to show class references and to distinguish them from
class declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype
icon, with the name of the class either inside the class or below the icon. Other
contents of the class are suppressed.

3.20.4 Style Guidelines

(Note that these are recommendations, not mandates.)

• Center class name in boldface.

• Center stereotype name in plain face within guillemets above class name.

• Being class names with an uppercase letter.

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

3-28 OMG-UML V1.2 May 1998

3

As a tool extension, boldface may be used for marking special list elements (for
example, to designate candidate keys in a database design). This might encode some
design property modeled as a tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts
or references.

3.20.5 Example

Figure 3-7 Class Notation: Details Suppressed, Analysis-level Details, Implementation-level
Details

3.20.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram.
The name compartment contents map into the class name and into properties of the
class (built-in attributes or tagged values). The attribute compartment maps into a list
of Attributes of the Class. The operation compartment maps into a list of Operations of
the Class.

3.21 Name Compartment

3.21.1 Notation

Displays the name of the class and other properties in up to three sections:

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = invisible

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}

OMG-UML V1.1 List Compartment March 1998 3-29

3

An optional stereotype keyword may be placed above the class name within
guillemets, and/or a stereotype icon may be placed in the upper right corner of the
compartment. The stereotype name must not match a predefined keyword.

The name of the class appears next. If the class is abstract, its name appears in italics.
Note that any explicit specification of generalization status takes precedence over the
name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be
placed in braces below the class name. The list may show class-level attributes for
which there is no UML notation and it may also show tagged values. The presence of
a keyword for a Boolean type without a value implies the value true. For example, a
leaf class shows the property “{leaf}”.

The stereotype and property list are optional.

Figure 3-8 Name Compartment

3.21.2 Mapping

The contents of the name compartment map into the name, stereotype, and various
properties of the Class represented by the class symbol.

3.22 List Compartment

3.22.1 Notation

Holds a list of strings, each of which is the encoded representation of a feature, such as
an attribute or operation. The strings are presented one to a line with overflow to be
handled in a tool-dependent manner. In addition to lists of attributes or operations,
optional lists can show other kinds of predefined or user-defined values, such as
responsibilities, rules, or modification histories. UML does not define these optional
lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order
of the elements is meaningful information and must be accessible within tools (for
example, it may be used by a code generator in generating a list of declarations). The
list elements may be presented in a different order to achieve some other purpose (for

PenTracker

«controller»

{ leaf, author=”Mary Jones”}

3-30 OMG-UML V1.2 May 1998

3

example, they may be sorted in some way). Even if the list is sorted, the items
maintain their original order in the underlying model. The ordering information is
merely suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited
section of a list indicates that additional elements in the model exist that meet the
selection condition, but that are not shown in that list. Such elements may appear in a
different view of the list.

Group properties

A property string may be shown as a element of the list, in which case it applies to all
of the succeeding list elements until another property string appears as a list element.
This is equivalent to attaching the property string to each of the list elements
individually. The property string does not designate a model element. Examples of this
usage include indicating a stereotype and specifying visibility. Keyword strings may
also be used in a similar way to qualify subsequent list elements.

Compartment name

A compartment may display a name to indicate which kind of compartment it is. The
name is displayed in a distinctive font centered at the top of the compartment. This
capability is useful if some compartments are omitted or if additional user-defined
compartments are added. For a Class, the predefined compartments are named
attributes and operations. An example of a user-defined compartment might be
requirements. The name compartment in a class must always be present; therefore, it
does not require or permit a compartment name.

3.22.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent
ordering of the elements is not visible. A sort is based on some internal property and
does not indicate additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then protected, then private), etc.

The elements in the list may be filtered according to some selection rule. The
specification of selection rules is a tool responsibility. The absence of items from a
filtered list indicates that no elements meet the filter criterion, but no inference can be
drawn about the presence or absence of elements that do not meet the criterion.
However, the ellipsis notation is available to show that invisible elements exist. It is a
tool responsibility whether and how to indicate the presence of either local or global
filtering, although a stand-alone diagram should have some indication of such filtering
if it is to be understandable.

OMG-UML V1.1 List Compartment March 1998 3-31

3

If a compartment is suppressed, no inference can be drawn about the presence or
absence of its elements. An empty compartment indicates that no elements meet the
selection filter (if any).

Note that attributes may also be shown by composition (see Figure 3-25 on page 3-67).

3.22.3 Example

Figure 3-9 Stereotype Keyword Applied to Groups of List Elements

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

3-32 OMG-UML V1.2 May 1998

3

Figure 3-10 Compartments with Names

3.22.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list
entry. The ordering of the ModelElements matches the list compartment entries (unless
the list compartment is sorted in some way). In this case, no implication about the
ordering of the Elements can be made (the ordering can be seen by turning off sorting).
However, a list entry string that is a stereotype indication (within guillemets) or a
property indication (within braces) does not map into a separate ModelElement.
Instead, the corresponding property applies to each subsequent ModelElement until the
appearance of a different stand-alone stereotype or property indicator. The property
specifications are conceptually duplicated for each list Element, although a tool might
maintain an internal mechanism to store or modify them together. The presence of an
ellipsis (“...”) as a list entry implies that the semantic model contains at least one
Element with corresponding properties that is not visible in the list compartment.

3.23 Attribute

Used to show attributes in classes. A similar syntax is used to specify qualifiers,
template parameters, operation parameters, and so on (some of these omit certain
terms).

3.23.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however,
the intent and usage is normally different.

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card

OMG-UML V1.1 Attribute March 1998 3-33

3

The type of an attribute is a TypeExpression. It may resolve to a class name or it may
be complex, such as array[String] of Point. In any case, the details of the attribute
type expressions are not specified by UML. They depend on the expression syntax
supported by the particular specification or programming language being used.

3.23.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of
an attribute model element. The default syntax is:

visibility name : type-expression = initial-value { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker indicates
that the visibility is not shown (not that it is undefined or public). A tool should assign
visibilities to new attributes even if the visibility is not shown. The visibility marker is
a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form is
used particularly when it is used as an inline list element that applies to an entire block
of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a tool-
specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where type-expression is a language-dependent specification of the implementation
type of an attribute.

• Where initial-value is a language-dependent expression for the initial value of a
newly created object. The initial value is optional (the equal sign is also omitted).
An explicit constructor for a new object may augment or modify the default initial
value.

• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string;
otherwise, the attribute is instance-scope. The notation justification is that a class-
scope attribute is an instance value in the executing system, just as an object is an
instance value, so both may be designated by underlining. An instance-scope attribute
is not underlined; that is the default.

class-scope-attribute

3-34 OMG-UML V1.2 May 1998

3

There is no symbol for whether an attribute is changeable (the default is changeable).
A nonchangeable attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value.
Multiplicity may be indicated by placing a multiplicity indicator in brackets after the
attribute name, for example:

colors [3]: Color
points [2..*]: Point

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence
of a value, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and the empty string:

name [0..1]: String

A stereotype keyword in guillemets precedes the entire attribute string, including any
visibility indicators. A property list in braces follows the entire attribute string.

3.23.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a
continuous string.

The syntax of the attribute string can be that of a particular programming language,
such as C++ or Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see “List Compartment” on
page 3-29).

3.23.4 Style Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain
face.

3.23.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

OMG-UML V1.1 Operation March 1998 3-35

3

3.23.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class
representing the class symbol. The properties of the attribute map in accord with the
preceding descriptions. If the visibility is absent, then no conclusion can be drawn
about the Attribute visibilities unless a filter is in effect (e.g., only public attributes
shown). Likewise, if the type or initial value are omitted. The omission of an underline
always indicates an instance-scope attribute. The omission of multiplicity denotes a
multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on
the Attribute. In addition, any properties specified on a previous stand-alone property
specification entry apply to the current Attribute (and to others).

3.24 Operation

Used to show operations defined on classes. Also used to show methods supplied by
classes.

3.24.1 Operation

An operation is a service that an instance of the class may be requested to perform. It
has a name and a list of arguments.

3.24.2 Notation

An operation is shown as a text string that can be parsed into the various properties of
an operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker indicates
that the visibility is not shown (not that it is undefined or public). The visibility marker
is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form is
used particularly when it is used as an inline list element that applies to an entire block
of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a tool-
specific convention.

3-36 OMG-UML V1.2 May 1998

3

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the
implementation type or types of the value returned by the operation. The return-type
is omitted if the operation does not return a value (C++ void). A list of expressions
may be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each
specified using the syntax:

kind name : type-expression = default-value

• where kind is in, out, or inout, with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an
implementation type.

• where default-value is an optional value expression for the parameter, expressed
in and subject to the limitations of the eventual target language.

• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string.
An instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is
specified by the property “{query}”; otherwise, the operation may alter the system
state, although there is no guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string with one
of the names: sequential, guarded, concurrent. In the absence of a specification, the
concurrency semantics are undefined and must be assumed to be sequential in the
worst case.

The top-most appearance of an operation signature declares the operation on the class
(and inherited by all of its descendents). If this class does not implement the operation
(i.e., does not supply a method), then the operation may be marked as “{abstract}” or
the operation signature may be italicized to indicate that it is abstract. Any subordinate
appearances of the operation signature indicate that the subordinate class implements a
method on the operation. (The specification of “{abstract}” or italics on a subordinate
class would not indicate a method, but this usage of the notation would be poor form.)

The actual text or algorithm of a method may be indicated in a note attached to the
operation entry.

An operation entry with the stereotype «signal» indicates that the class accepts the
given signal. The syntax is identical to that of an operation.

The specification of operation behavior is given as a note attached to the operation.
The text of the specification should be enclosed in braces if it is a formal specification
in some language (a semantic Constraint); otherwise, it should be plain text if it is just
a natural-language description of the behavior (a Comment).

OMG-UML V1.1 Operation March 1998 3-37

3

A stereotype keyword in guillemets precedes the entire operation string, including any
visibility indicators. A property list in braces follows the entire operation string.

3.24.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming
language, such as C++ or Smalltalk. Specific tagged properties may be included in the
string.

3.24.4 Style Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain
face. An abstract operation may be shown in italics.

3.24.5 Example

Figure 3-11 Operation List with a Variety of Operations

3.24.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method
within the Class representing the class symbol. The properties of the operation map in
accordance with the preceding descriptions. See the description of “Attribute” on
page 3-32 for additional details.

The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have
methods. In a Class, each appearance of an operation entry maps into the presence of a
Method in the corresponding Class, unless the operation entry contains the {abstract}
property (including use of conventions such as italics for abstract operations). If an
abstract operation entry appears within a hierarchy in which the same operation has
already been defined in an ancestor, it has no effect but is not an error unless the
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)

3-38 OMG-UML V1.2 May 1998

3

3.24.7 Signal Reception

If the objects of a class accept and respond to a given signal, that fact can be indicated
using the same syntax as an operation with the keyword «signal». The response of the
object to the reception of the signal is shown with a state machine. Among other uses,
this notation can show the response of objects of a class to error conditions and
exceptions, which should be modeled as signals.

3.25 Type Vs. Implementation Class

3.25.1 Semantics

Classes can be specialized by stereotypes into Types and Implementation Classes
(although they can be left undifferentiated as well). A Type characterizes a changeable
role that an object may adopt and later abandon. An Implementation Class defines the
physical data structure and procedures of an object as implemented in traditional
languages (C++, Smalltalk, etc.). An object may have multiple Types (which may
change dynamically) but only one ImplementationClass (which is fixed). Although the
usage of Types and ImplementationClasses is different, their internal structure is the
same, so they are modeled as stereotypes of Class. All kinds of Class require that a
subclass fully support the features of the superclass, including support for all inherited
attributes, associations, and operations.

3.25.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the
stereotype “«type»”. An implementation class is shown with the stereotype
“«implementation class»”. A tool is also free to allow a default setting for an entire
diagram, in which case all of the class symbols without explicit stereotype indications
map into Classes with the default stereotype. This might be useful for a model that is
close to the programming level.

The implementation of a type by an implementation class is modeled as the Realizes
relationship, shown as a dashed line with a solid triangular arrowhead (a dashed
“generalization arrow”). This symbol implies inheritance of operations, but not of
structure (attributes or associations).

OMG-UML V1.1 Interfaces March 1998 3-39

3

3.25.3 Example

Figure 3-12 Notation for Types and Implementation Classes

3.25.4 Mapping

A class symbol with a stereotype (including “type” and “implementation class”) maps
into a Class with the corresponding stereotype. A class symbol without a stereotype
maps into a Class with the default stereotype for the diagram (if a default has been
defined by the modeler or tool); otherwise, it maps into a Class with no stereotype.
This symbol is normally used between a class and an interface, but may also be used
between any two classifiers to show inheritance of operations only without inheritance
of attributes or associations.

3.26 Interfaces

3.26.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component,
or other entity (including summarization units such as packages) without specification
of internal structure. Each interface often specifies only a limited part of the behavior
of an actual class. Interfaces do not have implementation. They lack attributes, states,

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

elements: Collection

Collection
«type»

HashTableSet
«implementation class»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

elements: Collection

HashTable
«implementation class»

setTableSize(Integer)

3-40 OMG-UML V1.2 May 1998

3

or associations, they only have operations. Interfaces may have generalization
relationships. An interface is formally equivalent to an abstract class with no attributes
and no methods and only abstract operations, but Interface is a peer of Class within the
UML metamodel (both are Classifiers).

3.26.2 Notation

An interface is a Classifer and may also be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the
interface is placed in the operation compartment. The attribute compartment may be
omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface
placed below the symbol. The circle may be attached by a solid line to classes that
support it (also to higher-level containers, such as packages that contain the classes).
This indicates that the class provides all of the operations in the interface type (and
possibly more). The operations provided are not shown on the circle notation; use the
full rectangle symbol to show the list of operations. A class that uses or requires the
operations supplied by the interface may be attached to the circle by a dashed arrow
pointing to the circle. The dashed arrow implies that the class requires no more than
the operations specified in the interface; the client class is not required to actually use
all of the interface operations.

The Realizes relationship from a class to an interface that it supports is shown by a
dashed line with a solid triangular arrowhead (a “dashed generalization symbol”). This
is the same notation used to indicate realization of a type by an implementation class.
In fact, this symbol can be used between any two classifier symbols, with the meaning
that the client (the one at the tail of the arrow) supports at least all of the operations
defined in the supplier (the one at the head of the arrow), but with no necessity to
support any of the data structure of the supplier (attributes and associations).

OMG-UML V1.1 Parameterized Class (Template) March 1998 3-41

3

3.26.3 Example

Figure 3-13 Interface Notation on Class Diagram

3.26.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram,
maps into an Interface element with the name given by the symbol. The operation list
of a rectangle symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid
line connecting a class symbol and an interface circle, maps into a realization-
specification relationship between the corresponding Class and Interface elements. A
dependency arrow from a class symbol to an interface symbol maps into a «uses»
dependency between the corresponding Class and Interface.

3.27 Parameterized Class (Template)

3.27.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters.
It defines a family of classes, each class specified by binding the parameters to actual
values. Typically, the parameters represent attribute types; however, they can also
represent integers, other types, or even operations. Attributes and operations within the
template are defined in terms of the formal parameters so they too become bound when
the template itself is bound to actual values.

HashTable

Hashable

Comparable

String
. . .

isEqual(String):Boolean
hash():Integer

contents*

Comparable
«interface»

isEqual(String):Boolean
hash():Integer

. . .

«uses»

3-42 OMG-UML V1.2 May 1998

3

A template is not a directly-usable class because it has unbound parameters. Its
parameters must be bound to actual values to create a bound form that is a class. Only
a class can be s superclass or the target of an association (a one-way association from
the template to another class is permissible, however). A template may be a subclass of
an ordinary class. This implies that all classes formed by binding it are subclasses of
the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or
even entire Packages. The description given here for classes applies to other kinds of
modeling elements in the obvious way.

3.27.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the
rectangle for the class (or to the symbol for another modeling element). The dashed
rectangle contains a parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in
the presentation. The name, attributes, and operations of the parameterized class appear
as normal in the class rectangle; however, they may also include occurrences of the
formal parameters. Occurrences of the formal parameters can also occur inside of a
context for the class, for example, to show a related class identified by one of the
parameters.

3.27.3 Presentation Options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax

name : type

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a TypeExpression for the parameter.

If the type name is omitted, it is assumed to be a type expression that resolves to a
classifier, such as a class name or a data type. Other parameter types (such as Integer)
must be explicitly shown, they must resolve to valid type expressions.

OMG-UML V1.1 Bound Element March 1998 3-43

3

3.27.4 Example

Figure 3-14 Template Notation with Use of Parameter as a Reference

3.27.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the
parameter names in the list as ModelElements within the Namespace of the
ModelElement corresponding to the base symbol. Each of the parameter
ModelElements has the templateParameter association to the Namespace.

3.28 Bound Element

3.28.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope
that declares the parameter. To be used, a template’s parameters must be bound to
actual values. The actual value for each parameter is an expression defined within the
scope of use. If the referencing scope is itself a template, then the parameters of the
referencing template can be used as actual values in binding the referenced template.
The parameter names in the two templates cannot be assumed to correspond because
they have no scope outside of their respective templates.

3.28.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as
follows:

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

3-44 OMG-UML V1.2 May 1998

3

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template
parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the
parameterized kind could be used. For example, a bound class name could be used
within a class symbol on a class diagram, as an attribute type, or as part of an
operation signature.

Note that a bound element is fully specified by its template; therefore, its content may
not be extended. Declaration of new attributes or operations for classes is not
permitted, for example, but a bound class could be subclassed and the subclass
extended in the usual way.

The relationship between the bound element and its template alternatively may be
shown by a Dependency relationship with the keyword «bind». The arguments are
shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the template.

3.28.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound
class, because they must not be modified in a bound template.

3.28.4 Example

See Figure 3-14 on page 3-43.

3.28.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding
dependency between the dependent ModelElement (such as Class) corresponding to
the bound element symbol and the provider ModelElement (again, such as Class)
whose name matches the name part of the bound element without the arguments. If the
name does not match a template element or if the number of arguments in the bound
element does not match the number of parameters in the template, then the model is ill
formed. Each argument in the bound element maps into a ModelElement bearing a
templateArgument association to the Namespace of the bound element. The Binding
relationship bears the list of actual argument values.

OMG-UML V1.1 Utility March 1998 3-45

3

3.29 Utility

A utility is a grouping of global variables and procedures in the form of a class
declaration. This is not a fundamental construct, but a programming convenience. The
attributes and operations of the utility become global variables and procedures. A
utility is modeled as a stereotype of a class.

3.29.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global
attributes and operations. It is inappropriate for a utility to declare class-scope
attributes and operations because the instance-scope members are already interpreted
as being at class scope.

3.29.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operations,
all of which are treated as global attributes and operations.

3.29.3 Example

Figure 3-15 Notation for Utility

3.29.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility»
stereotype.

3.30 Metaclass

3.30.1 Semantics

A metaclass is a class whose instances are classes.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real

3-46 OMG-UML V1.2 May 1998

3

3.30.2 Notation

Shown as the stereotype «metaclass» of Class.

3.30.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.31 Class Pathnames

3.31.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as
relationships to other classes. A reference to a class in a different package is notated by
using a pathname for the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type
specifications for attributes and variables. In these places a reference to a class is
indicated by simply including the name of the class itself, including a possible package
name, subject to the syntax rules of the expression.

3.31.2 Example

Figure 3-16 Pathnames for Classes in Other Packages

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

OMG-UML V1.1 Importing a Package March 1998 3-47

3

3.31.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class
with the given name inside the package with the given name. The name is assumed to
be defined in the target package; otherwise, the model is ill formed. A Relationship
from a symbol in the current package (i.e., the package containing the diagram and its
mapped elements) to a symbol in another package is part of the current package.

3.32 Importing a Package

3.32.1 Semantics

A class in another package may be referenced. On the package level, the «import»
dependency indicates that the contents of the target packages may be referenced by the
client package or packages recursively embedded within it. The target references must
have visibility sufficient for the referents. Visibilities may be specified on model
elements and on packages. If a model element is nested inside one or more packages,
the visibilities of the element and all of its containers combine according to the rule
that the most restrictive visibility in the set is obtained. It is not possible to selectively
export certain elements from within a nested package; the visibility of the outer
package is applied to each element exported by an inner package. Imports are recursive
within nested levels of packages. A descendent of a class requires at least “protected”
visibility; any other class requires “public” visibility. (See the UML Semantics chapter
for full details.)

Note that an import’s dependency does not modify the namespace of the client or in
any other way automatically create references; it merely grants permission to establish
references. Note also that a tool could automatically create imports dependencies for
users if desired when references are created.

3.32.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing
(client) package to the target (supplier) package containing the target of the references.
The arrow has the stereotype «import». This dependency indicates that elements within
the client package may legally reference elements within the supplier. The references
must also satisfy visibility constraints specified by the supplier. Note that the
dependency does not automatically create any references. It merely grants permission
for them to be established.

3-48 OMG-UML V1.2 May 1998

3

3.32.3 Example

Figure 3-17 Imports Dependency Among Packages

3.32.4 Mapping

This is not a special symbol. It maps into a Dependency with the stereotype «import»
between the two packages.

3.33 Object

3.33.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values.
The same notation also represents a role within a collaboration because roles have
instance-like characteristics.

3.33.2 Notation

The object notation is derived from the class notation by underlining instance-level
elements, as explained in the general comments in “Type-Instance Correspondence” on
page 3-14.

An object shown as a rectangle with two compartments.

Banking::CheckingAccount

CheckingAccount

Banking

«import»

Customers

OMG-UML V1.1 Object March 1998 3-49

3

The top compartment shows the name of the object and its class, all underlined, using
the syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list
of classnames. These classnames must be legal for multiple classification (i.e., only
one implementation class permitted, but multiple roles permitted).

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur
concurrently.

The second compartment shows the attributes for the object and their values as a list.
Each value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal
value expressions; however, it is expected that a tool will specify such a syntax using
some programming language.

3.33.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list
of values held over time. This is a good opportunity for the use of animation by a tool
(the values would change dynamically). An alternate notation is to show the same
object more than once with a «becomes» relationship between them.

3-50 OMG-UML V1.2 May 1998

3

3.33.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are
not objects, because they describe many possible objects. They are instead roles that
may be held by object. Objects in class diagrams serve mainly to show examples of
data structures.

3.33.5 Variations

For a language such as Self in which operations can be attached to individual objects at
run time, a third compartment containing operations would be appropriate as a
language-specific extension.

3.33.6 Example

Figure 3-18 Objects

3.33.7 Mapping

The mapping of an object symbol depends on the diagram: Within a collaboration, it
maps into a ClassifierRole of the corresponding Collaboration. The role has the name
specified by the objectname portion of the symbol name string. The ClassifierRole has
a type association to the Class whose name appears in the classname part of the
symbol name string.

In an object diagram, or within an ordinary class diagram, it maps into an Object of the
Class given by the classname part of the name string. The values of the attributes are
given by the value expressions in the attribute list in the symbol.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler

OMG-UML V1.1 Composite Object March 1998 3-51

3

3.34 Composite Object

3.34.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is
an instance of a composite class, which implies the composition aggregation between
the class and its parts. A composite object is similar to (but simpler and more restricted
than) a collaboration; however, it is defined completely by composition in a static
model.

3.34.2 Notation

A composite object is shown as an object symbol. The name string of the composite
object is placed in a compartment near the top of the rectangle (as with any object).
The lower compartment holds the parts of the composite object instead of a list of
attribute values. (However, even a list of attribute values may be regarded as the parts
of a composite object, so there is not such a difference.) It is possible for some of the
parts to be composite objects with further nesting.

3.34.3 Example

Figure 3-19 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

3-52 OMG-UML V1.2 May 1998

3

3.34.4 Mapping

A composite object symbol maps into an Object of the given Class with composition
links to each of the Objects and Links corresponding to the class box symbols, and
association path symbols directly contained within the boundary of the composite
object symbol (and not contained within another deeper boundary).

3.35 Association

Binary associations are shown as lines connecting two class symbols. The lines may
have a variety of adornments to show their properties. Ternary and higher-order
associations are shown as diamonds connected to class symbols by lines.

3.36 Binary Association

3.36.1 Semantics

A binary association is an association among exactly two classes (including the
possibility of a reflexive association from a class to itself).

3.36.2 Notation

A binary association is drawn as a solid path connecting two class symbols (both ends
may be connected to the same class, but the two ends are distinct). The path may
consist of one or more connected segments. The individual segments have no semantic
significance, but may be graphically meaningful to a tool in dragging or resizing an
association symbol. A connected sequence of segments is called a path.

In a binary association, both ends may attach to the same class. The links of such an
association may connect two different objects from the same class or one object to
itself. The latter case is a reflexive association; it may be forbidden by a constraint if
necessary.

The end of an association where it connects to a class is called an association end.
Most of the interesting information about an association is attached to its roles.

The path may also have graphical adornments attached to the main part of the path
itself. These adornments indicate properties of the entire association. They may be
dragged along a segment or across segments, but must remain attached to the path. It is
a tool responsibility to determine how close association adornments may approach a
role so that confusion does not occur. The following kinds of adornments may be
attached to a path.

association name

Designates the (optional) name of the association.

OMG-UML V1.1 Binary Association March 1998 3-53

3

Shown as a name string near the path (but not near enough to an end to be confused
with a rolename). The name string may have an optional small black solid triangle in
it. The point of the triangle indicates the direction in which to read the name. The
name-direction arrow has no semantics significance, it is purely descriptive. The
classes in the association are ordered as indicated by the name-direction arrow.

Note – There is no need for a name direction property on the association model; the
ordering of the classes within the association is the name direction. This convention
works even with n-ary associations.

A stereotype keyword within guillemets may be placed above or in front of the
association name. A property string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes, operations,
and other associations. This is present if, and only if, the association is an association
class. Shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying
model element, which has a single name. The name may be placed on the path, in the
class symbol, or on both (but they must be the same name).

Logically, the association class and the association are the same semantic entity;
however, they are graphically distinct. The association class symbol can be dragged
away from the line, but the dotted line must remain attached to both the path and the
class symbol.

3.36.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular
jog to indicate that the paths do not intersect (as in electrical circuit diagrams).
Alternately, crossing can be unmarked but connections might be shown by small dots.

3.36.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique
segments, and curved segments. The choice of a particular set of line styles is a user
choice.

3.36.5 Options

Or-association

An or-constraint indicates a situation in which only one of several potential
associations may be instantiated at one time for any single object. This is shown as a
dashed line connecting two or more associations, all of which must have a class in

3-54 OMG-UML V1.2 May 1998

3

common, with the constraint string “{or}” labeling the dashed line. Any instance of the
class may only participate in one of the associations at one time. Each rolename must
be different. (This is simply a predefined use of the constraint notation.)

3.36.6 Example

Figure 3-20 Association Notation

3.36.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classes. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Class corresponding to
the head of the arrow is the second Class in the ordering of roles of the Association;
otherwise, the ordering of roles in the association is undetermined. The adornments on
the path map into properties of the Association as described above. The Association is
owned by the package containing the diagram.

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{or}

salary

OMG-UML V1.1 Association End March 1998 3-55

3

3.37 Association End

3.37.1 Semantics

An association end is simply an end of an association where it connects to a class. It is
part of the association, not part of the class. Each association has two or more ends.
Most of the interesting details about an association are attached to its ends. An
association end is not a separable element, it is just a mechanical part of an association.

3.37.2 Notation

The path may have graphical adornments at each end where the path connects to the
class symbol. These adornments indicate properties of the association related to the
class. The adornments are part of the association symbol, not part of the class symbol.
The end adornments are either attached to the end of the line, or near the end of the
line, and must drag with it. The following kinds of adornments may be attached to an
association end.

multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association
or for an entire diagram. In an incomplete model the multiplicity may be unspecified in
the model itself. In this case, it must be suppressed in the notation.

ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set).
Various kinds of ordering can be specified as a constraint on the association end. The
declaration does not specify how the ordering is established or maintained. Operations
that insert new elements must make provision for specifying their position either
implicitly (such as at the end) or explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be
shown explicitly.

• ordered - the elements of the set are ordered into a list. It is still a set and
duplicates are prohibited. This generic specification includes all kinds of ordering.
This may be specified by the keyword syntax “{ordered}”.

An ordered relationship may be implemented in various ways; however, this is
normally specified as a language-specified code generation property to select a
particular implementation. An implementation extension might substitute the data
structure to hold the elements for the generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:

3-56 OMG-UML V1.2 May 1998

3

• sorted - the elements are sorted based on their internal values. The actual sorting
rule is best specified as a separate constraint.

qualifier

Qualifier is optional, but not suppressible.

navigability

An arrow may be attached to the end of the path to indicate that navigation is
supported toward the class attached to the arrow. Arrows may be attached to zero, one,
or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation is supported in a given direction. In practice, it is often convenient to
suppress some of the arrows and just show exceptional situations. See “Presentation
Options” on page 3-27 for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The
diamond may not be attached to both ends of a line, but it need not be present at all.
The diamond is attached to the class that is the aggregate. The aggregation is optional,
but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as
composition.

rolename

A name string near the end of the path. It indicates the role played by the class
attached to the end of the path near the rolename. The rolename is optional, but not
suppressible.

interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername

It indicates the behavior expected of an associated object by the related object. In other
words, the interface specifier specifies the behavior required to enable the association.
In this case, the actual class usually provides more functionality than required for the
particular association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small
collaboration that includes just an association and two roles, whose structure is defined
by the rolename and role classifier on the original association. Therefore, the original
association and classes are a use of the collaboration. The original class must be
compatible with the interface specifier (which can be an interface or a type).

OMG-UML V1.1 Association End March 1998 3-57

3

If an interface specifier is omitted, then the association may be used to obtain full
access to the associated class.

changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is
needed. The property {frozen} indicates that no links may be added, deleted, or moved
from an object (toward the end with the adornment) after the object is created and
initialized. The property {addOnly} indicates that additional links may be added
(presumably, the multiplicity is variable); however, links may not be modified or
deleted.

visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit keyword such as {public}) in
front of the rolename. Specifies the visibility of the association traversing in the
direction toward the given rolename. See “Attribute” on page 3-32 for details of
visibility specification.

Other properties can be specified for association roles, but there is no graphical syntax
for them. To specify such properties, use the constraint syntax near the end of the
association path (a text string in braces). Examples of other properties include
mutability.

3.37.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a
tree by merging the aggregation end into a single segment. This requires that all of the
adornments on the aggregation ends be consistent. This is purely a presentation option,
there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These
can vary from time to time by user request or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates
navigation is not supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about
navigation. This is similar to any situation in which information is suppressed from
a view.

• Presentation option 3: Suppress arrows for associations with navigability in both
directions, show arrows only for associations with one-way navigability. In this
case, the two-way navigability cannot be distinguished from no-way navigation;
however, the latter case is normally rare or nonexistent in practice. This is yet
another example of a situation in which some information is suppressed from a
view.

3-58 OMG-UML V1.2 May 1998

3

3.37.4 Style Guidelines

If there are multiple adornments on a single role, they are presented in the following
order, reading from the end of the path attached to the class toward the bulk of the
path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are
not confused with a different association. They may be placed on either side of the
line. It is tempting to specify that they will always be placed on a given side of the line
(clockwise or counterclockwise), but this is sometimes overridden by the need for
clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite
sides of the same role, or they may be placed together (for example, “* employee”).

3.37.5 Example

Figure 3-21 Various Adornments on Association Roles

3.37.6 Mapping

The adornments on the end of an association path map into properties of the
corresponding role of the Association. In general, implications cannot be drawn from
the absence of an adornment (it may simply be suppressed) but see the preceding
descriptions for details.

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+points

OMG-UML V1.1 Multiplicity March 1998 3-59

3

3.38 Multiplicity

3.38.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity specification is a
subset of the open set of nonnegative integers.

3.38.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated
sequence of integer intervals, where an interval represents a (possibly infinite) range of
integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed
(inclusive) range of integers from the lower bound to the upper bound. In addition, the
star character (*) may be used for the upper bound, denoting an unlimited upper
bound. In a parameterized context (such as a template), the bounds could be
expressions but they must evaluate to literal integer values for any actual use. Unbound
expressions that do not evaluate to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer
value.

If the multiplicity specification comprises a single star (*), then it denotes the
unlimited nonnegative integer range, that is, it is equivalent to *..* = 0..* (zero or
more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they
must resolve to fixed integer ranges within the model (i.e., no dynamic evaluation of
expressions, essentially the same rule on literal values as most programming
languages).

3.38.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10” is
preferable to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example,
“0..1” is preferable to “0,1”.

3-60 OMG-UML V1.2 May 1998

3

3.38.4 Example

0..1

1

0..*

*

1..*

1..6

1..3,7..10,15,19..*

3.38.5 Mapping

A multiplicity string maps into a Multiplicity value. Duplications or other nonstandard
presentation of the string itself have no effect on the mapping. Note that Multiplicity is
a value and not an object. It cannot stand on its own, but is the value of some element
property.

3.39 Qualifier

3.39.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of
objects associated with an object across an association. The qualifiers are attributes of
the association.

3.39.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path
between the final path segment and the symbol of the class that it connects to. The
qualifier rectangle is part of the association path, not part of the class. The qualifier
rectangle drags with the path segments. The qualifier is attached to the source end of
the association. An object of the source class, together with a value of the qualifier,
uniquely select a partition in the set of target class objects on the other end of the
association (i.e., every target falls into exactly one partition).

The multiplicity attached to the target role denotes the possible cardinalities of the set
of target objects selected by the pairing of a source object and a qualifier value.
Common values include:

• “0..1” (a unique value may be selected, but every possible qualifier value does not
necessarily select a value).

• “1” (every possible qualifier value selects a unique target object; therefore, the
domain of qualifier values must be finite).

OMG-UML V1.1 Qualifier March 1998 3-61

3

• “*” (the qualifier value is an index that partitions the target objects into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more
attributes shown one to a line. Qualifier attributes have the same notation as class
attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.39.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would
modify the inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to
distinguish them clearly.

3.39.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although
this is not always practical.

3.39.5 Example

Figure 3-22 Qualified Associations

3.39.6 Mapping

The presence of a qualifier box on an end of an association path maps into a Qualifier
on the corresponding Association Role. Each attribute entry string inside the qualifier
box maps into an Attribute of the Qualifier.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

3-62 OMG-UML V1.2 May 1998

3

3.40 Association Class

3.40.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is
really just a single model element.

3.40.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line
to an association path. The name in the class symbol and the name string attached to
the association path are redundant and should be the same. The association path may
have the usual adornments on either end. The class symbol may have the usual
contents. There are no adornments on the dashed line.

3.40.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission
does not change the overall relationship. The association path may not be suppressed.

3.40.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it
appears to be attached to, the end of the path, or to any of the role adornments.

Note that the association path and the association class are a single model element and
have a single name. The name can be shown on the path, the class symbol, or both. If
an association class has only attributes, but no operations or other associations, then
the name may be displayed on the association path and omitted from the association
class symbol to emphasize its “association nature.” If it has operations and other
associations, then the name may be omitted from the path and placed in the class
rectangle to emphasize its “class nature.” In neither case are the actual semantics
different.

OMG-UML V1.1 N-ary Association March 1998 3-63

3

3.40.5 Example

Figure 3-23 Association Class

3.40.6 Mapping

An association path connecting two class boxes connected by a dashed line to another
class box maps into a single Association Class element. The name of the Association
Class element is taken from the association path, the attached class box, or both (they
must be consistent if both are present). The Association properties map from the
association path, as specified previously. The Class properties map from the class box,
as specified previously. Any constraints or properties placed on either the association
path or attached class box apply to the Association Class itself, they must not conflict.

3.41 N-ary Association

3.41.1 Semantics

An n-ary association is an association among three or more classes (a single class may
appear more than once). Each instance of the association is an n-tuple of values from
the respective classes. A binary association is a special case with its own notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary
multiplicity. The multiplicity on a role represents the potential number of instance
tuples in the association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary

3-64 OMG-UML V1.2 May 1998

3

3.41.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a
terminator on a path) with a path from the diamond to each participant class. The name
of the association (if any) is shown near the diamond. Role adornments may appear on
each path as with a binary association. Multiplicity may be indicated; however,
qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This
indicates an n-ary association that has attributes, operations, and/or associations.

3.41.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

3.41.4 Example

This example shows the record of a team in each season with a particular goalkeeper.
It is assumed that the goalkeeper might be traded during the season and can appear
with different teams.

Figure 3-24 Ternary association that is also an association class

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties

OMG-UML V1.1 Composition March 1998 3-65

3

3.41.5 Mapping

A diamond attached to some number of class boxes by solid lines maps into an N-ary
Association whose roles are corresponding Classes. The ordering of the Classes in the
Association is indeterminate from the diagram. If a class box is attached to the
diamond by a dashed line, then the corresponding Class supplies the class properties
for an N-ary Association Class.

3.42 Composition

3.42.1 Semantics

Composition is a form of aggregation with strong ownership and coincident lifetime of
part with the whole. The multiplicity of the aggregate end may not exceed one (it is
unshared). See the Semantics chapters (2-5) for further details.

The parts of a composition may include classes and associations. The meaning of an
association in a composition is that any tuple of objects connected by a single link
must all belong to the same container object.

3.42.2 Notation

Composition may be shown by a solid filled diamond as an association role adornment.
Alternately, UML provides a graphically-nested form that is more convenient for
showing composition in many cases.

Instead of using binary association paths using the composition aggregation
adornment, composition may be shown by graphical nesting of the symbols of the
elements for the parts within the symbol of the element for the whole. A nested class-
like element may have a multiplicity within its composite element. The multiplicity is
shown in the upper right corner of the symbol for the part. If the multiplicity mark is
omitted, then the default multiplicity is many. This represents its multiplicity as a part
within the composite class. A nested element may have a rolename within the
composition; the name is shown in front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of
an association path attached to the element for the whole. The multiplicity may be
shown in the normal way.

Note that attributes are, in effect, composition relationships between a class and the
classes of its attributes.

3-66 OMG-UML V1.2 May 1998

3

An association drawn entirely within a border of the composite is considered to be part
of the composition. Any objects on a single link of it must be from the same
composite. An association drawn such that its path breaks the border of the composite
is not considered to be part of the composition. Any objects on a single link of it may
be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A
composition may be thought of as a collaboration in which all of the participants are
parts of a single composite object.

3.42.3 Design Guidelines

This notation is applicable to “class-like” model elements (e.g., classes, types, nodes,
processes, etc.).

Note that a class symbol is a composition of its attributes and operations. The class
symbol may be thought of as an example of the composition nesting notation (with
some special layout properties). However, attribute notation subordinates the attributes
strongly within the class; therefore, it should be used when the structure and identity of
the attribute objects themselves is unimportant outside the class.

OMG-UML V1.1 Composition March 1998 3-67

3

3.42.4 Example

Figure 3-25 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11

3-68 OMG-UML V1.2 May 1998

3

3.42.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped
model distinguishes the two forms.

A solid diamond on an association path maps into the composition property on the
corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations;
that is, one composition association between the Class corresponding to the outer class
box and each of the Classes corresponding to the enclosed class boxes. The
multiplicity of the composite end of each association is 1. The multiplicity of each
constituent end is 1 if not specified explicitly; otherwise, it is the value specified in the
corner of the class box or specified on an association path from the outer class box
boundary to an inner class box.

3.43 Links

3.43.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object
references. It is an instance of an association.

3.43.2 Notation

A binary link is shown as a path between two objects. In the case of a reflexive
association, it may involve a loop with a single object. See “Association” on page 3-52
for details of paths.

A rolename may be shown at each end of the link. An association name may be shown
near the path. If present, it is underlined to indicate an instance. Links do not have
instance names, they take their identity from the objects that they relate. Multiplicity is
not shown for links because they are instances. Other association adornments
(aggregation, composition, navigation) may be shown on the link roles.

A qualifier may be shown on a link. The value of the qualifier may be shown in its
box.

Implementation stereotypes

A stereotype may be attached to the link role to indicate various kinds of
implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)

«parameter» procedure parameter

OMG-UML V1.1 Links March 1998 3-69

3

N-ary link

An n-ary link is shown as a diamond with a path to each participating object. The other
adornments on the association, and the adornments on the roles, have the same
possibilities as the binary link.

3.43.3 Example

Figure 3-26 Links

3.43.4 Mapping

The mapping depends on the kind of diagram.

• Within a collaboration diagram, each link path maps to an AssociationRole between
the ClassifierRoles corresponding to the connected class boxes. If a name is placed
on the link path, then it is the name of the Association that is the type of the
AssociationRole. Stereotypes on the path indicate the form of the relationship
within the collaboration.

• Within an object diagram, each link path maps to a Link between the Objects
corresponding to the connected class boxes. If a name is placed on the link path,
then it is an instance of the given Association (and the role names must match or
the diagram is ill formed).

«local» local variable of a procedure

«global» global variable

«self» self link (the ability of an object to send a message to
itself)

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer

3-70 OMG-UML V1.2 May 1998

3

3.44 Generalization

3.44.1 Semantics

Generalization is the taxonomic relationship between a more general element and a
more specific element that is fully consistent with the first element and that adds
additional information. It is used for classes, packages, use cases, and other elements.

3.44.2 Notation

Generalization is shown as a solid-line path from the more specific element (such as a
subclass) to the more general element (such as a superclass), with a large hollow
triangle at the end of the path where it meets the more general element.

A generalization path may have a text label in the following format:

discriminator

where discriminator is the name of a partition of the subtypes of the superclass. The
subclass is declared to be in the given partition. The absence of a discriminator label
indicates the “empty string” discriminator which is a valid value (the “default”
discriminator).

Generalization may be applied to associations as well as classes, although the notation
may be messy because of the multiple lines. An association can be shown as an
association class for the purpose of attaching generalization arrows.

3.44.3 Presentation Options

A group of generalization paths for a given superclass may be shown as a tree with a
shared segment (including triangle) to the superclass, branching into multiple paths to
each subclass.

If a text label is placed on a generalization triangle shared by several generalization
paths to subclasses, the label applies to all of the paths. In other words, all of the
subclasses share the given properties.

3.44.4 Details

The existence of additional subclasses in the model that are not shown on a particular
diagram may be shown using an ellipsis (. . .) in place of a subclass.

Note – This does not indicate that additional classes may be added in the future. It
indicates that additional classes exist right now, but are not being seen. This is a
notational convention that information has been suppressed, not a semantic statement.

OMG-UML V1.1 Generalization March 1998 3-71

3

Predefined constraints may be used to indicate semantic constraints among the
subclasses. A comma-separated list of keywords is placed in braces either near the
shared triangle (if several paths share a single triangle) or near a dotted line that
crosses all of the generalization lines involved. The following keywords (among
others) may be used (the following constraints are predefined):

The discriminator must be unique among the attributes and association roles of the
given superclass. Multiple occurrences of the same discriminator name are permitted
and indicate that the subclasses belong to the same partition.

The use of multiple classification dynamic classification affects the dynamic execution
semantics of the language, but is not unusually apparent from a static model.

overlapping A descendent may be descended from more than one
subclass.

disjoint A descendent may not be descended from more than one
subclass.

complete All subclasses have been specified (whether or not
shown). No additional subclasses are expected.

incomplete Some subclasses have been specified, but the list is
known to be incomplete. There are additional subclasses
that are not yet in the model. This is a statement about the
model itself. Note that this is not the same as the ellipsis,
which states that additional subclasses exist in the model
but are not shown on the current diagram.

3-72 OMG-UML V1.2 May 1998

3

3.44.5 Example

Figure 3-27 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

OMG-UML V1.1 Generalization March 1998 3-73

3

Figure 3-28 Generalization with Discriminators and Constraints, Separate Target Style

Figure 3-29 Generalization with Shared Target Style

3.44.6 Mapping

Each generalization path between two class boxes maps into a Generalization between
the corresponding Classes. A generalization tree with one arrowhead and many tails
maps into a set of Generalizations, one between each Class corresponding to a class

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species

3-74 OMG-UML V1.2 May 1998

3

box on a tail and the single Class corresponding to the class box on the head. That is,
a tree is semantically indistinguishable from a set of distinct arrows, it is purely a
notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A
property string attached to the head line segment on a generalization tree represents a
(duplicated) property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a subclass node of a given class indicates that the
semantic model contains at least one subclass of the given class that is not visible on
the current diagram. Normally, this indicator will be maintained automaticallyby an
editing tool.

3.45 Dependency

3.45.1 Semantics

A dependency indicates a semantic relationship between two (or more) model
elements. It relates the model elements themselves and does not require a set of
instances for its meaning. It indicates a situation in which a change to the target
element may require a change to the source element in the dependency.

3.45.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model
element at the tail of the arrow depends on the model element at the arrowhead. The
arrow may be labeled with an optional stereotype and an optional name.

The following kinds of Dependency are predefined and may be indicated with
keywords:

trace – Trace: A historical connection between two elements that
represent the same concept at different levels of meaning.

refine – Refinement: A historical or derivation connection between two
elements with a mapping (not necessarily complete)
between them. A description of the mapping may be
attached to the dependency in a note. Various kinds of
refinement have been proposed and can be indicated by
further stereotyping.

uses – Usage: A situation in which one element requires the presence of
another element for its correct implementation or
functioning. May be stereotyped further to indicate the
exact nature of the dependency, such as calling an
operation of another class, granting permission for access,
instantiating an object of another class, etc.

bind – Binding: A binding of template parameters to actual values to
create a nonparameterized element. See “Part 2 - Diagram
Elements” on page 3-6 for more details.

OMG-UML V1.1 Dependency March 1998 3-75

3

3.45.3 Presentation Options

If one of the elements is a note or constraint, then the arrow may be suppressed
because the direction is clear (the note or constraint is the source of the arrow).

3.45.4 Example

Figure 3-30 Various Usage Dependencies Among Classes

Figure 3-31 Dependencies Among Packages

«friend»
ClassA ClassB

ClassC

«instantiates»

«calls»

ClassD

operationZ()
«friend»

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

3-76 OMG-UML V1.2 May 1998

3

3.45.5 Mapping

A dashed arrow maps into a Dependency between the Elements corresponding to the
symbols attached to the ends of the arrow. The stereotype and the name (if any)
attached to the arrow are the stereotype and name of the Dependency.

3.46 Derived Element

3.46.1 Semantics

A derived element is one that can be computed from another one, but that is shown for
clarity or that is included for design purposes even though it adds no semantic
information.

3.46.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived
element, such as an attribute or a rolename.

3.46.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derived». Usually it is convenient in the notation to suppress the
dependency arrow and simply place a constraint string near the derived element,
although the arrow can be included when it is helpful.

OMG-UML V1.1 Use Case Diagram March 1998 3-77

3

3.46.4 Example

Figure 3-32 Derived Attribute and Derived Association

3.46.5 Mapping

The presence of a derived adornment (a leading “/” on the symbol name) on a symbol
maps into the setting of the “derived” property of the corresponding Element.

Part 6 - Use Case Diagrams

A use case diagram shows the relationship among actors and use cases within a
system.

3.47 Use Case Diagram

3.47.1 Semantics

Use case diagrams show elements from the use case model. The use case model
represents functionality of a system or a class as manifested to external interactors with
the system.

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1
employer

employer
department

3-78 OMG-UML V1.2 May 1998

3

3.47.2 Notation

A use case diagram is a graph of actors, a set of use cases enclosed by a system
boundary, communication (participation) associations between the actors and the use
cases, and generalizations among the use cases.

3.47.3 Example

Figure 3-33 Use Case Diagram

3.47.4 Mapping

A set of use case ellipses within a box with connections to actor symbols maps to a
single UseCaseModel package containing a set of UseCases and Actors with
relationships among them.

Customer

Supervisor

Salespersonplace
order

establish
credit

check
status

Telephone Catalog

fill orders

Shipping Clerk

OMG-UML V1.1 Use Case March 1998 3-79

3

3.48 Use Case

3.48.1 Semantics

A use case is a coherent unit of functionality provided by a system or class as
manifested by sequences of messages exchanged among the system and one or more
outside interactors (called actors) together with actions performed by the system.

3.48.2 Notation

A use case is shown as an ellipse containing the name of the use case.

An extension point is a location within a use case at which action sequences from other
use cases may be inserted. Each extension point must have a unique name within a use
case. Extension points may be listed in a compartment of the use case with the heading
extension points.

3.48.3 Presentation Options

The name of the use case may be placed below the ellipse.

3.48.4 Style Guidelines

Use case names should follow capitalization and punctuation guidelines used for
behavioral items in the same model.

3.48.5 Mapping

A use case symbol maps to a UseCase with the given name (if any). An extension
point maps into an ExtensionPoint within the UseCase.

3.49 Actor

3.49.1 Semantics

An actor is a role of object or objects outside of a system that interacts directly with it
as part of a coherent work unit (a use case). An Actor element characterizes the role
played by an outside object. One physical object may play several roles; therefore, it
may be modeled by several actors.

3.49.2 Notation

An actor may be shown as a class rectangle with the stereotype “actor.” The standard
stereotype icon for an actor is the “stick man” figure with the name of the actor below
the figure.

3-80 OMG-UML V1.2 May 1998

3

3.49.3 Style Guidelines

Actor names should follow capitalization and punctuation guidelines used for types
and classes in the same model.

3.49.4 Mapping

An actor symbol maps to an Actor with the given name.

3.50 Use Case Relationships

3.50.1 Semantics

There are several standard relationships among use cases or between actors and use
cases.

• Communicates – The participation of an actor in a use case. This is the only
relationship between actors and use cases.

• Extends – An extends relationships from use case A to use case B indicates that an
instance of use case B may include (subject to specific conditions specified in the
extension) the behavior specified by A. Behavior specified by several extenders of
a single target use case may occur within a single use case instance.

• Uses – A uses relationship from use case A to use case B indicates that an instance
of the use case A will also include the behavior as specified by B.

3.50.2 Notation

The communication relationship between an actor and a use case is shown as a solid
line between the actor and the use case.

An “extends” relationship between use cases is shown by a generalization arrow from
the use case providing the extension to the base use case. The arrow is labeled with the
stereotype «extends».

A “uses” relationship between use cases is shown by a generalization arrow from the
use case doing the use to the use case being used. The arrow is labeled with the
stereotype «uses».

The relationship between a use case and its external interaction sequences are usually
shown by an invisible hyperlink to sequence diagrams. The relationship between a use
case and its implementation may be shown as a refinement relationship to a
collaboration, but may also be shown as an invisible hyperlink. The expectation is that
a tool will support the ability to “zoom into” a use case to see its scenarios and/or
implementation as an interaction.

OMG-UML V1.1 Kinds of Interaction Diagrams March 1998 3-81

3

3.50.3 Example

Figure 3-34 Use Case Relationships

3.50.4 Mapping

A path between use case and/or actor symbols maps into the corresponding
relationship between the corresponding Elements, as described above.

Part 7 - Sequence Diagrams

3.51 Kinds of Interaction Diagrams

A pattern of interaction among objects is shown on an interaction diagram. Interaction
diagrams come in two forms based on the same underlying information, but each
emphasizing a particular aspect of it. The two forms are: sequence diagrams and
collaboration diagrams.

A sequence diagram shows an interaction arranged in time sequence. In particular, it
shows the objects participating in the interaction by their “lifelines” and the messages
that they exchange arranged in time sequence. It does not show the associations among
the objects.

Place Order

additional requests

Order
Product

Supply
Customer

Data

Arrange
Payment

«uses»«uses»
«uses»

Request
Catalog

«extends»
extension points

3-82 OMG-UML V1.2 May 1998

3

Sequence diagrams come in several slightly different formats intended for different
purposes.

A sequence diagram can exist in a generic form (describes all the possible sequences)
and in an instance form (describes one actual sequence consistent with the generic
form). In cases without loops or branches, the two forms are isomorphic.

Sequence diagrams and collaboration diagrams express similar information, but show
it in different ways. Sequence diagrams show the explicit sequence of messages and
are better for real-time specifications and for complex scenarios. Collaboration
diagrams show the relationships among objects and are better for understanding all of
the effects on a given object and for procedural design.

3.52 Sequence Diagram

3.52.1 Semantics

A sequence diagram represents an Interaction, which is a set of messages exchanged
among objects within a collaboration to effect a desired operation or result.

3.52.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and
2) the horizontal dimension represents different objects. Normally time proceeds down
the page. (The dimensions may be reversed, if desired.) Usually only time sequences
are important, but in real-time applications the time axis could be an actual metric.
There is no significance to the horizontal ordering of the objects. Objects can be
grouped into “swimlanes” on a diagram.

See subsequent sections for details of the contents of a sequence diagram.

Note that much of this notation is drawn directly from the Object Message Sequence
Chart notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself
derived with modifications from the Message Sequence Chart notation.

3.52.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to
proceed in one direction across the page; however, this is not always possible and the
ordering does not convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and
different objects are shown as horizontal lines.

Various labels (such as timing marks, descriptions of actions during an activation, and
so on) can be shown either in the margin or near the transitions or activations that they
label.

OMG-UML V1.1 Sequence Diagram March 1998 3-83

3

3.52.4 Example

Simple sequence diagram with concurrent objects

Figure 3-35 Simple Sequence Diagram with Concurrent Objects

caller exchange

lift receiver

dial tone

dial digit

a

b

c

{b - a < 1 sec.}

{c - b < 10 sec.}

. . .

d

d’

route

{d’ - d< 5 sec.}

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

3-84 OMG-UML V1.2 May 1998

3

Figure 3-36 Sequence Diagram with Focus of Control, Conditional, Recursion, Creation,
Destruction

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

OMG-UML V1.1 Sequence Diagram March 1998 3-85

3

3.52.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements
within it, some of which are described in subsequent sections.

Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration. Each
object box with its lifeline maps into a ClassifierRole. The name field maps into the
ClassifierRole name and the type field maps into the type association from the role to
the Classifier with the given name. The associations among roles are not shown on the
sequence diagram. They must be obtained in the model from a complementary
collaboration diagram or other means. A message arrow maps into a Message between
the ClassifierRoles corresponding to the two lifelines that the arrow connects. Unless
the correct AssociationRole can be determined from a complementary collaboration
diagram or other means, the Message must be attached to a dummy AssociationRole
implied between the two ClassifierRoles for lack of complete information. A timing
label placed on the level of an arrow endpoint maps into the name of the corresponding
Message. A constraint placed on the diagram maps into a Constraint on the entire
Interaction.

An object symbol placed within the frame of the diagram maps into a CreateAction
attached to the Message corresponding to the incoming arrow. If an object termination
symbol (“X”) is the target of an arrow, it maps into a DestroyAction attached to the
Message corresponding to the arrow; otherwise, it maps into a TerminateAction.

On a diagram with concurrent objects, a predecessor association is established between
Messages corresponding to successive arrows in the vertical sequence. In case of
concurrent arrows, the mapping to a predecessor sequence may be ambiguous and may
require additional information.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent
arrows on the same lifeline map into Messages obeying the predecessor association.
An arrow to the head of a focus of control region establishes a nested activation. It
maps into a Message (synchronous, activation) with associated CallAction (holding the
arguments and referencing the target Operation between the ClassifierRoles
corresponding to the lifelines. All arrows departing the nested activation map into
Messages with an activation Association to the Message corresponding to the arrow at
the head of the activation. A return arrow departing the end of the activation maps into
a Message (synchronous, reply) with:

• an activation Association to the Message corresponding to the arrow at the head of
the activation, and

• a predecessor association to the previous message within the same activation.

3-86 OMG-UML V1.2 May 1998

3

A return must be the final message within a predecessor chain. It is not the predecessor
of any message. Any guard conditions or iteration conditions attached to a message
arrow become recurrence values of the Message. The operation name is used to select
the target Operation with the given name. The operation arguments become argument
Expressions on the Action.

3.53 Object Lifeline

3.53.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object
that may play the role and describes its relationships to other Roles. Within a sequence
diagram the existence and duration of the object in a role is shown, but the
relationships among the roles is not shown. There are ClassifierRoles and
AssociationRoles.

3.53.2 Notation

An object role is shown as a vertical dashed line called the “lifeline.” The lifeline
represents the existence of the object at a particular time. If the object is created or
destroyed during the period of time shown on the diagram, then its lifeline starts or
stops at the appropriate point; otherwise, it goes from the top to the bottom of the
diagram. An object symbol is drawn at the head of the lifeline. If the object is created
during the diagram, then the message that creates it is drawn with its arrowhead on the
object symbol. If the object is destroyed during the diagram, then its destruction is
marked by a large “X,” either at the message that causes the destruction or (in the case
of self-destruction) at the final return message from the destroyed object. An object
that exists when the transaction starts is shown at the top of the diagram (above the
first arrow). An object that exists when the transaction finishes has its lifeline continue
beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality.
Each separate track corresponds to a conditional branch in the message flow. The
lifelines may merge together at some subsequent point.

3.53.3 Example

See Figure 3-36 on page 3-84.

3.53.4 Mapping

See “Mapping” on page 3-85.

OMG-UML V1.1 Activation March 1998 3-87

3

3.54 Activation

3.54.1 Semantics

An activation (focus of control) shows the period during which an object is performing
an action either directly or through a subordinate procedure. It represents both the
duration of the action in time and the control relationship between the activation and
its callers (stack frame).

3.54.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation
time and whose bottom is aligned with its completion time. The action being
performed may be labeled in text next to the activation symbol or in the left margin,
depending on style. Alternately, the incoming message may indicate the action, in
which case it may be omitted on the activation itself. In procedural flow of control, the
top of the activation symbol is at the tip of an incoming message (the one that initiates
the action) and the base of the symbol is at the tail of a return message.

In the case of concurrent objects each with their own threads of control, an activation
shows the duration when each object is performing an operation. Operations by other
objects are not relevant. If the distinction between direct computation and indirect
computation (by a nested procedure) is unimportant, the entire lifeline may be shown
as an activation.

In the case of procedural code, an activation shows the duration during which a
procedure is active in the object or a subordinate procedure is active, possibly in some
other object. In other words, all of the active nested procedure activations may be seen
at a given time. In the case of a recursive call to an object with an existing activation,
the second activation symbol is drawn slightly to the right of the first one, so that they
appear to “stack up” visually. (Recursive calls may be nested to an arbitrary depth.)

3.54.3 Example

See Figure 3-36 on page 3-84.

3.54.4 Mapping

See “Mapping” on page 3-85.

3.55 Message

3.55.1 Semantics

A message is a communication between objects that conveys information with the
expectation that action will ensue. The receipt of a message is one kind of event.

3-88 OMG-UML V1.2 May 1998

3

3.55.2 Notation

A message is shown as a horizontal solid arrow from the lifeline of one object to the
lifeline of another object. In case of a message from an object to itself, the arrow may
start and finish on the same object symbol. The arrow is labeled with the name of the
message (operation or signal) and its argument values. The arrow may also be labeled
with a sequence number to show the sequence of the message in the overall interaction.
Sequence numbers are often omitted in sequence diagrams, in which the physical
location of the arrow shows the relative sequences, but they are necessary in
collaboration diagrams. Sequence numbers are useful on both kinds of diagrams for
identifying concurrent threads of control. A message may also be labeled with a guard
condition.

3.55.3 Presentation options

Variation: Asynchronous

An asynchronous message is drawn with a half-arrowhead (one with only one wing
instead of two).

Variation: Call

A procedure call is drawn as a full arrowhead. A return is shown as a dashed arrow.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the
end of an activation). It is assumed that every call has a paired return after any
subordinate messages. The return value can be shown on the initial message line. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

In a concurrent system, a full arrowhead shows the yielding of a thread of control (wait
semantics) and a half arrowhead shows the sending of a message without yielding
control (no-wait semantics).

Variation:

Normally message arrows are drawn horizontally. This indicates the duration required
to send the message is “atomic,” that is, it is brief compared to the granularity of the
interaction and that nothing else can “happen” during the message transmission. This is
the correct assumption within many computers. If the message requires some time to
arrive, during which something else can occur (such as a message in the opposite
direction), then the message arrow may be slanted downward so that the arrowhead is
below the arrow tail.

OMG-UML V1.1 Transition Times March 1998 3-89

3

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each labeled by a guard
condition. Depending on whether the guard conditions are mutually exclusive, the
construct may represent conditionality or concurrency.

Variation: Iteration

A connected set of messages may be enclosed and marked as an iteration. For a
scenario, the iteration indicates that the set of messages can occur multiple times. For
a procedure, the continuation condition for the iteration may be specified at the bottom
of the iteration. If there is concurrency, then some messages in the diagram may be
part of the iteration and others may be single execution. It is desirable to arrange a
diagram so that the messages in the iteration can be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-level
view.

Variation:

A distinction may be made between a period during which an object has a live
activation and a period in which the activation is actually computing. The former
(during which it has control information on a stack but during which control resides in
something that it called) is shown with the ordinary double line. The latter (during
which it is the top item on the stack) may be distinguished by shading the region.

3.55.4 Mapping

See “Mapping” on page 3-85.

3.56 Transition Times

3.56.1 Semantics

A message may have a sending time and a receiving time. These are formal names that
may be used within constraint expressions. The two may be the same (if the message is
considered atomic) or different (if its delivery is nonatomic).

3.56.2 Notation

A transition instance (such as a message in a sequence diagram, a collaboration
diagram, or a transition in a state machine) may be given a name. The name represents
the time at which a message is sent (example: A). In cases where the delivery of the
message in not instantaneous, the time at which the message is received is indicated by
the transition name with a prime sign appended (example: A'). The name may be
shown in the left margin aligned with the arrow (on a sequence diagram) or near the

3-90 OMG-UML V1.2 May 1998

3

tail of the message flow arrow (on a collaboration diagram). This name may be used in
constraint expressions to designate the time the message was sent. If the message line
is slanted, then the primed-name indicates the time at which the message is received.

Constraints may be specified by placing Boolean expressions in braces on the sequence
diagram.

3.56.3 Example

See Figure 3-35 on page 3-83.

3.56.4 Mapping

See “Mapping” on page 3-85.

Part 8 - Collaboration Diagrams

A collaboration diagram shows an interaction organized around the objects in the
interaction and their links to each other. Unlike a sequence diagram, a collaboration
diagram shows the relationships among the object roles. On the other hand, a
collaboration diagram does not show time as a separate dimension, so the sequence of
messages and the concurrent threads must be determined using sequence numbers.

3.57 Collaboration

3.57.1 Semantics

Behavior is implemented by sets of objects that exchange messages within an overall
interaction to accomplish a purpose. To understand the mechanisms used in a design, it
is important to see only the objects and the messages involved in accomplishing a
purpose or a related set of purposes, projected from the larger system of which they are
part for other purposes. Such a static construct is called a collaboration.

A collaboration is a set of participants and relationships that are meaningful for a given
set of purposes. The identification of participants and their relationships does not have
global meaning.

A collaboration may be attached to an operation or a use case to describe the context
in which their behavior occurs. The actual behavior may be specified in interactions,
such as sequence diagrams or collaboration diagrams. A collaboration may also be
attached to a class to define the class’s static structure.

A parameterized collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the collaboration, including the
classes and relationships, can be parameters of the generic collaboration. The

OMG-UML V1.1 Collaboration Diagram March 1998 3-91

3

parameters are bound to particular model elements in each instantiation of generic
collaboration. Such a parameterized collaboration can capture the structure of a design
pattern (note that a design pattern involves more than structural aspects). Whereas
most collaborations can be anonymous because they are attached to a named entity,
patterns are free standing design constructs that must have names.

A collaboration may be expressed at different levels of granularity. A coarse-grained
collaboration may be refined to produce another collaboration that has a finer
granularity.

3.57.2 Notation

The description of behavior involves two aspects: 1) the structural description of its
participants and 2) the behavioral description of its execution. The two aspects are
often described together on a single diagram, but at times it is useful to describe the
structural and behavioral aspects separately. The structure of objects playing roles in a
behavior and their relationships is called a collaboration. A collaboration shows the
context in which interaction occurs. The dynamic behavior of the message sequences
exchanged among objects to accomplish a specific purpose is called an interaction. A
collaboration is shown by a collaboration diagram without messages. By adding
messages, an interaction is shown. Different sets of messages may be applied to the
same collaboration to yield different interactions.

3.58 Collaboration Diagram

3.58.1 Semantics

A collaboration diagram represents a Collaboration, which is a set of objects related in
a particular context, and an Interaction, which is a set of messages exchanged among
the objects within a collaboration to effect a desired operation or result.

3.58.2 Notation

A collaboration diagram is a graph of references to objects and links with message
flows attached to its links. The diagram shows the objects relevant to the performance
of an operation, including objects indirectly affected or accessed during the operation.
The collaboration used to describe an operation includes its arguments and local
variables created during its execution as well as ordinary associations.

• Objects created during the execution may be designated as {new}.

• Objects destroyed during the execution may be designated as {destroyed}.

• Objects created during the execution and then destroyed may be designated as
{transient}.

These changes in life state are derivable from the detailed messages sent among the
objects, they are provided as notational conveniences.

3-92 OMG-UML V1.2 May 1998

3

The diagram also shows the links among the objects, including transient links
representing procedure arguments, local variables, and self links. Because
collaboration diagrams often are used to help design procedures, they typically show
navigability using arrowheads on links. (An arrowhead on a line between object boxes
indicates a link with one-way navigability. An arrow next to a line indicates a message
flowing in the given direction over the link. Obviously a message arrow cannot flow
backwards over a one-way link.)

Individual attribute values are usually not shown explicitly. If messages must be sent to
attribute values, the attributes should be modeled using associations instead.

The internal messages that implement a method are numbered starting with number 1.
For a procedural flow of control, the subsequent message numbers are nested in
accordance with call nesting. For a nonprocedural sequence of messages exchanged
among concurrent objects, all the sequence numbers are at the same level (that is, they
are not nested).

A collaboration diagram without messages shows the context in which interactions can
occur, without showing any specific interactions. It might be used to show the context
for a single operation or even for all of the operations of a class or group of classes.

3.58.3 Example

Figure 3-37 Collaboration Diagram

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

«self»

OMG-UML V1.1 Pattern Structure March 1998 3-93

3

3.58.4 Mapping

A collaboration diagram maps to a Collaboration with a superimposed Interaction.

3.59 Pattern Structure

3.59.1 Semantics

A collaboration can be used to specify the implementation of design constructs. For
this purpose, it is necessary to specify its context and interactions. It is also possible to
view a collaboration as a single entity from the “outside.” For example, this could be
used to identify the presence of design patterns within a system design. A pattern is a
parameterized collaboration. In each use of the pattern, actual classes are substituted
for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and
Vlissides include much more than structural descriptions. UML describes the structural
aspects and some behavioral aspects of design patterns; however, UML notation does
not include other important aspects of patterns, such as usage trade-offs or examples.
These must be expressed in text or tables.

3.59.2 Notation

A use of a collaboration is shown as a dashed ellipse containing the name of the
collaboration. A dashed line is drawn from the collaboration symbol to each of the
objects or classes (depending on whether it appears within an object diagram or a class
diagram) that participate in the collaboration. Each line is labeled by the role of the
participant. The roles correspond to the names of elements within the context for the
collaboration; such names in the collaboration are treated as parameters that are bound
to specify elements on each occurrence of the pattern within a model. Therefore, a
collaboration symbol can show the use of a design pattern together with the actual
classes that occur in that particular use of the pattern.

3-94 OMG-UML V1.2 May 1998

3

Figure 3-38 Use of a Collaboration

3.59.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol
attached by an arrow to the pattern occurrence symbol, the corresponding Class is
bound to the template parameter that is the type association target of the ClassifierRole
in the Pattern with the name equal to the name on the arrow.

3.60 Collaboration Contents

The contents of a collaboration are modeling elements that interact within a given
context for a particular purpose, such as performing an operation or a use case, it is a
“society of objects.” A collaboration is a fragment of a larger complete model that is
intended for a particular purpose.

3.60.1 Semantics

A collaboration shows one or more roles together with their contents, associations, and
neighbor roles, plus additional relationships and classes as needed. To use a
collaboration, each role must be bound to an actual class that can support the
operations required of the role.

Observer

SlidingBarIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

handler.reading = length (subject.queue)

capacity: Integer

range = (0 .. capacity)

OMG-UML V1.1 Collaboration Contents March 1998 3-95

3

3.60.2 Notation

A collaboration is shown as a graph of class references and association references.
Each reference is a role of the collaboration; that is, each entity is playing a role within
the context of the collaboration, a role that is only part of its full description. The
names of the objects represent their roles within the collaboration. A collaboration is a
prototype; in each use of the collaboration the roles are bound to actual objects. There
are several ways to show the diagram:

Methods

If the collaboration shows the implementation of an operation (a method), then it is
usually drawn as a separate collaboration diagram including context to which message
flow is added to obtain an interaction. The collaboration for the operation includes the
target object of the operation and any other objects that it calls on, directly or
indirectly, to implement the operation. The collaboration includes the objects present
before the operation, the objects present after the operation (these may be the same or
mostly the same as the ones before), and objects that exist only during the operation
(these may be marked as «new», «destroyed», and «transient»). Only objects involved
in the operation implementation need to be shown. To show the implementation of an
operation, message flows are superimposed on the links between objects in the
collaboration; each flow shows a step within the method for the operation (see
“Message flows” on page 3-101).

Classes

A collaboration is normally defined for a single operation. By taking the union of all of
the collaborations for all of the operations of a class, an overall collaboration for the
entire class can be shown. This collaboration shows all of the context for the
implementation of the class.

In both cases, the usual assumption is that objects and classes not shown on the
collaboration are not affected by the operation. It is not always safe to assume that all
of the objects on a collaboration diagram are used by the operation.

Different collaborations may be devised for the same class for different purposes. Each
collaboration may show a somewhat different subset of attributes, operators, and
related objects that are relevant to each purpose. Where actual operations often fall into
related groups, each collaboration might specify a consistent view shared by several
operations that is somewhat different from the view needed by other operations on the
same type. Similarly, the model of types in a business organization can often be
divided into several collaborations, each from the point of view of a particular
stakeholder.

3-96 OMG-UML V1.2 May 1998

3

3.61 Interactions

A collaboration of objects interacts to accomplish a purpose (such as performing an
operation) by exchanging messages. The messages may include both signals and calls,
as well as more implicit interaction through conditions and time events. A specific
pattern of message exchanges to accomplish a specific purpose is called an interaction.

3.61.1 Semantics

An interaction is a behavioral specification that comprises a sequence of message
exchanges among a set of objects within a collaboration to accomplish a specific
purpose, such as the implementation of an operation. To specify an interaction, it is
first necessary to specify a collaboration; that is, to establish the objects that interact
and their relationships. Then the possible interaction sequences are specified. These
can be specified in a single description containing conditionals (branches or
conditional signals), or they can be specified by supplying multiple descriptions, each
describing a particular path through the possible execution paths.

3.61.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. However, sequence diagrams
only show the participating objects and do not show their relationships to other objects
or their attributes; therefore, they do not fully show the context aspect of a
collaboration. Sequence diagrams do show the behavioral aspect of collaborations
explicitly, including the time sequence of message and explicit representation of
method activations. Sequence diagrams are described in “Sequence Diagram” on
page 3-82. Collaboration diagrams show the full context of an interaction, including
the objects and their relationships relevant to a particular interaction, so they are often
better for design purposes. Collaboration diagrams are described in the following
sections.

3.61.3 Example

See Collaboration Diagram section for a collaboration underlying an interaction.

3.62 Collaboration Roles

3.62.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object
that may play the role and describes its relationships to other Roles. There are
ClassifierRoles and AssociationRoles.

OMG-UML V1.1 Collaboration Roles March 1998 3-97

3

3.62.2 Notation

A collaboration role is shown using the notation for an object or a link. Keep in mind,
however, that in the context of a collaboration these represent roles that bind to actual
objects or links when the collaboration is used, not actual objects and links.

A class role is shown as a class rectangle symbol. Normally only the name
compartment is shown. The name compartment contains the string:

classRoleName : Classifiername

The classname can include a full pathname of enclosing packages, if necessary. A tool
will normally permit shortened pathnames to be used when they are unambiguous. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

A class role representing a set of objects includes a multiplicity indicator (such as “*”)
in the upper right corner of the class box.

An association role is shown as a path between two class role symbols. If the name of
the corresponding association is included, it is underlined. Rolenames are not
underlined. Even in absence of underlining, a line connecting class roles is an
association role.

If one end of the association role path is connected to a multiple class role, then a
multiplicity indicator may be placed on that end to emphasize the multiplicity.

3.62.3 Presentation options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).

3.62.4 Example

See Figure 3-37 on page 3-92.

3.62.5 Mapping

The object symbol in a collaboration diagram maps to a ClassifierRole whose name
matches the object part of the name string; the role has a type Association to a
Classifier whose name matches the type part of the name string.

3-98 OMG-UML V1.2 May 1998

3

3.63 Multiobject

3.63.1 Semantics

A multi-object represents a set of objects on the “many” end of an association. This is
used to show operations that address the entire set, rather than a single object in it. The
underlying static model is unaffected by this grouping. This corresponds to an
association with multiplicity “many” used to access a set of associated objects.

3.63.2 Notation

A multi-object is shown as two rectangles in which the top rectangle is shifted slightly
vertically and horizontally to suggest a stack of rectangles. A message arrow to the
multi-object symbol indicates a message to the set of objects (for example, a selection
operation to find an individual object).

To perform an operation on each object in a set of associated objects requires two
messages: 1) an iteration to the multi-object to extract links to the individual objects
and then 2) a message sent to each individual object using the (temporary) link. This
may be elided on a diagram by combining the messages into a single message that
includes an iteration and an application to each individual object. The target rolename
takes a “many” indicator (*) to show that many individual links are implied. Although
this may be written as a single message, in the underlying model (and in any actual
code) it requires the two layers of structure (iteration to find links, message using each
link) mentioned previously.

An object from the set is shown as a normal object symbol, but it may be attached to
the multi-object symbol using a composition link to indicate that it is part of the set. A
message arrow to the simple object symbol indicates a message to an individual object.

Typically a selection message to a multi-object returns a reference to an individual
object, to which the original sender then sends a message.

OMG-UML V1.1 Active object March 1998 3-99

3

3.63.3 Example

Figure 3-39 Multi-object

3.63.4 Mapping

A multi-object symbol maps to a ClassifierRole with multiplicity “many” (or whatever
is explicitly specified). In other respects, it maps the same as an object symbol.

3.64 Active object

An active object is one that owns a thread of control and may initiate control activity.
A passive object is one that holds data, but does not initiate control. However, a
passive object may send messages in the process of processing a request that it has
received. In a collaboration diagram, a ClassifierRole that is an active class represents
the active objects that occur during execution.

3.64.1 Semantics

An active object is an object that owns a thread of control. Processes and tasks are
traditional kinds of active objects.

3.64.2 Notation

A role for an active object is shown as an object symbol with a heavy border.
Frequently active object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer {local}

client

1: aServer:=find(specs)

2: process(request)

3-100 OMG-UML V1.2 May 1998

3

3.64.3 Example

Figure 3-40 Composite Active Object

3.64.4 Mapping

An active object symbol maps as an object symbol does, with the addition that the
active property is set.

A nested object symbol (active or not) maps into a Classifierrole that has a
composition association to the roles corresponding to its contents, as described under
Composition.

job

:Factory
JobMgr

:Factory
Scheduler

currentJob
:TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

{local} job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed

OMG-UML V1.1 Message flows March 1998 3-101

3

3.65 Message flows

3.65.1 Semantics

A message flow is the sending of a message from one object to another. The
implementation of a message may take various forms, such as a procedure call, the
sending of a signal between active threads, the explicit raising of events, and so on.

3.65.2 Notation

A message flow is shown as a labeled arrow placed near a link. The meaning is that the
link is used to transport, or otherwise implement, the delivery of the message to the
target object. The arrow points along the link in the direction of the target object (the
one that receives the message).

Control flow type

The following arrowhead variations may be used to show different kinds of messages:

filled solid arrowhead

Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. May be used with ordinary
procedure calls. May also be used with concurrently active objects when one of
them sends a signal and waits for a nested sequence of behavior to complete.

stick arrowhead

Flat flow of control. Each arrow shows the progression to the next step in sequence.
Normally all of the messages are asynchronous.

half stick arrowhead

Asynchronous flow of control. Used instead of the stick arrowhead to explicitly
show an asynchronous message between two objects in a procedural sequence.

other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however,
these are treated as extensions to the UML core.

Message label

The label has the following syntax:

3-102 OMG-UML V1.2 May 1998

3

predecessor guard-condition sequence-expression return-value := message-name
argument-list

The label indicates the message sent, its arguments and return values, and the
sequencing of the message within the larger interaction, including call nesting,
iteration, branching, concurrency, and synchronization.

Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a slash
(‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must
match the sequence number of another message.

The meaning is that the message flow is not enabled until all of the message flows
whose sequence numbers are listed have occurred (a thread can go beyond the required
message flow and the guard remains satisfied). Therefore, the guard condition
represents a synchronization of threads.

Note that the message corresponding to the numerically preceding sequence number is
an implicit predecessor and need not be explicitly listed. All of the sequence numbers
with the same prefix form a sequence. The numerical predecessor is the one in which
the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon
(‘:’). Each term represents a level of procedural nesting within the overall interaction.
If all the control is concurrent, then nesting does not occur. Each sequence-term has the
following syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the message within the next higher level
of procedural calling. Messages that differ in one integer term are sequentially related
at that level of nesting. Example: Message 3.1.4 follows message 3.1.3 within
activation 3.1.

The name represents a concurrent thread of control. Messages that differ in the final
name are concurrent at that level of nesting. Example: message 3.1a and message 3.1b
are concurrent within activation 3.1. All threads of control are equal within the nesting
depth.

The recurrence represents conditional or iterative execution. This represents zero or
more messages that are executed depending on the conditions involved. The choices
are:

OMG-UML V1.1 Message flows March 1998 3-103

3

‘*’ ‘[’ iteration-clause ‘]’An iteration

‘[’ condition-clause ‘]’A branch

An iteration represents a sequence of messages at the given nesting depth. The
iteration clause may be omitted (in which case the iteration conditions are unspecified).
The iteration-clause is meant to be expressed in pseudocode or an actual programming
language, UML does not prescribe its format. An example would be: *[i := 1..n].

A condition represents a message whose execution is contingent on the truth of the
condition clause. The condition-clause is meant to be expressed in pseudocode or an
actual programming language; UML does not prescribe its format. An example would
be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might think
of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be executed
sequentially. There is also the possibility of executing them concurrently. The notation
for this is to follow the star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels.
Each level of structure specifies its own iteration within the enclosing context.

Signature

A signature is a string that indicates the name, the arguments, and the return value of
an operation, message, or signal. These have the following properties.

Return-value

This is a list of names that designates the values returned by the message within the
subsequent execution of the overall interaction. These identifiers can be used as
arguments to subsequent messages. If the message does not return a value, then the
return value and the assignment operator are omitted.

Message-name

This is the name of the event raised in the target object (which is often the event of
requesting an operation to be performed). It may be implemented in various ways, one
of which is an operation call. If it is implemented as a procedure call, then this is the
name of the operation, and the operation must be defined on the class of the receiver or
inherited by it. In other cases, it may be the name of an event that is raised on the
receiving object. In normal practice with procedural overloading, both the message
name and the argument list types are required to identify a particular operation.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in
parentheses. The parentheses can be used even if the list is empty. Each argument is an
expression in pseudocode or an appropriate programming language (UML does not

3-104 OMG-UML V1.2 May 1998

3

prescribe). The expressions may use return values of previous messages (in the same
scope) and navigation expressions starting from the source object (that is, attributes of
it and links from it and paths reachable from them).

3.65.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be shown
near a message. A token is a small circle labeled with the argument expression or
return value name. It has a small arrow on it that points along the message (for an
argument) or opposite the message (for a return value). Tokens represent arguments
and return values. The choice of text syntax or tokens is a presentation option.

The syntax of messages may instead be expressed in the syntax of a programming
language, such as C++ or Smalltalk. All of the expressions on a single diagram should
use the same syntax, however.

3.65.4 Example

See Figure 3-37 on page 3-92 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple message

1.3.1: p:= find(specs) nested call with return value

[x < 0] 4: invert (x, color) conditional message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

3.65.5 Mapping

A message flow symbol maps into a Message between the ClassifierRoles
corresponding to the boxes connected by the association path bearing the message flow
symbol. The control flow type sets the corresponding Message properties.

The predecessor expression, together with the sequence expression, determines the
predecessor and activation (caller) associations between the Message and other
messages. The predecessors of the Message are the messages corresponding to the
sequence numbers in the predecessor list as well as the message corresponding to the
immediate preceding sequence number as the Message (i.e., 1.2.2 is the one preceding
1.2.3). The caller of the Message is the Message whose sequence number is truncated
by one position (i.e., 1.2 is the caller of 1.2.3).

The return value maps into a message from the called object to the caller with direction
return. Its predecessor is the final message within the procedure. Its activation is the
message that called the procedure.

The recurrence expression, the iteration clause, and the condition clause determine the
recurrence value in the Message.

OMG-UML V1.1 Creation/Destruction Markers March 1998 3-105

3

The operation name and the form of the signature determine the Operation attached to
the CallAction associated with the Message.

The arguments of the signature determine the arguments associated with the
CallAction.

In a procedural interaction, each message flow symbol also maps into a second
Message with the properties (synchronous, reply) representing the return flow. This
Message has an activation Association to the original call Message. Its associated
Action is a ReturnAction bearing the return values as arguments (if any).

3.66 Creation/Destruction Markers

3.66.1 Semantics

During the execution of an interaction some objects and links are created and some are
destroyed. The creation and destruction of elements can be marked.

3.66.2 Notation

An object or link that is created during an interaction has the keyword new as a
constraint. An object or link that is destroyed during an interaction has the keyword
destroyed as a constraint. The keyword may be used even if the element has no name.
Both keywords may be used together, but the keyword transient may be used in place
of new destroyed.

3.66.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For
example, each kind of lifetime might be shown in a different color. A tool may also use
animation to show the creation and destruction of elements and the state of the system
at various times.

3.66.4 Example

See Figure 3-37 on page 3-92.

3.66.5 Mapping

Creation or destruction indicators map into CreateActions or DestroyActions actions
on the target ClassifierRoles or into TerminateActions. The actions correspond to
messages that cause the changes. These status indicators are merely summaries of the
total actions.

3-106 OMG-UML V1.2 May 1998

3

Part 9 - Statechart Diagrams

A statechart diagram shows the sequences of states that an object or an interaction goes
through during its life in response to received stimuli, together with its responses and
actions.

The semantics and notation described in this chapter are substantially those of David
Harel’s statecharts with modifications to make them object-oriented. His work was a
major advance on the traditional flat state machines. Statechart notation also
implements aspects of both Moore machines and Mealy machines, traditional state
machine models.

3.67 Statechart Diagram

3.67.1 Semantics

A state machine is a graph of states and transitions that describes the response of an
object of a given class to the receipt of outside stimuli. A state machine is attached to
a class or a method.

3.67.2 Notation

A statechart diagram represents a state machine. The states are represented by state
symbols and the transitions are represented by arrows connecting the state symbols.
States may also contain subdiagrams by physical containment and tiling.

OMG-UML V1.1 States March 1998 3-107

3

Figure 3-41 State Diagram

3.67.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be attached to
a Class or a Method, but there is no explicit notation for this.

3.68 States

3.68.1 Semantics

A state is a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action, or waits for some event. An object
remains in a state for a finite (non-instantaneous) time.

Actions are atomic and non-interruptible. A state may correspond to ongoing activity.
Such activity is expressed as a nested state machine. Alternately, ongoing activity may
be represented by a pair of actions, one that starts the activity on entry to the state and
one that terminates the activity on exit from the state.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)

3-108 OMG-UML V1.2 May 1998

3

Each subregion of a state may have initial states and final states. A transition to the
enclosing state represents a transition to the initial state. A transition to a final state
represents the completion of activity in the enclosing region. Completion of activity in
all concurrent regions represents completion of activity by the enclosing state and
triggers a “completion of activity” event” on the enclosing state. Completion of the
outermost state of an object corresponds to its death.

3.68.2 Notation

A state is shown as a rectangle with rounded corners. It may have one or more
compartments. The compartments are all optional. They are as follows:

• Name compartment

Holds the (optional) name of the state as a string. States without names are
“anonymous” and are all distinct It is undesirable to show the same named state
twice in the same diagram, as confusion may ensue.

• Internal transition compartment

Holds a list of internal actions or activities performed in response to events received
while the object is in the state, without changing state. These have the format:

event-name argument-list ‘[’ guard-condition ‘]’‘/’ action-expression

Each event name or pseudo-event name may appear may appear more than once per
state if the guard conditions are different. The following special actions have the same
form, but represent reserved words that cannot be used for event names:

‘entry’ ‘/’ action-expression

An atomic action performed on entry to the state

‘exit’ ‘/’ action-expression

An atomic action performed on exit from the state

Entry and exit actions may not have arguments or guard conditions (because they are
invoked implicitly, not explicitly). However, the entry action at the top level of the
state machine for a class may have parameters that represent the arguments that it
receives when it is created.

Action expressions may use attributes and links of the owning object and parameters of
incoming transitions (if they appear on all incoming transitions).

The following keyword represents the invocation of a nested state machine:

‘do’ ‘/’ machine-name (argument-list)

The machine-name must be the name of a state machine that has an initial and final
state. If the nested machine has parameters, then the argument list must match
correctly. When this state is entered after any entry action, then execution of the nested
state machine begins with its initial state. When the nested state machine reaches its

OMG-UML V1.1 Composite States March 1998 3-109

3

final state, any exit action in the current state is performed. The current state is
considered completed and may take a transition based on implicit completion of
activity.

3.68.3 Example

Figure 3-42 State

3.68.4 Mapping

A state symbol maps into a State. See “Composite States” on page 3-109 for further
details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the
same name map into the same state. However, each state symbol with no name (or an
empty name string) maps into a distinct anonymous State.

• An internal action string with the name “entry” or “exit” maps into an association.

• The source is the State corresponding to the enclosing state symbol.

• The target is an ActionSequence that maps the action expression.

• The association is the Entry action or the Exit action association.

• An internal action string with the name “do” maps into the invocation of a nested
state machine.

Any other internal action maps into an internalTransition from the corresponding State
to a Transition. The action expression maps into the ActionSequence and Guard for the
Transition. The event name and arguments map into an Event corresponding to the
event name and arguments. The Transition has a trigger Association to the Event.

3.69 Composite States

3.69.1 Semantics

A state can be decomposed using and-relationships into concurrent substates or using
or-relationships into mutually exclusive disjoint substates. A given state may only be
refined in one of these two ways. Its substates may be refined in the same way or the
other way.

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character

3-110 OMG-UML V1.2 May 1998

3

A newly-created object starts in its initial state. The event that creates the object may
be used to trigger a transition from the initial state symbol. An object that transitions to
its outermost final state ceases to exist.

3.69.2 Notation

An expansion of a state shows its fine structure. In addition to the (optional) name and
internal transition compartments, the state may have an additional compartment that
contains a region holding a nested diagram. For convenience and appearance, the text
compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region
of the state using dashed lines to divide it into subregions. Each subregion is a
concurrent substate. Each subregion may have an optional name and must contain a
nested state diagram with disjoint states. The text compartments of the entire state are
separated from the concurrent substates by a solid line.

An expansion of a state into disjoint substates is shown by showing a nested state
diagram within the graphic region.

An initial (pseudo) state is shown as a small solid filled circle. In a top-level state
machine, the transition from an initial state may be labeled with the event that creates
the object; otherwise, it must be unlabeled. If it is unlabeled, it represents any
transition to the enclosing state. The initial transition may have an action. The initial
state is a notational device. An object may not be in such a state, but must transition to
an actual state.

A final (pseudo) state is shown as a circle surrounding a small solid filled circle (a
bull’s eye). It represents the completion of activity in the enclosing state and it triggers
a transition on the enclosing state labeled by the implicit activity completion event
(usually displayed as an unlabeled transition).

3.69.3 Example

Figure 3-43 Sequential Substates

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

OMG-UML V1.1 Events March 1998 3-111

3

Figure 3-44 Concurrent Substates

3.69.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into
a SimpleState. If it is tiled by dashed lines into subregions, then it maps into a
CompositeState with the isConcurrent value true; otherwise, it maps into a
CompositeState with the isConcurrent value false.

An initial state symbol or a final state symbol map into a Pseudostate of kind initial or
final.

3.70 Events

3.70.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurrence that may trigger a state transition. Events may be of several kinds (not
necessarily mutually exclusive).

• A designated condition becoming true (usually described as a boolean expression)
is a ChangeEvent. These are notated with the keyword when followed by a boolean
expression in parentheses. The event occurs whenever the value of the expression

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class

3-112 OMG-UML V1.2 May 1998

3

changes from false to true. Note that this is different from a guard condition. A
guard condition is evaluated once whenever its event fires. If it is false, then the
transition does not occur and the event is lost. Example: when (balance < 0).

• Receipt of an explicit signal from one object to another is a SignalEvent. One of
these is notated by the signature of the event as a trigger on a transition.

• Receipt of a call for an operation by an object is a CallEvent. These are notated by
the signature of the operation as a trigger on a transition. There is no visual
difference from a signal event, it is assumed that the names distinguish them.

• Passage of a designated period of time after a designated event (often the entry of
the current state) or the occurrence of a given date/time is a TimeEvent. These are
notated as time expressions as triggers on transitions. One common time expression
is the passage of time since the entry to the current state. This is notated with the
keyword after followed by an amount of time in parentheses. Example: after (10
seconds).

The event declaration has scope within the package it appears in and may be used in
state diagrams for classes that have visibility inside the package. An event is not local
to a single class.

3.70.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)’

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class
diagram. The parameters are specified as attributes. A signal can be specified as a
subclass of another signal. This indicates that an occurrence of the subevent triggers
any transition that depends on the event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an
expression that evaluates (at modeling time) to an amount of time, such as “after (5
seconds)” or after (10 seconds since exit from state A).” If no starting point is
indicated, then it is the time since the entry to the current state. Other time events can
be specified as conditions, such as when (date = Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a boolean
expression. This may be regarded as a continuous test for the condition until it is true,
although in practice it would only be checked on a change of values (and there are
ways to determine when it must be checked). This is mapped into a ChangeEvent in
the model.

OMG-UML V1.1 Events March 1998 3-113

3

Signals can be declared on a class diagram with the keyword «signal» on a rectangle
symbol. These define signal names that may be used to trigger transitions. Their
parameters are shown in the attribute compartment. They have no operations. They
may appear in a generalization hierarchy. Note that they are not real classes and may
not appear in relationships to real classes.

3.70.3 Example

Figure 3-45 Signal Declaration

3.70.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are
given by the name string and the attribute list of the box. Generalization arrows
between signal class boxes map into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an
implicit reference of the Event with the given name. It is an error if various uses of the
same name (including any explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character

3-114 OMG-UML V1.2 May 1998

3

3.71 Simple Transitions

3.71.1 Semantics

A simple transition is a relationship between two states indicating that an object in the
first state will enter the second state and perform certain specified actions when a
specified event occurs, if specified conditions are satisfied. On such a change of state,
the transition is said to “fire.” The trigger for a transition is the occurrence of the event
labeling the transition. The event may have parameters, which are available within
actions specified on the transition or within actions initiated in the subsequent state.
Events are processed one at a time. If an event does not trigger any transition, it is
simply ignored. If it triggers more than one transition within the same sequential
region (i.e., not in different concurrent regions), only one will fire. The choice may be
nondeterministic if a firing priority is not specified.

3.71.2 Notation

A transition is shown as a solid arrow from one state (the source state) to another state
(the target state) labeled by a transition string. The string has the following format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression ‘^’ send-clause

The event-signature describes an event with its arguments:

event-name ‘(’ parameter ‘,’ . . . ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the
triggering event and attributes and links of the object that owns the state machine. The
guard condition may also involve tests of concurrent states of the current machine, or
explicitly designated states of some reachable object (for example, “in State1” or “not
in State2”). State names may be fully qualified by the nested states that contain them,
yielding path names of the form “State1::State2::State3.” This may be used in case
same state name occurs in different composite state regions of the overall machine.

The action-expression is a procedural expression that is executed if and when the
transition fires. It may be written in terms of operations, attributes, and links of the
owning object and the parameters of the triggering event. The action-clause must be an
atomic operation, that is, it may not be interruptible. It must be executed entirely
before any other actions are considered. The transition may contain more than one
action clause (with delimiter).

‘The send-clause is a special case of an action, with the format:

destination-expression ‘.’ destination-message-name ‘(‘ argument ‘.’ . . . ‘)’

The transition may contain more than one send clause (with delimiter). The relative
order of action clauses and send clauses is significant and determines their execution
order.

The destination-expression is an expression that evaluates to an object or a set of
objects.

OMG-UML V1.1 Simple Transitions March 1998 3-115

3

The destination-message-name is the name of a message (operation or signal)
meaningful to the destination object(s).

The destination-expression and the arguments may be written in terms of the
parameters of the triggering event and the attributes and links of the owning object.

Branches

A simple transition may be extended to include a tree of decision symbols (see
“Decisions” on page 3-127). This is equivalent to a set of individual transitions, one
for each path through the tree, whose guard condition is the “and” of all of the
conditions along the path.

Transition times

Names may be placed on transitions to designate the times at which they fire. See
“Transition Times” on page 3-89.

3.71.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location)
^ object.highlight ()

The event may be any of the types. Selecting the type depends on the syntax of the
name (for time events, for example); however, SignalEvents and CallEvents are not
distinguishable by syntax and must be discriminated by their declaration elsewhere.

3.71.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition
and its attachments. The arrow connects two state symbols. The Transition has the
corresponding States as its source (the state at the tail) and destination (the state at the
head) States in associations to the Transition.

The event name and parameters map into an Event element, which may be a
SignalEvent, a CallEvent, or a TimeExpression (if it has the proper syntax). The event
is attached as a trigger Association to the Transition.

The guard condition maps into a Guard element attached to the Transition.

An action expression maps into an ActionSequence attached as an effect Association to
the Transition. The target object expression (if any) in the expression maps into a
target ObjectSetExpression. Each term in the action expression maps into an Action
that is a part of the ActionSequence. A send clause maps into a RaiseAction with an
ObjectSetExpression for the destination.

A transition time label on a transition maps into a TimingMark attached to the
Transition.

3-116 OMG-UML V1.2 May 1998

3

3.72 Complex Transitions

A complex transition may have multiple source states and target states. It represents a
synchronization and/or a splitting of control into concurrent threads without concurrent
substates.

3.72.1 Semantics

A complex transition is enabled when all the source states are occupied. After a
complex transition fires, all its destination states are occupied.

3.72.2 Notation

A complex transition is shown as a short heavy bar (a synchronization bar, which can
represent synchronization, forking, or both). The bar may have one or more solid
arrows from states to the bar (these are the source states). The bar may have one or
more solid arrows from the bar to states (these are the destination states). A transition
string may be shown near the bar. Individual arrows do not have their own transition
strings.

3.72.3 Example

Figure 3-46 Complex Transition

3.72.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork Pseudostate. A bar
with multiple transition arrows entering it maps into a join Pseudostate. The
Transitions corresponding to the incoming and outgoing arrows attach to the
pseudostate as if it were a regular state. If a bar has multiple incoming and multiple
outgoing arrows, then it maps into a Join connected to a Fork pseudostate by a single
Transition with no attachments.

Setup Cleanup

A1 A2

B2B1

OMG-UML V1.1 Transitions to Nested States March 1998 3-117

3

3.73 Transitions to Nested States

3.73.1 Semantics

A transition drawn to the boundary of a complex state is equivalent to a transition to its
initial state (or to a complex transition to the initial states of each of its concurrent
subregions, if it is concurrent). The entry action is always performed when a state is
entered from outside.

A transition from a complex state indicates a transition that applies to each of the states
within the state region (at any depth). It is “inherited” by the nested states. Inherited
transitions can be masked by the presence of nested transitions with the same trigger.

3.73.2 Notation

A transition drawn to a complex state boundary indicates a transition to the complex
state. This is equivalent to a transition to the initial state within the complex state
region. The initial state must be present. If the state is a concurrent complex state, then
the transition indicates a transition to the initial state of each of its concurrent
substates.

Transitions may be drawn directly to states within a complex state region at any
nesting depth. All entry actions are performed for any states that are entered on any
transition. On a transition within a concurrent complex state, transition arrows from the
synchronization bar may be drawn to one or more concurrent states. Any other
concurrent subregions start with their default initial states.

A transition drawn from a complex state boundary indicates a transition of the complex
state. If such a transition fires, any nested states are forcibly terminated and perform
their exit actions, then the transition actions occur and the new state is established.

Transitions may be drawn directly from states within a complex state region at any
nesting depth to outside states. All exit actions are performed for any states that are
exited on any transition. On a transition from within a concurrent complex state,
transition arrows may be specified from one or more concurrent states to a
synchronization bar; therefore, specific states in the other regions are irrelevant to
triggering the transition.

A state region may contain a history state indicator shown as a small circle containing
an ‘H.’ The history indicator applies to the state region that directly contains it. A
history indicator may have any number of incoming transitions from outside states. It
may have at most one outgoing unlabeled transition. This identifies the default
“previous state” if the region has never been entered. If a transition to the history
indicator fires, it indicates that the object resumes the state it last had within the
complex region. Any necessary entry actions are performed. The history indicator may
also be ‘H*’ for deep history. This indicates that the object resumes the state it last had
at any depth within the complex region, rather than being restricted to the state at the
same level as the history indicator. A region may have both shallow and deep history
indicators.

3-118 OMG-UML V1.2 May 1998

3

3.73.3 Presentation options

Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the most
specific visible enclosing state of the suppressed state. Subsumed transitions that do
not come from an unlabeled final state or go to an unlabeled initial state may (but need
not) be shown as coming from or going to stubs. A stub is shown as a small vertical
line drawn inside the boundary of the enclosing state. It indicates a transition
connected to a suppressed internal state. Stubs are not used for transitions to initial or
from final states.

Note that events should be shown on transitions leading into a state, either to the state
contour or to an internal substate, including a transition to a stubbed state. Normally
events should not be shown on transitions leading from a stubbed state to an external
state. Think of a transition as belonging to its source state. If the source state is
suppressed, then so are the details of the transition. Note also that a transition from a
final state is summarized by an unlabeled transition from the complex state contour
(denoting the implicit event “action complete” for the corresponding state).

3.73.4 Example

See Figure 3-44 on page 3-111 and Figure 3-46 on page 3-116 for examples of
complex transitions. Following are examples of stubbed transitions and the history
indicator.

OMG-UML V1.1 Transitions to Nested States March 1998 3-119

3

Figure 3-47 Stubbed Transitions

Figure 3-48 History Indicator

3.73.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the
corresponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume

3-120 OMG-UML V1.2 May 1998

3

A stubbed transition does not map into anything in the model. It is a notational elision
that indicates the presence of transitions to additional states in the model that are not
visible in the diagram.

3.74 Sending Messages

3.74.1 Semantics

Messages are sent by an action in an object to a target set of objects. The target set can
be a single object, the entire system, or some other set. The sender can be subsumed to
an object, a composite object, or a class.

3.74.2 Notation

See “Location of Components and Objects within Objects” on page 3-141 for the text
syntax of sending messages that cause events for other objects.

Sending such a message can also be shown visually. See “Object Lifeline” on
page 3-86 and “Message flows” on page 3-101 for details of showing messages in
sequence diagrams and collaboration diagrams.

Sending a message between state diagrams may be shown by drawing a dashed arrow
from the sender to the receiver. Messages must be sent between objects, so this means
that the diagram must be some form of object diagram containing objects (not classes).
The arrow is labeled with the event name and arguments of the event that is caused by
the reception of the event. Each state diagram must be contained within an object
symbol representing a collaborating object. Graphically, the state diagrams may be
nested physically within an object symbol, or the object enclosing one state diagram
may be implicit (being the object owning the main state diagram at issue). The state
diagrams represent the states of the collaborating objects.

Note that this notation may also be used on other kinds of diagrams to show sending of
events between classes or objects.

The sender symbol may be one of:

• A transition. The message is sent as part of the action of firing the transition. This
is an alternate presentation to the text syntax for sending messages.

• An object. The message is sent by an object of the class at some point in its life, but
the details are unspecified.

The receiver may be one of:

• An object, including a class reference symbol containing a state diagram. The
message is received by the object and may trigger a transition on the corresponding
event. There may be many transitions involving the event. This notation may not be
used when the target object is computed dynamically. In that case, a text expression
must be used.

OMG-UML V1.1 Sending Messages March 1998 3-121

3

• A transition. The transition must be the only transition in the object involving the
given event, or at least the only transition that could possibly be triggered by the
particular sending of the message. This notation may not be used when the
transition triggered depends on the state of the receiving object and not just on the
sender.

• A class designation. This notation would be used to model the invocation of class-
scope operations, such as the creation of a new instance. The receipt of such a
message causes the instantiation of a new object in its default initial state. The event
seen by the receiver may be used to trigger a transition from its default initial state
and represents a way to pass information from the creator to the new object.

3.74.3 Example

Figure 3-49 Sending Messages

Controlling

OnOff

Controlling

Television

Remote Control

“power” button

TV VCR

^television.togglePower

toggle Power

“VCR”

“TV”

toggle Power

“power” button
^VCR.togglePower

togglePower

OnOff

VCR

toggle Power

toggle Power

toggle Power

3-122 OMG-UML V1.2 May 1998

3

Figure 3-50 Creating and Destroying Objects

3.74.4 Mapping

A send arrow to an object maps into a SendAction whose message is a Signal that
corresponds to the name on the arrow and whose target ObjectSetExpression
corresponds to the target object.

If the arrow goes directly to a transition in the target object statechart, then the target
ObjectSetExression corresponds to the object owning the statechart containing the
transition. In addition, the transition in the target statechart implicitly triggers on the
event being sent (i.e., the name of the sent event is effectively written on the target
transition).

If the sender symbol is an object, then the diagram is suggestive of the sender but has
no actual semantic mapping.

Unmoved

single move

capture

double move
En passant

opponent moves

Moved

create(file,rank=2)

when (piece on 8th rank)

{where piece =
Queen, Rook, Bishop, or Knight}

AlivePawn

captured

^piece.create(file,rank)

OMG-UML V1.1 Internal Transitions March 1998 3-123

3

3.75 Internal Transitions

3.75.1 Semantics

An internal transition is a transition that remains within a single state rather than a
transition that involves two states. It represents the occurrence of an event that does
not cause a change of state. Entering the state (from any other state not nested in the
particular state) and exiting the state (to any other state not nested in the particular
state) are treated notationally as internal transitions with the reserved words “entry”
and “exit;” however, they are not really internal transitions in the internal model.

Note that an internal transition is not equivalent to a self-transition from a state back to
the same state. The self-transition causes the exit and entry actions on the state to be
executed and the initial state to be entered, whereas the internal transition does not
invoke the exit and entry actions and does not cause a change of state (including a
nested state).

3.75.2 Notation

An internal transition is attached to the state rather than a transition. Graphically it is
shown as a text string within the internal transition compartment on a state symbol.
The syntax of an internal transition string is the same as for an external transition. See
“Simple Transitions” on page 3-114 for details.

Figure 3-51 State with Internal Transitions

3.75.3 Mapping

The mapping for internal transitions has been given in “Mapping” on page 3-109.

Typing Password

help / display help
entry / set echo invisible
exit / set echo normal

3-124 OMG-UML V1.2 May 1998

3

Part 10 - Activity Diagrams

3.76 Activity Diagram

3.76.1 Semantics

An activity model is a variation of a state machine in which the states are Activities
representing the performance of operations and the transitions are triggered by the
completion of the operations. It represents a state machine of a procedure itself, the
procedure is the implementation of an operation on the owning class.

3.76.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most)
of the states are action states and in which all (or at least most) of the transitions are
triggered by completion of the actions in the source states. The entire activity diagram
is attached (through the model) to a class or to the implementation of an operation or a
use case. The purpose of this diagram is to focus on flows driven by internal
processing (as opposed to external events). Use activity diagrams in situations where
all or most of the events represent the completion of internally-generated actions (that
is, procedural flow of control). Use ordinary state diagrams in situations where
asynchronous events occur.

OMG-UML V1.1 Activity Diagram March 1998 3-125

3

3.76.3 Example

Figure 3-52 Activity Diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

^coffeePot.turnOn

light goes out

3-126 OMG-UML V1.2 May 1998

3

3.76.4 Mapping

An activity diagram maps into an ActivityModel.

3.77 Action state

3.77.1 Semantics

An action state is a shorthand for a state with an internal action and at least one
outgoing transition involving the implicit event of completing the internal action (there
may be several such transitions if they have guard conditions). Action states should not
have internal transitions or outgoing transitions based on explicit events, use normal
states for this situation. The normal use of an action state is to model a step in the
execution of an algorithm (a procedure).

3.77.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs
on the two sides. The action-expression is placed in the symbol. The action expression
need not be unique within the diagram.

Transitions leaving an action state should not include an event signature. Such
transitions are implicitly triggered by the completion of the action in the state. The
transitions may include guard conditions and actions.

3.77.3 Presentation options

The action may be described by natural language, pseudocode, or programming
language code. It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however,
they are more commonly used with activity diagrams, which are special cases of state
diagrams.

3.77.4 Example

Figure 3-53 Activities

matrix.invert (tolerance:Real) drive to work

OMG-UML V1.1 Decisions March 1998 3-127

3

3.77.5 Mapping

An action state symbol maps into an ActionState invoking a CallAction. This is
equivalent to an entry action on a regular state. There is no exit nor any internal
transitions. The State is normally anonymous.

3.78 Decisions

3.78.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when
guard conditions are used to indicate different possible transitions that depend on
Boolean conditions of the owning object. UML provides shorthand for showing
decisions.

3.78.2 Notation

A decision may be shown by labeling multiple output transitions of an action with
different guard conditions.

The icon provided for a decision is the traditional diamond shape, with one or more
incoming arrows and with two or more outgoing arrows, each labeled by a distinct
guard condition with no event trigger. All possible outcomes should appear on one of
the outgoing transitions.

Note that a chain of decisions may be part of a complex transition, but only the first
segment in such a chain may contain an event trigger label. All segments may have
guard expressions.

3.78.3 Example

Figure 3-54 Decision

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]

3-128 OMG-UML V1.2 May 1998

3

3.78.4 Mapping

A decision symbol maps into a Pseudostate of kind branch. Each label on an outgoing
arrow maps into a Guard on the corresponding Transition, leaving the Pseudostate.

3.79 Swimlanes

3.79.1 Semantics

Actions may be organized into swimlanes. Swimlanes are a kind of package used to
organize responsibility for activities within a class. They often correspond to
organizational units in a business model.

3.79.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from
neighboring swimlanes by vertical solid lines on both sides. Each swimlane represents
responsibility for part of the overall activity, and may eventually be implemented by
one or more objects. The relative ordering of the swimlanes has no semantic
significance, but might indicate some affinity. Each action is assigned to one swimlane.
Transitions may cross lanes. There is no significance to the routing of a transition path.

OMG-UML V1.1 Swimlanes March 1998 3-129

3

3.79.3 Example

Figure 3-55 Swimlanes in Activity Diagram

3.79.4 Mapping

A swimlane maps into a Partition of the States in the ActivityModel. A state symbol in
a swimlane causes the corresponding State to belong to the corresponding Partition.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

3-130 OMG-UML V1.2 May 1998

3

3.80 Action-Object Flow Relationships

3.80.1 Semantics

Activities operate by and on objects. Two kinds of relationships can be shown: 1) The
kinds of objects that have primary responsibility for performing an action and 2) the
other objects whose values are used or determined by the action. These are modeled as
messages sent between the object owning the activity model and the objects that are
input or output by the actions in the model.

3.80.2 Notation

Object responsible for an action

The object responsible for performing an action can be shown by drawing a lifeline
and placing actions on lifelines Each lifeline represents a distinct object. There may be
multiple lifelines for different objects of the same or different kinds. If this approach is
chosen, usually a sequence diagram should be used. See “Sequence Diagram” on
page 3-82. If an object lifeline is not shown, then some object within the swimlane
package is responsible for the action, but the object is not shown. Multiple actions
within a single swimlane can be handled by the same or different objects.

Object flow

Objects that are input to or output by an action may be shown as object symbols. A
dashed arrow is drawn from an action outgoing transition to an output object, and a
dashed arrow is drawn from an input object to an incoming arrow of an action. The
same object may be (and usually is) the output of one action and the input of one or
more subsequent actions.

The control flow (solid) arrows may be omitted when the object flow (dashed) arrows
supply a redundant constraint. In other words, when an action produces an output that
is input by a subsequent action, that object flow relationship implies a control
constraint.

Object in state

Frequently the same object is manipulated by a number of successive activities. It is
possible to show the arrows to and from all of the relevant activities. For greater
clarity, the object may be displayed multiple times on a diagram, each appearance
denoting a different point during its life. To distinguish the various appearances of the
same object, the state of the object at each point may be placed in brackets and
appended to the name of the object (for example, PurchaseOrder[approved]). This
notation may also be used in collaboration diagrams.

OMG-UML V1.1 Action-Object Flow Relationships March 1998 3-131

3

3.80.3 Example

Figure 3-56 Actions and Object Flow

3.80.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing
Transitions correspond to the incoming and outgoing arrows. The Transitions have no
attachments. The class name and (optional) state name of the object flow symbol map
into a Class or a ClassifierInState with the given name(s).

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]

3-132 OMG-UML V1.2 May 1998

3

3.81 Control Icons

The following icons provide explicit symbols for certain kinds of information that can
be specified on transitions. These icons are not necessary for constructing activity
diagrams, but many users prefer the added impact that they provide.

3.81.1 Stereotypes

Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle
with a triangular notch in its side (either side). The signature of the signal is shown
inside the symbol. A unlabeled transition arrow is drawn from the previous action state
to the pentagon and another unlabeled transition arrow is drawn from the pentagon to
the next action state. This symbol replaces the event label on the transition. A dashed
arrow may be drawn from an object symbol to the notch on the pentagon to show the
sender of the signal; this is optional.

Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle
with a triangular point on one side (either side). The signature of the signal is shown
inside the symbol. A unlabeled transition arrow is drawn from the previous action state
to the pentagon and another unlabeled transition arrow is drawn from the pentagon to
the next action state. This symbol replaces the send-signal label on the transition. A
dashed arrow may be drawn from the point on the pentagon to an object symbol to
show the receiver of the signal, this is optional.

OMG-UML V1.1 Control Icons March 1998 3-133

3

Figure 3-57 Symbols for Signal Receipt and Sending

Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while
some other activity is underway. (Normally an event that is not handled immediately is
lost.) This may be thought of as having an internal transition that handles the event and
places it on an internal queue until it is needed or until it is discarded. Each state or
activity specifies a set of events that are deferred if they occur during the state or
activity. If an event is not included in the set of deferred events for a state, then it is
discarded from the queue even if it has already occurred. If a transition depends on an
event, the transition fires immediately if the event is already on the internal queue. If
several transitions are possible, the leading event in the queue takes precedence.

A deferred event is shown by listing it within the state followed by a slash and the
special operation defer. If the event occurs, it is saved and it recurs when the object
transitions to another state, where it may be deferred again. When the object reaches a
state in which the event is not deferred, it must be accepted or lost. The indication may
be placed on a composite state, in which case it remains deferred throughout the
composite state.

When used in conjunction with an action state, a deferred event that occurs during the
action state is deferred until the action is completed, when it may trigger a transition.
This means that the transition will occur correctly regardless of the relative order of
the event and the action completion.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot

3-134 OMG-UML V1.2 May 1998

3

Figure 3-58 Deferred Event

3.81.2 Mapping

An input event symbol maps into an event trigger on the Transition between the States
corresponding to the connected state symbols.

An output event symbol maps into a RaiseAction on the Transition between the States
corresponding to the connected state symbols.

An input event symbol whose successor is a join symbol maps into an event trigger on
a Transition to an implicit dummy State. The outgoing Transition from the dummy
State enters the join Pseudostate.

A deferred event attached to a state maps into a deferredEvent association from the
State to the Event.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer

OMG-UML V1.1 Component Diagram March 1998 3-135

3

Part 11 - Implementation Diagrams

Implementation diagrams show aspects of implementation, including source code
structure and run-time implementation structure. They come in two forms: 1)
component diagrams show the structure of the code itself and 2) deployment diagrams
show the structure of the run-time system.

3.82 Component Diagram

3.82.1 Semantics

A component diagram shows the dependencies among software components, including
source code components, binary code components, and executable components. A
software module may be represented as a component type. Some components exist at
compile time, some exist at link time, some exist at run time, and some exist at more
than one time. A compile-only component is one that is only meaningful at compile
time. The run-time component in this case would be an executable program.

A component diagram has only a type form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes).

3.82.2 Notation

A component diagram is a graph of components connected by dependency
relationships. Components may also be connected to components by physical
containment representing composition relationships.

A diagram containing component types and node types may be used to show compiler
dependencies, which are shown as dashed arrows (dependencies) from a client
component to a supplier component that it depends on in some way. The kinds of
dependencies are language-specific and may be shown as stereotypes of the
dependencies.

The diagram may also be used to show interfaces and calling dependencies among
components, using dashed arrows from components to interfaces on other components.

3-136 OMG-UML V1.2 May 1998

3

3.82.3 Example

Figure 3-59 Component Diagram

3.82.4 Mapping

A component diagram maps to a static model whose elements include Components.

3.83 Deployment Diagrams

3.83.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the
software components, processes, and objects that live on them. Software component
instances represent run-time manifestations of code units. Components that do not exist
as run-time entities (because they have been compiled away) do not appear on these
diagrams, they should be shown on component diagrams.

3.83.2 Notation

A deployment diagram is a graph of nodes connected by communication associations.
Nodes may contain component instances. This indicates that the component lives or
runs on the node. Components may contain objects, this indicates that the object is part

Planner

Scheduler

GUI

reservations

update

OMG-UML V1.1 Deployment Diagrams March 1998 3-137

3

of the component. Components are connected to other components by dashed-arrow
dependencies (possibly through interfaces). This indicates that one component uses the
services of another component. A stereotype may be used to indicate the precise
dependency, if needed.

The deployment type diagram may also be used to show which components may run
on which nodes, by using dashed arrows with the stereotype «supports».

Migration of components from node to node or objects from component to component
may be shown using the «becomes» stereotype of the dependency relationship. In this
case the component or object is resident on its node or component only part of the
entire time.

Note that a process is just a special kind of object (see Active Object).

3.83.3 Example

Figure 3-60 Nodes

3.83.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not
particularly distinguished in the model.

AdminServer:HostMachine

Joe’sMachine:PC

:Scheduler reservations

:Planner

«database»
meetingsDB

3-138 OMG-UML V1.2 May 1998

3

3.84 Nodes

3.84.1 Semantics

A node is a run-time physical object that represents a processing resource. Generally,
having at least a memory and often processing capability as well. Nodes include
computing devices but also human resources or mechanical processing resources.
Nodes may be represented as type and as instances. Run time computational instances,
both objects and component instances, may reside on node instances.

3.84.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node
type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined name
string in it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of
a node it is. Either or both elements are optional.

Dashed-arrow dependency arrows show the capability of a node type to support a
component type. A stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance symbols.
This indicates that the items reside on the node instances. Containment may also be
shown by aggregation or composition association paths.

Nodes may be connected by associations to other nodes. An association between nodes
indicates a communication path between the nodes. The association may have a
stereotype to indicate the nature of the communication path (for example, the kind of
channel or network).

3.84.3 Example

This example shows two nodes containing an object (cluster) that migrates from one
node to another and an object that remains in place.

OMG-UML V1.1 Components March 1998 3-139

3

Figure 3-61 Use of Nodes to Hold Objects

3.84.4 Mapping

A node maps to a Node. The nesting of symbols within the node symbol maps into a
composition association between a node and constituent Classes, or a composition link
between a Node and constituent Objects.

3.85 Components

3.85.1 Semantics

A component type represents a distributable piece of implementation of a system,
including software code (source, binary, or executable) but also including business
documents, etc., in a human system. Components may be used to show dependencies,
such as compiler and run-time dependencies or information dependencies in a human
organization. A component instance represents a run-time implementation unit and
may be used to show implementation units that have identity at run time, including
their location on nodes.

Node1

Node2

«cluster»

x y

«cluster»

x y

«becomes»

«database»

w z

3-140 OMG-UML V1.2 May 1998

3

3.85.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its
side. A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type
may be shown as an underlined string either within the component symbol or above or
below it, with the syntax:

component-name ‘:’ component-type

A property may be used to indicate the life-cycle stage that the component describes
(source, binary, executable, or more than one of those). Components (including
programs, DLLs, run-time linkable images, etc.) may be located on nodes.

3.85.3 Example

The example shows a component with interfaces and also a component that contains
objects at run time.

Figure 3-62 Components

3.85.4 Mapping

A component symbol maps to a Component. Graphical nesting of other symbols maps
into a composition association of the Component to Classes or Objects in it.

Interface circles attached to the component symbol by solid lines map into supports
Dependencies to Interfaces.

Dictionary spell-check

synonyms

mymailer: Mailer

Mailbox
RoutingList

OMG-UML V1.1 Location of Components and Objects within Objects March 1998 3-141

3

3.86 Location of Components and Objects within Objects

3.86.1 Semantics

Instances may be located within other instances. For example, objects may live in
processes that live in components that live on nodes. In more complicated situations
processes may migrate from node to node, so a process may live in many nodes and
deal with many components over time.

3.86.2 Notation

The location of an instance (including objects, component instances, and node
instances) within another instance may be shown by physical nesting. Containment
may also be shown by aggregation or composition association paths. Alternately, an
instance may have a property tag “location” whose value is the name of the containing
instance.

If an object moves during an interaction, then it may be as two or more occurrences
with a “becomes” dependency between the occurrences. The dependency may have a
time property attached to it to show the time when the object moves. Each occurrence
represents the object during a period of time. Messages should be directed to the
correct occurrence of the object.

3.86.3 Example

See the other diagrams in this section for examples of objects and components located
on nodes as well as migration.

3.86.4 Mapping

Physical nesting of symbols maps into composition association from the Element
corresponding to the outer symbol to the Elements corresponding to the contents.

3-142 OMG-UML V1.2 May 1998

3

 OMG-UML V1.2 May 1998 4-1

UML Extensions 4

This chapter includes the UML Extension for Software Development Processes and the
UML Extension for Business Modeling.

 Contents

This chapter contains the following topics.

Topic Page

“Overview” 4-2

“Part 1 - UML Extension for Software Development Processes”

“Introduction” 4-2

“Summary of Extension” 4-2

“Stereotypes and Notation” 4-3

“Well-Formedness Rules” 4-7

“Part 2 - UML Extension for Business Modeling”

“Introduction” 4-8

“Summary of Extension” 4-8

“Stereotypes and Notation” 4-9

“Well-Formedness Rules” 4-12

4-2 OMG-UML V1.2 May 1998

4

Part 1 - UML Extension for Software Development Processes

4.1 Overview

User-defined extensions of the UML are enabled through the use of stereotypes, tagged
values, and constraints. Two extensions are defined currently: 1) Software
Development Processes and 2) Business Modeling.

The UML is broadly applicable without extension, so companies and projects should
define extensions only when they find it necessary to introduce new notation and
terminology. Extensions will not be as universally understood, supported, and agreed
upon as the UML itself. In order to reduce potential confusion around vendor
implementation, the following terms are defined:

• UML Variant - a language with well-defined semantics that is built on top of the
UML metamodel, as a metamodel. It specializes the UML metamodel, without
changing any of the UML semantics or redefining any of its terms. For example, it
could reintroduce a class called State.

• UML Extension - a predefined set of Stereotypes, TaggedValues, Constraints, and
notation icons that collectively extend and tailor the UML for a specific domain or
process.

4.2 Introduction

This section defines the UML Extension for Software Development Processes, defined
in terms of the UML’s extension mechanisms, namely Stereotypes, TaggedValues, and
Constraints.

See the UML Semantics chapter for a full description of the UML extension
mechanisms.

This chapter describes a UML extension that has been found useful in software
development processes. Although this extension was based on the Objectory process, it
is general-purpose and may also be applied to other software development processes. It
is not meant to be a comprehensive description of all software development processes,
but is an example of one such process.

4.3 Summary of Extension

Table 4-1 Stereotypes

Metamodel Class Stereotype Name

Model use case model

Model analysis model

Model design model

Model implementation model

OMG-UML V1.2 Stereotypes and Notation May 1998 4-3

4

4.3.1 TaggedValues

Currently, this extension does not introduce any new TaggedValues.

4.3.2 Constraints

Currently, this extension does not introduce any new Constraints, other than those
associated with the well-formedness semantics of the stereotypes introduced.

4.3.3 Prerequisite Extensions

This extension requires no other extensions to the UML for its definition.

4.4 Stereotypes and Notation

4.4.1 Model, Package, and Subsystem Stereotypes

A software development process comprises several different, but related models.
Software engineering process models are characterized by the lifecycle stage that they
represent. The different models are stereotypes of model:

• Use Case

Package use case system

Subsystem analysis system

Subsystem design system

Package implementation system

Subsystem analysis subsystem

Subsystem design system

Package implementation system

Package use case package

Subsystem analysis service package

Subsystem design service package

Class boundary

Class entity

Class control

Association communicates

Association subscribes

Collaboration use case realization

Table 4-1 Stereotypes

4-4 OMG-UML V1.2 May 1998

4

• Analysis

• Design

• Implementation

Use Case

A Use Case Model is a model in which the top-level package is a use case system.

A Use Case System is a top-level package. A use case system contains use case
packages and/or use cases and/or actors and relationships.

A Use Case Package is a package containing use cases and actors with relationships. A
use case is not partitioned over several use case packages.

Analysis

An Analysis Model is a model whose top-level package is an analysis system.

An Analysis System is a top-level subsystem. An analysis system contains analysis
subsystems, and/or analysis service packages, and/or analysis classes (i.e., entity,
boundary, and control), and relationships.

An Analysis Subsystem is a subsystem containing other analysis subsystems, analysis
service packages, analysis classes (i.e., entity, boundary, and control), and
relationships.

An Analysis Service Package is a subsystem containing analysis classes (i.e., entity,
boundary, and control) and relationships.

Design

A Design Model is a model whose top-level package is a design system.

A Design System is a top-level subsystem. A design system contains design
subsystems, and/or design service packages, and/or design classes, and relationships.

A Design Subsystem is a subsystem containing other design subsystems, design
service packages, design classes, and relationships.

A Design Service Package is a subsystem containing design classes and relationships.

Implementation

An Implementation Model is a model whose top-level package is an implementation
system.

An Implementation System is a top-level package. An implementation system contains
implementation subsystems, and/or components, and relationships.

OMG-UML V1.2 Stereotypes and Notation May 1998 4-5

4

An Implementation Subsystem is a package containing implementation subsystems,
and/or components, and relationships.

Notation

Package stereotypes are indicated with stereotype keywords in guillemets («stereotype
name»). There are no stereotyped icons for packages.

Figure 4-1 Objectory Packages

4.4.2 Class Stereotypes

Analysis classes come in the following three kinds: 1) entity, 2) control, and 3)
boundary. Design classes are not stereotyped in the process.

«use case system»

Ordering

Check Status

Establish
Credit

Fill Order

Place Order

Customer

Salesperson

Shipping
Clerk

Supervisor

4-6 OMG-UML V1.2 May 1998

4

Entity

Entity is a class that is passive; that is, it does not initiate interactions on its own. An
entity object may participate in many different use case realizations and usually
outlives any single interaction.

Control

Control is a class, an object of which denotes an entity that controls interactions
between a collection of objects. A control class usually has behavior specific for one
use case and a control object usually does not outlive the use case realizations in which
it participates.

Boundary

A Boundary is a class that lies on the periphery of a system, but within it. It interacts
with actors outside the system as well as objects of all three kinds of analysis classes
within the system.

Notation

Class stereotypes can be shown with keywords in guillemets. They can also be shown
with the following special icons.

Figure 4-2 Class Stereotypes

4.4.3 Association Stereotypes

The following are special associations between classes.

PenTracker
PenTracker
«control»

OrderEntry
OrderEntry
«boundary»

BankAccount
BankAccount

«entity»

OMG-UML V1.2 Well-Formedness Rules May 1998 4-7

4

Communicates

Communicates is an association between actors and use cases denoting that the actor
sends messages to the use case and/or the use case sends messages to the actor. This
may be one-way or two-way navigation. The direction of communication is indicated
by the navigability of the association.

Subscribes

Subscribes is an association whose source is a class (called the subscriber) and whose
target is a class (called the publisher). The subscriber specifies a set of events. The
subscriber is notified when one of those events occurs in the target.

Notation

Association stereotypes are indicated by keywords in guillemets. There are no special
stereotype icons. The stereotype «communicates» on Actor-Use Case associations may
be omitted, since it is the only kind of relationships between actors and use cases.

4.5 Well-Formedness Rules

Stereotyped model elements are subject to certain constraints, in addition to the
constraints imposed on all elements of their kind.

4.5.1 Generalization

All the modeling elements in a generalization must be of the same stereotype.

4.5.2 Association

Apart from standard UML combinations, the following combinations are allowed for
each stereotype.

Table 4-2 Valid Association Stereotype Combinations

 To:
From::

actor boundary entity control

actor communicates

boundary communicates communicates communicates
subscribes

communicates

entity communicates
subscribes

control communicates communicates
subscribes

communicates

4-8 OMG-UML V1.2 May 1998

4

Part 2 - UML Extension for Business Modeling

4.6 Introduction

The UML Extension for Business Modeling is defined in terms of the UML’s extension
mechanisms, namely Stereotypes, TaggedValues, and Constraints. See the UML
Semantics chapter for a full description of the UML extension mechanisms.

This section describes stereotypes that can be used to tailor the use of UML for
business modeling. All of the UML concepts can be used for business modeling, but
providing business stereotypes for some common situations provides a common
terminology for this domain. Note that UML can be used to model different kinds of
systems (software systems, hardware systems, and real-world organizations). Business
modeling models real-world organizations.

This section is not meant to be a complete definition of business modeling concepts
and how to apply them, but it serves the purpose of registering this extension,
including its icons.

4.7 Summary of Extension

4.7.1 Stereotypes

Table 4-3 Metamodel Class Stereotypes

Metamodel Class Stereotype Name

Model use case model

Package use case system

Package use case package

Model object model

Subsystem object system

Subsystem organization unit

Subsystem work unit

Class worker

Class case worker

Class internal worker

Class entity

Collaboration use case realization

Association subscribes

OMG-UML V1.2 Stereotypes and Notation May 1998 4-9

4

4.7.2 Tagged Values

This extension does not currently introduce any new TaggedValues.

4.7.3 Constraints

This extension does not currently introduce any new Constraints, other than those
associated with the well-formedness semantics of the stereotypes introduced.

4.7.4 Prerequisite Extensions

This extension requires no other extensions to the UML for its definition.

4.8 Stereotypes and Notation

4.8.1 Model, Package, and Subsystem Stereotypes

A business system comprises several different, but related models. The models are
characterized by being exterior or interior to the business system they represent.
Exterior models are use case models and interior models are object models. A large
business system may be partitioned into subordinate business systems. The following
are the model stereotypes.

Use Case

A Use Case Model is a model that describes the business processes of a business and
their interactions with external parties such as customers and partners.

A use case model describes:

• the businesses modeled as use cases.

• parties exterior to the business (e.g., customers and other businesses) modeled as
actors.

• the relationships between the external parties and the business processes.

A Use Case System is the top-level package in a use case model. A use case system
contains use case packages, use cases, actors, and relationships.

A Use Case Package is a package containing use cases and actors with relationships. A
use case is not partitioned over several use case packages.

Object

An Object Model is a model in which the top-level package is an object system. These
models describe the things interior to the business system itself.

4-10 OMG-UML V1.2 May 1998

4

An Object System is the top-level subsystem in an object model. An object system
contains organization units, classes (workers, work units, and entities), and
relationships.

Organization Unit

Organization Unit is a subsystem corresponding to an organization unit of the actual
business. An organization unit subsystem contains organization units, work units,
classes (workers and entities), and relationships.

Work Unit

A Work Unit is a subsystem that contains one or more entities.

A work unit is a task-oriented set of objects that form a recognizable whole to the end
user. It may have a facade defining the view of the work unit’s entities relevant to the
task.

Notation

Package stereotypes are indicated with stereotype keywords in guillemets («stereotype
name»). There are no special stereotyped icons for packages.

4.8.2 Class Stereotypes

Business objects come in the following kinds:

• actor (defined in the UML)

• worker

• case worker

• internal worker

• entity

Worker

A Worker is a class that represents an abstraction of a human that acts within the
system. A worker interacts with other workers and manipulates entities while
participating in use case realizations.

Case Worker

A Case Worker is a worker who interacts directly with actors outside the system.

OMG-UML V1.2 Stereotypes and Notation May 1998 4-11

4

Internal Worker

An Internal Worker is a worker that interacts with other workers and entities inside the
system.

Entity

An Entity is a class that is passive; that is, it does not initiate interactions on its own.
An entity object may participate in many different use case realizations and usually
outlives any single interaction. In business modeling, entities represent objects that
workers access, inspect, manipulate, produce, and so on. Entity objects provide the
basis for sharing among workers participating in different use case realizations.

Notation

Class stereotypes can be shown with keywords in guillemets within the normal class
symbol. They can also be shown with the following special icons.

Figure 4-3 Class Stereotypes

The preceding icons represent common concepts useful in most business models.

Example of Alternate Notations

Tools and users are free to add additional icons to represent more specific concepts.
Examples of such icons include icons for documents and actions, as shown in
Figure 4-4.

OrderEntry
«case worker»

Trade
«entity»

Trade

Salesperson

Administrator
Administrator

«worker»

Designer
Designer

«internal worker»

4-12 OMG-UML V1.2 May 1998

4

Figure 4-4 Example of Special Icons for Entities and Actions

In this example, "Trade [requested]" and "Trade [traded]" represent an entity in two
states, where the Trade is the dominant entity of a Trade Document work unit. Client
Trading is an action. The icons are designed to be meaningful in the particular
problem domain.

4.8.3 Association Stereotypes

The following are special business modeling associations between classes:

Communicates

Communicates is an association used by two instances to interact. This may be one-
way or two-way navigation. The direction of communication is the same as the
navigability of the association.

Subscribes

Subscribes is an association whose source is a class (called the subscriber) and whose
target is a class (called the publisher). The subscriber specifies a set of events. The
subscriber is notified when one of those events occurs in the target.

Notation

Association stereotypes are indicated by keywords in guillemets. There are no special
stereotype icons.

4.9 Well-Formedness Rules

Stereotyped model elements are subject to certain constraints in addition to the
constraints imposed on all elements of their kind.

Trade
[requested]

Client
Trading

Trade
[traded]

OMG-UML V1.2 Well-Formedness Rules May 1998 4-13

4

4.9.1 Generalization

All the modeling elements in a generalization must be of the same stereotype.

4.9.2 Association

Apart from standard UML combinations, the following combinations are allowed for
each stereotype.

Table 4-4 Valid Association Stereotype Combinations

 To:
From:

actor case worker entity work unit internal worker

actor communicates communicatessubscribes

case worker communicates communicates communicatessubscribes communicatessubscribes communicates

entity communicatessubscribes communicates

work unit communicates communicates communicatessubscribes communicatessubscribes communicates

internal worker communicates communicatessubscribes communicatessubscribes communicates

4-14 OMG-UML V1.2 May 1998

4

 OMG-UML V1.2 May 1998 5-1

 OA&D CORBAfacility Interface
Definition 5

This chapter specifies the interfaces for a CORBAfacility for Object Analysis &
Design, consistent with the Unified Modeling Language, version 1.0. An OA&D
Facility is a repository for models expressed in the UML. The facility enables the
creation, storage, and manipulation of UML models. The facility enables clients to be
developed that provide a wide variety of model-based development capabilities,
including:

• Drawing and animation of UML models in UML and other notations

• Enforcement of process and method style guidelines

• Metrics, queries, and reports

• Automation of certain development lifecycle activities (e.g., through design wizards
and code generation).

Contents

This chapter contains the following sections.

Section Title Page

“Service Description” 5-2

“Mapping of UML Semantics to Facility Interfaces” 5-4

“Facility Implementation Requirements” 5-9

“IDL Modules” 5-10

5-2 OMG-UML V1.2 May 1998

5

5.1 Service Description

There are two sets of interfaces provided: 1) generic and 2) tailored. Both sets of
interfaces enable the creation and traversal of UML model elements. The generic
interfaces are included in the Reflective module.

This is a set of general-purpose interfaces that provide utility for browser type
functionality and as a base for the tailored interfaces. They are more fully described in
the Meta-Object Facility (MOF) specification.

A set of tailored interfaces that are specifically typed to the UML metamodel elements
is defined. The tailored interfaces inherit from the generic interfaces. The tailored
interfaces provide capabilities necessary to instantiate, traverse, and modify UML
model elements in the facility, directly in terms of the UML metamodel, with type
safety. The specifications of the tailored interfaces were generated by applying a set of
transformations to the UML semantic metamodel. Because the tailored interfaces were
generated consistently from a set of patterns (described more fully in the MOF
specification), they are easy to understand and program against. It is feasible to
generate automatically the implementation for the OA&D facility, for the most part,
because of these patterns and because the UML metamodel is strictly structural.

The UML is designed with a layered architecture. Implementers can choose which
layers to implement, and whether to implement only the generic interfaces or the
generic and tailored interfaces.

One of the primary goals was to advance the state of the industry by enabling OO
modeling tool interoperability. This OA&D facility defines a set of interfaces to
provide that tool interoperability. However, enabling meaningful exchange of model
information between tools requires agreement on semantics and their visualization. The
metamodel documenting the UML semantics and notation is defined in the UML
Semantics chapter. Most of the IDL defined in this document is a direct mapping of the
UML v1.0 metamodel, based on the IDL mapping defined in the MOF specification.
Because the UML semantics are sufficiently complex, they are documented separately
in the UML Semantics chapter, whereas this chapter is void of explanations of
semantics.

OMG-UML V1.1 Service Description March 1998 5-3

5

5.1.1 Tool Sharing Options

A major goal is to achieve semantic interoperability between OA&D tools. Figure 5-1
depicts several viable alternatives to exchanging model information between tools.

Figure 5-1 Model Sharing Alternatives between OA&D Tools

General-purpose Repository

Two tools could interface to the same repository and access a model there. The
MetaObject Facility (MOF) could be this repository. This mapping is very
implementation dependent, since the MOF cannot necessarily enforce the richer
semantics defined in a UML-compliant tool. This approach is not described in this
response, although the mapping to the MOF is described in the Preface.

Model Transfer

Two tools could understand the same stream format and exchange models via that
stream, which could be a file. This is referred to as an "import facility." Having this
interface would be necessary to provide a path for tools that are not implemented in an
API (CORBA or non-CORBA) or repository environment. The Preface discusses
stream format and CDIF further.

Model Access

Two tools could exchange models on a detail-by-detail basis. This is referred to as a
"connection facility." Although this would not be the most efficient method for sharing
an entire model, this type of access enables semantic interoperability to the greatest

Object
Analysis &

Design
Facility

Tool 1

MetaObject Facility
or

Repository

Tool 2

Intermediate Stream/File

Model Transfer

Repository

Model Access

readwrite

5-4 OMG-UML V1.2 May 1998

5

degree and is extremely useful for client applications. This, too, is a repository, but its
interfaces are specific to the OA&D domain. A set of IDL interfaces is defined in this
document to provide model access.

In summary, the OA&D Facility defines IDL interfaces for clients to use in a Model
Access mode. The interface is consistent with the UML metamodel contained in this
response.

5.2 Mapping of UML Semantics to Facility Interfaces

Understanding the process used to generate the IDL for this facility is helpful in
understanding the resulting IDL. The process was as follows:

1. Converted the UML Semantics Metamodel into the Interface Metamodel, making
necessary refinements for CORBA interfaces.

2. Stored the Interface Metamodel into a MetaObject Facility prototype as an instance
of the MOF meta-metamodel elements.

3. Generated IDL from the MOF, based on the mapping defined in the MOF proposal.

5.2.1 Transformation of UML Semantics Metamodel into Interfaces
Metamodel

A model was created representing the interfaces required on the OA&D Facility. This
interface metamodel is nearly identical to the UML Semantics metamodel, so it is not
documented explicitly. The following list summarizes the conversions made from the
UML Semantics metamodel:

• Named associations and their ends, where names were missing.

• Deleted derived associations, since they would have resulted in redundant
interfaces.

• Mapped all UML data types and select classes to CORBA data types.

• Transformed association classes into more fundamental structures. (A goal of the
MOF was simplicity, so it does not support association classes.)

• Combined the UML DataTypes and Extension Mechanisms packages into Core,
resulting in easier-to-use name scoping for the interfaces.

• Renamed certain classifiers, association ends, and attributes to avoid conflicts with
words reserved in Reflective interfaces, CORBA, and MOF.

• Set navigability for associations to be uni-directional between classifiers that
crossed packages. This was necessary to permit implementations of the more
fundamental packages/modules without requiring a full UML implementation1 2 .

1. All other navigability is assumed to be useful. For example, although an implementation
environment class should not know about its child classes, it is useful for an OA&D tool.

OMG-UML V1.1 Mapping of UML Semantics to Facility Interfaces March 1998 5-5

5

• Renamed AssociationClass to UmlAssociationClass. (The MOF IDL generation
creates a FooClass for every Foo, so the UML class ‘Association’ would have
created an ‘AssociationClass’ interface which would have clashed.)

• Renamed enumeration literal names so they would be unique within the resulting
IDL modules.

The IDL generation from the MOF assures that all root classes in the interface
metamodel are specializations of Reflective::RefObject, so this relationship is assumed
to be present in the interface metamodel.

The remainder of this chapter describes the transformation of Association Classes as in
the UML Semantics metamodel to the interface metamodel, summarizes the usage of
CORBA data types, and summarizes the source and purpose of the MOF Reflective
interfaces.

Transformation for Association Classes

Since the MOF does not represent the semantics of association classes directly, we
needed to convert the association classes in the UML into a simple class and add
necessary relationships to enable complete navigation (in the resulting facility IDL).
Figure 5-2 shows an example association class as it would appear in the semantic
metamodel.

Figure 5-2 An Association Class in a Semantic Metamodel

2. The OA&D facility interfaces exclude navigation from classes in base packages/modules to
classes in dependent packages/modules. This is deliberate. For example, an instance of a
UML class does not know about a State Machine that might be attached to it. Vendors
should consider adding interfaces to support such navigation when implementing multiple
modules.

b_rolea_role

1..* *

A

AB

B

1.. AB

5-6 OMG-UML V1.2 May 1998

5

Figure 5-3 shows the corresponding transformed structure in the interface model.

Figure 5-3 Corresponding Association Class in an Interface Metamodel

MOF Generic Interfaces

The MOF specification fully describes the generic interfaces. As a summary, the
generic interfaces in the Reflective module provide the following:

• consistent treatment of type information,

• exception handling (including constraint violations, missing parameters, etc.), and

• generic creation and traversal of objects.

Note – The MOF specification replaces the definition of the Reflective module
contained in this specification.

DataTypes for Interface

UML itself is platform independent; therefore, during the translation to the interface
model, specific CORBA data types were selected as the structural base. These are
listed in Table 5-1.

Table 5-1 Data Types

UML DataType IDL Declaration

String //string

Integer typedef short Integer;

Uninterpreted typedef any Uninterpreted;

Time typedef float Time;

Name struct Name { string body ; };

GraphicMarker struct GraphicMarker { any body ; } ;

Geometry struct Geometry { any body ; } ;

TimeExpression struct TimeExpression { Name language ; any body ; } ;

b_rolea_role

1..* *

A

AB

*

1

B

1.. AB
1

1..*

AAb

a_role

BAb

b_role

ab ab

1 1

1..**

OMG-UML V1.1 Mapping of UML Semantics to Facility Interfaces March 1998 5-7

5

5.2.2 Mapping of Interface Model into MOF

The UML metamodel elements can be expressed as instances of MOF meta-metamodel
elements. This mapping is summarized in the table below for the relevant elements in
the interface metamodel.

ObjectSetExpression struct ObjectSetExpression { Name language ; any body ; } ;

ProcedureExpression struct ProcedureExpression { Name language ; any body ; } ;

Expression struct Expression { Name language ; any body ; } ;

BooleanExpression struct BooleanExpression { Name language ; any body ; } ;

Mapping struct Mapping { any body ; } ;

MultiplicityRange struct MultiplicityRange { lower short; upper short ; } ;

Multiplicity sequence < MultiplicityRange > Multiplicity;

ChaneableKind enum ChangeableKind { ck_none, ck_frozen, ck_addOnly };

OperationDirectionKind enum OperationDirectionKind { odk_provide, odk_require };

ParameterDirectionKind enum ParameterDirectionKind {pdk_in, pdk_inout, pdk_out,
pdk_return};

MessageDirectionKind enum MessageDirectionKind { mdk_activation, mdk_return };

SynchronousKind enum SynchronousKind { sk_synchronous, sk_asynchronous};

ScopeKind enum ScopeKind {sk_instance, sk_type};

VisibilityKind enum VisibilityKind { vk_publc, vk_protected, vk_private };

PseudostateKind enum PseudostateKind { pk_initial, pk_final, pk_shallowHistory,
pk_deepHistory, pk_join, pk_fork, pk_branch, pk_or };

CallConcurrencyKind enum CallConcurrencyKind { cck_sequential, cck_guarded,
cck_concurrent } ;

AggregationKind enum AggregationKind {ak_none, ak_shared, ak_composite};

Table 5-2 Relevant Elements in the Interface Metamodel

Package Package, Contains

Class Class, Contains

Attribute Attribute, Contains, IsOfType

DataType DataType

Association Association, AssociationEnd, Reference, Contains, RefersTo,
IsOfType

Generalization Generalizes

Table 5-1 Data Types

5-8 OMG-UML V1.2 May 1998

5

These mappings are relatively straightforward, with the exception of how an
Association is instantiated. Figure 5-4 on page 5-8 shows an example association as it
would appear in the interface model. Figure 5-5 on page 5-8 illustrates a relevant view
of the MOF meta-metamodel.

Figure 5-4 Association at Meta-Model Level Example

Figure 5-5 Projection of MOF Meta-Metamodel

Figure 5-6 on page 5-9 is a collaboration diagram showing how the association would
be instantiated in terms of the MOF.

X YyEnd

xEnd

XY

Association

1

referencedEnd

referent

container

containedElement

Class

type

type

1

1

AssociationEnd

1

/Contains

1

/IsOfType

0..*

1

Reference

1

0..*

RefersTo

1

/IsOfType

Class

0..1

0..*

0..1

0..*

/Contains

containedElement

2

container

OMG-UML V1.1 Facility Implementation Requirements March 1998 5-9

5

Figure 5-6 Collaboration Diagram showing Association Instantiated in Terms of MOF

In Figure 5-6, the message arrows are based on the navigation in the MOF meta-
metamodel and indicate structural knowledge and potential messaging using the
resulting interface.

5.2.3 Mapping from MOF to IDL

The description for the mapping from instances of models stored in the MOF is
described in detail in the MOF specification. The result of this mapping is the
generated IDL in this specification

5.3 Facility Implementation Requirements

Although this chapter focuses on defining the interfaces for the facility and leaves
implementation decisions up to the creativity of vendors, there are some
implementation requirements.

The UML Standard Elements (stereotypes, constraints, and tags) must be known to a
facility implementation, or provided via a load. This is necessary so that the
interoperability of these elements can be achieved. The semantics of the standard
elements (e.g., containment restrictions) must be enforced. The Standard Elements are
documented in the UML Semantics chapter.

The facility interfaces inherit from generic interfaces defined in the Reflective module.
These interfaces provide common operations, such as verify(). The verify() operation
should be implemented to return well-formedness violations numbered equal to the
well-formedness rule following the meta-class definition in the UML Semantics

X : Class
Y : Class

xEnd : AssociationEnd XY : Association

yEndRef : Reference

yEnd : AssociationEnd

5-10 OMG-UML V1.2 May 1998

5

chapter. This includes the semantics for the UML Standard Elements. The Reflective
interfaces and exception handling is described in the Meta Object Facility (MOF)
specification.

5.4 IDL Modules

5.4.1 Reflective
1 #ifndef REFLECTIVE_IDL

2 #define REFLECTIVE_IDL

3

4 // #include <orb.idl>

5 module Reflective {

6

7 interface RefBaseObject;

8

9 interface RefObject;

10 typedef sequence < RefObject > RefObjectUList;

11 typedef sequence < RefObject > RefObjectSet;

12

13 interface RefAssociation;

14 interface RefPackage;

15

16 typedef RefObject DesignatorType;

17 typedef any ValueType;

18 typedef sequence < ValueType > ValueTypeList;

19 typedef sequence < RefObject, 2 > Link;

20 typedef sequence < ValueType > ErroneousValues;

21

22 const string UNDERFLOW_VIOLATION = "underflow";

23 const string OVERFLOW_VIOLATION = "overflow";

24 const string DUPLICATE_VIOLATION = "duplicate";

25 const string TYPE_CLOSURE_VIOLATION = "type closure";

26 const string COMPOSITION_VIOLATION = "composition";

27 const string INVALID_OBJECT_VIOLATION = "invalid object";

28

29 struct StructuralViolation {

30 string violation_kind;

31 RefObject element_designator;

32 ErroneousValues offending_values;

33 };

OMG-UML V1.1 IDL Modules March 1998 5-11

5

34 typedef sequence < StructuralViolation > StructuralViolationSet;

35 exception StructuralError {

36 StructuralViolationSet violations;

37 };

38 struct ConstraintViolation {

39 RefObject constraint_designator;

40 ErroneousValues offending_values;

41 string explanation_text;

42 };

43 exception ConstraintError {

44 ConstraintViolation violation;

45 };

46 struct ErrorDescription {

47 string error_name;

48 ErroneousValues offending_values;

49 string explanation_text;

50 };

exception SemanticError {

52 ErrorDescription error;

53 };

54

55 exception NotFound {};

56 exception NotSet {};

57 exception BadPosition {};

58 exception AlreadyCreated {};

59 exception InvalidLink {};

60 exception InvalidDesignator {

61 DesignatorType designator;

62 string element_kind;

63 };

64 exception InvalidValue {

65 DesignatorType designator;

66 string element_kind;

67 ValueType value;

68 CORBA::TypeCode type_expected;

69 };

70 exception InvalidObject {

71 DesignatorType designator;

72 RefObject obj;

73 CORBA::TypeCode type_expected;

74 };

5-12 OMG-UML V1.2 May 1998

5

75 exception MissingParameter {

76 DesignatorType designator;

77 };

78 exception TooManyParameters {};

79 exception OtherException {

80 DesignatorType exception_designator;

81 ValueTypeList exception_values;

82 };

83

84 interface RefBaseObject {

85 DesignatorType meta_object ();

86 boolean itself (in RefBaseObject other_object);

87 RefBaseObject repository_container ();

88 }; // end of RefBaseObject

89

90

91 interface RefObject : RefBaseObject {

92 boolean is_instance_of (in DesignatorType obj_type,

93 in boolean consider_subtypes);

94 RefObject create_instance (in ValueTypeList args)

95 raises (TooManyParameters,

96 MissingParameter,

97 InvalidValue,

98 AlreadyCreated,

99 StructuralError,

100 ConstraintError,

101 SemanticError);

102 RefObjectSet all_objects (in boolean include_subtypes);

103 void set_value (in DesignatorType feature,

104 in ValueType value)

105 raises (InvalidDesignator,

106 InvalidValue,

107 StructuralError,

108 ConstraintError,

109 SemanticError);

110 ValueType value (in DesignatorType feature)

111 raises (InvalidDesignator,

112 SemanticError);

113 void add_value (in DesignatorType feature,

114 in ValueType value)

115 raises (InvalidDesignator,

OMG-UML V1.1 IDL Modules March 1998 5-13

5

116 InvalidValue,

117 StructuralError,

118 ConstraintError,

119 SemanticError);

120 void add_value_before (in DesignatorType feature,

121 in ValueType value,

122 in ValueType existing_value)

123 raises (InvalidDesignator,

124 InvalidValue,

125 NotFound,

126 StructuralError,

127 ConstraintError,

128 SemanticError);

129 void add_value_at (in DesignatorType feature,

130 in ValueType value,

131 in long position)

132 raises (InvalidDesignator,

133 InvalidValue,

134 BadPosition,

135 StructuralError,

136 ConstraintError,

137 SemanticError);

138 void modify_value (in DesignatorType feature,

139 in ValueType existing_value,

140 in ValueType new_value)

141 raises (InvalidDesignator,

142 InvalidValue,

143 NotFound,

144 StructuralError,

145 ConstraintError,

146 SemanticError);

147 void modify_value_at (in DesignatorType feature,

148 in ValueType new_value,

149 in long position)

150 raises (InvalidDesignator,

151 InvalidValue,

152 BadPosition,

153 StructuralError,

154 ConstraintError,

155 SemanticError);

156 void remove_value (in DesignatorType feature,

5-14 OMG-UML V1.2 May 1998

5

157 in ValueType existing_value)

158 raises (InvalidDesignator,

159 InvalidValue,

160 NotFound,

161 StructuralError,

162 ConstraintError,

163 SemanticError);

164 void remove_value_at (in DesignatorType feature,

165 in long position)

166 raises (InvalidDesignator,

167 InvalidValue,

168 BadPosition,

169 NotFound,

170 StructuralError,

171 ConstraintError,

172 SemanticError);

173 ValueType invoke_operation (in DesignatorType requested_operation,

174 in ValueTypeList args)

175 raises (InvalidDesignator,

176 TooManyParameters,

177 MissingParameter,

178 InvalidValue,

179 OtherException,

180 ConstraintError,

181 SemanticError);

182 }; // end of interface RefObject

183

184 interface RefAssociation : RefBaseObject {

185 boolean link_exists (in Link some_link)

186 raises (InvalidLink,

187 SemanticError);

188 RefObjectUList query (in DesignatorType query_end,

189 in RefObject query_object)

190 raises (InvalidDesignator,

191 InvalidObject,

192 SemanticError);

193 void add_link (in Link new_link)

194 raises (InvalidLink,

195 StructuralError,

196 ConstraintError,

197 SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-15

5

198 void add_link_before (in Link new_link,

199 in DesignatorType position_end,

200 in RefObject position_value)

201 raises (InvalidDesignator,

202 InvalidObject,

203 InvalidLink,

204 NotFound,

205 StructuralError,

206 ConstraintError,

207 SemanticError);

208 void modify_link (in Link existing_link,

209 in DesignatorType position_end,

210 in RefObject position_value)

211 raises (InvalidDesignator,

212 InvalidObject,

213 InvalidLink,

214 NotFound,

215 StructuralError,

216 ConstraintError,

217 SemanticError);

218 void remove_link (in Link existing_link)

219 raises (InvalidLink,

220 NotFound,

221 StructuralError,

222 ConstraintError,

223 SemanticError);

224 }; // end of interface RefAssociation

225

226 interface RefPackage : RefBaseObject {

227 RefObject get_class_ref (in DesignatorType type)

228 raises (InvalidDesignator);

229 RefAssociation get_association (in DesignatorType association)

230 raises (InvalidDesignator);

231 RefPackage get_nested_package (in DesignatorType nested_package)

232 raises (InvalidDesignator);

233 }; // end of interface RefPackage

234 }; // end of module Reflective

235

236 #endif

UMLCore

5-16 OMG-UML V1.2 May 1998

5

237 #include "Reflective.idl"

238

239 module UmlCore {

240 interface UmlCorePackage;

241 interface Enumeration;

242 interface EnumerationClass;

243 typedef sequence<Enumeration> EnumerationUList;

244 interface Generalization;

245 interface GeneralizationClass;

246 typedef sequence<Generalization> GeneralizationUList;

247 typedef sequence<Generalization> GeneralizationSet;

248 interface Class;

249 interface ClassClass;

250 typedef sequence<Class> ClassUList;

251 interface Dependency;

252 interface DependencyClass;

253 typedef sequence<Dependency> DependencyUList;

254 typedef sequence<Dependency> DependencySet;

255 interface Parameter;

256 interface ParameterClass;

257 typedef sequence<Parameter> ParameterUList;

258 interface GeneralizableElement;

259 interface GeneralizableElementClass;

260 typedef sequence<GeneralizableElement> GeneralizableElementUList;

261 interface Constraint;

262 interface ConstraintClass;

263 typedef sequence<Constraint> ConstraintUList;

264 typedef sequence<Constraint> ConstraintSet;

265 interface ModelElement;

266 interface ModelElementClass;

267 typedef sequence<ModelElement> ModelElementUList;

268 typedef sequence<ModelElement> ModelElementSet;

269 interface ElementOwnership;

270 interface ElementOwnershipClass;

271 typedef sequence<ElementOwnership> ElementOwnershipUList;

272 typedef sequence<ElementOwnership> ElementOwnershipSet;

273 interface Classifier;

274 interface ClassifierClass;

275 typedef sequence<Classifier> ClassifierUList;

276 typedef sequence<Classifier> ClassifierSet;

277 interface UmlAttribute;

OMG-UML V1.1 IDL Modules March 1998 5-17

5

278 interface UmlAttributeClass;

279 typedef sequence<UmlAttribute> UmlAttributeUList;

280 interface EnumerationLiteral;

281 interface EnumerationLiteralClass;

282 typedef sequence<EnumerationLiteral> EnumerationLiteralUList;

283 interface Element;

284 interface ElementClass;

285 typedef sequence<Element> ElementUList;

286 interface Namespace;

287 interface NamespaceClass;

288 typedef sequence<Namespace> NamespaceUList;

289 interface Primitive;

290 interface PrimitiveClass;

291 typedef sequence<Primitive> PrimitiveUList;

292 interface UmlAssociationClass;

293 interface UmlAssociationClassClass;

294 typedef sequence<UmlAssociationClass> UmlAssociationClassUList;

295 interface StructuralFeature;

296 interface StructuralFeatureClass;

297 typedef sequence<StructuralFeature> StructuralFeatureUList;

298 interface Feature;

299 interface FeatureClass;

300 typedef sequence<Feature> FeatureUList;

301 typedef sequence<Feature> FeatureSet;

302 interface Stereotype;

303 interface StereotypeClass;

304 typedef sequence<Stereotype> StereotypeUList;

305 typedef sequence<Stereotype> StereotypeSet;

306 interface Association;

307 interface AssociationClass;

308 typedef sequence<Association> AssociationUList;

309 interface TaggedValue;

310 interface TaggedValueClass;

311 typedef sequence<TaggedValue> TaggedValueUList;

312 typedef sequence<TaggedValue> TaggedValueSet;

313 interface AssociationEnd;

314 interface AssociationEndClass;

315 typedef sequence<AssociationEnd> AssociationEndUList;

316 typedef sequence<AssociationEnd> AssociationEndSet;

317 interface Operation;

318 interface OperationClass;

5-18 OMG-UML V1.2 May 1998

5

319 typedef sequence<Operation> OperationUList;

320 interface BehavioralFeature;

321 interface BehavioralFeatureClass;

322 typedef sequence<BehavioralFeature> BehavioralFeatureUList;

323 typedef sequence<BehavioralFeature> BehavioralFeatureSet;

324 interface Request;

325 interface RequestClass;

326 typedef sequence<Request> RequestUList;

327 interface Method;

328 interface MethodClass;

329 typedef sequence<Method> MethodUList;

330 typedef sequence<Method> MethodSet;

331 interface DataType;

332 interface DataTypeClass;

333 typedef sequence<DataType> DataTypeUList;

334 interface UmlInterface;

335 interface UmlInterfaceClass;

336 typedef sequence<UmlInterface> UmlInterfaceUList;

337 interface Structure;

338 interface StructureClass;

339 typedef sequence<Structure> StructureUList;

340 enum AggregationKind {ak_none, ak_shared, ak_composite};

341 enum CallConcurrencyKind { cck_sequential, cck_guarded, cck_concurrent };

342 enum ChangeableKind { ck_none, ck_frozen, ck_addOnly };

343 typedef short Integer;

344 enum MessageDirectionKind { mdk_activation, mdk_return };

345 enum OperationDirectionKind { odk_provide, odk_require };

346 enum ParameterDirectionKind {pdk_in, pdk_inout, pdk_out, pdk_return};

347 enum ScopeKind {sk_instance, sk_type};

348 enum SynchronousKind { sk_synchronous, sk_asynchronous };

349 typedef float Time;

350 typedef any Uninterpreted;

351 enum VisibilityKind { vk_publc, vk_protected, vk_private };

352 struct Name { string body; };

353 struct Expression { Name language; any body; };

354 struct BooleanExpression { Name language; any body; };

355 struct ObjectSetExpression { Name language; any body; };

356 struct ProcedureExpression { Name language; any body; };

357 struct TimeExpression { Name language; any body; };

358 struct Geometry { any body; };

359 struct GraphicMarker { any body; };

OMG-UML V1.1 IDL Modules March 1998 5-19

5

360 struct MultiplicityRange { short lower; short upper; };

361 enum PseudostateKind { pk_initial,

362 pk_final,

363 pk_shallowHistory,

364 pk_deepHistory,

365 pk_join,

366 pk_fork,

367 pk_branch,

368 pk_or };

369 typedef sequence <MultiplicityRange> Multiplicity;

370 struct Mapping { any body; };

371

372 interface ElementClass : Reflective::RefObject {

373 readonly attribute ElementUList all_of_kind_element;

374 };

375

376 interface Element : ElementClass { };

377

378 interface TaggedValueClass : ElementClass {

379 readonly attribute TaggedValueUList all_of_kind_tagged_value;

380 readonly attribute TaggedValueUList all_of_type_tagged_value;

381 TaggedValue create_tagged_value (in Name tag,

382 in Uninterpreted uml_value)

383 raises (Reflective::SemanticError);

384 };

385

386 interface TaggedValue : TaggedValueClass, Element {

387 Name tag ()

388 raises (Reflective::SemanticError);

389 void set_tag (in Name new_value)

390 raises (Reflective::SemanticError);

391 Uninterpreted uml_value ()

392 raises (Reflective::SemanticError);

393 void set_uml_value (in Uninterpreted new_value)

394 raises (Reflective::SemanticError);

395 };

396

397 interface EnumerationLiteralClass : ElementClass {

398 readonly attribute EnumerationLiteralUList
all_of_kind_enumeration_literal;

5-20 OMG-UML V1.2 May 1998

5

399 readonly attribute EnumerationLiteralUList
all_of_type_enumeration_literal;

400 EnumerationLiteral create_enumeration_literal (in UmlCore::Name name)

401 raises (Reflective::SemanticError);

402 };

403

404 interface EnumerationLiteral : EnumerationLiteralClass, Element {

405 UmlCore::Name name ()

406 raises (Reflective::SemanticError);

407 void set_name (in UmlCore::Name new_value)

408 raises (Reflective::SemanticError);

409 UmlCore::Enumeration enumeration ()

410 raises (Reflective::SemanticError);

411 void set_enumeration (in UmlCore::Enumeration new_value)

412 raises (Reflective::SemanticError);

413 };

414

415 interface ModelElementClass : ElementClass {

416 readonly attribute ModelElementUList all_of_kind_model_element;

417 };

418

419 interface ModelElement : ModelElementClass, Element {

420 UmlCore::Name name ()

421 raises (Reflective::SemanticError);

422 void set_name (in UmlCore::Name new_value)

423 raises (Reflective::SemanticError);

424 UmlCore::Namespace namespace ()

425 raises (Reflective::NotSet, Reflective::SemanticError);

426 void set_namespace (in UmlCore::Namespace new_value)

427 raises (Reflective::SemanticError);

428 void unset_namespace ()

429 raises (Reflective::SemanticError);

430 DependencySet provision ()

431 raises (Reflective::NotSet, Reflective::SemanticError);

432 void add_provision (in DependencySet new_value)

433 raises (Reflective::StructuralError, Reflective::SemanticError);

434 void remove_provision ()

435 raises (Reflective::SemanticError);

436 UmlCore::TaggedValueSet tagged_value ()

437 raises (Reflective::NotSet, Reflective::SemanticError);

438 void add_tagged_value (in UmlCore::TaggedValueSet new_value)

OMG-UML V1.1 IDL Modules March 1998 5-21

5

439 raises (Reflective::StructuralError, Reflective::SemanticError);

440 void remove_tagged_value ()

441 raises (Reflective::SemanticError);

442 UmlCore::ConstraintSet constraint ()

443 raises (Reflective::NotSet, Reflective::SemanticError);

444 void add_constraint (in UmlCore::ConstraintSet new_value)

445 raises (Reflective::StructuralError, Reflective::SemanticError);

446 void remove_constraint ()

447 raises (Reflective::SemanticError);

448 DependencySet requirement ()

449 raises (Reflective::NotSet, Reflective::SemanticError);

450 void add_requirement (in DependencySet new_value)

451 raises (Reflective::StructuralError, Reflective::SemanticError);

452 void remove_requirement ()

453 raises (Reflective::SemanticError);

454 ModelElement template ()

455 raises (Reflective::NotSet, Reflective::SemanticError);

456 void set_template (in ModelElement new_value)

457 raises (Reflective::SemanticError);

458 void unset_template ()

459 raises (Reflective::SemanticError);

460 ModelElementUList template_parameter ()

461 raises (Reflective::NotSet, Reflective::SemanticError);

462 void add_template_parameter (in ModelElementUList new_value)

463 raises (Reflective::StructuralError, Reflective::SemanticError);

464 void add_template_parameter_before (in ModelElement new_value,

465 in ModelElement before)

466 raises (Reflective::StructuralError,

467 Reflective::NotFound,

468 Reflective::SemanticError);

469 void remove_template_parameter ()

470 raises (Reflective::SemanticError);

471 ElementOwnership namespace1 ()

472 raises (Reflective::NotSet, Reflective::SemanticError);

473 void set_namespace1 (in ElementOwnership new_value)

474 raises (Reflective::SemanticError);

475 void unset_namespace1 ()

476 raises (Reflective::SemanticError);

477 };

478

479 interface FeatureClass : ModelElementClass {

5-22 OMG-UML V1.2 May 1998

5

480 readonly attribute FeatureUList all_of_kind_feature;

481 };

482

483 interface Feature : FeatureClass, ModelElement {

484 ScopeKind owner_scope ()

485 raises (Reflective::SemanticError);

486 void set_owner_scope (in ScopeKind new_value)

487 raises (Reflective::SemanticError);

488 VisibilityKind visibility ()

489 raises (Reflective::SemanticError);

490 void set_visibility (in VisibilityKind new_value)

491 raises (Reflective::SemanticError);

492 Classifier owner ()

493 raises (Reflective::SemanticError);

494 void set_owner (in Classifier new_value)

495 raises (Reflective::SemanticError);

496 };

497

498 interface GeneralizationClass : ModelElementClass {

499 readonly attribute GeneralizationUList all_of_kind_generalization;

500 readonly attribute GeneralizationUList all_of_type_generalization;

501 Generalization create_generalization (in UmlCore::Name name,

502 in UmlCore::Name discriminator)

503 raises (Reflective::SemanticError);

504 };

505

506 interface Generalization : GeneralizationClass, ModelElement {

507 UmlCore::Name discriminator ()

508 raises (Reflective::SemanticError);

509 void set_discriminator (in UmlCore::Name new_value)

510 raises (Reflective::SemanticError);

511 GeneralizableElement subtype ()

512 raises (Reflective::SemanticError);

513 void set_subtype (in GeneralizableElement new_value)

514 raises (Reflective::SemanticError);

515 GeneralizableElement supertype ()

516 raises (Reflective::SemanticError);

517 void set_supertype (in GeneralizableElement new_value)

518 raises (Reflective::SemanticError);

519 };

520

OMG-UML V1.1 IDL Modules March 1998 5-23

5

521 interface NamespaceClass : ModelElementClass {

522 readonly attribute NamespaceUList all_of_kind_namespace;

523 readonly attribute NamespaceUList all_of_type_namespace;

524 Namespace create_namespace (in UmlCore::Name name)

525 raises (Reflective::SemanticError);

526 };

527

528 interface Namespace : NamespaceClass, ModelElement {

529 ModelElementSet owned_element ()

530 raises (Reflective::NotSet, Reflective::SemanticError);

531 void add_owned_element (in ModelElementSet new_value)

532 raises (Reflective::StructuralError, Reflective::SemanticError);

533 void remove_owned_element ()

534 raises (Reflective::SemanticError);

535 UmlCore::ElementOwnershipSet element_ownership ()

536 raises (Reflective::NotSet, Reflective::SemanticError);

537 void add_element_ownership (in UmlCore::ElementOwnershipSet new_value)

538 raises (Reflective::StructuralError, Reflective::SemanticError);

539 void remove_element_ownership ()

540 raises (Reflective::SemanticError);

541 };

542

543 interface ParameterClass : ModelElementClass {

544 readonly attribute ParameterUList all_of_kind_parameter;

545 readonly attribute ParameterUList all_of_type_parameter;

546 Parameter create_parameter (in UmlCore::Name name,

547 in Expression default_value,

548 in ParameterDirectionKind kind)

549 raises (Reflective::SemanticError);

550 };

551

552 interface Parameter : ParameterClass, ModelElement {

553 Expression default_value ()

554 raises (Reflective::SemanticError);

555 void set_default_value (in Expression new_value)

556 raises (Reflective::SemanticError);

557 ParameterDirectionKind kind ()

558 raises (Reflective::SemanticError);

559 void set_kind (in ParameterDirectionKind new_value)

560 raises (Reflective::SemanticError);

561 UmlCore::BehavioralFeature behavioral_feature ()

5-24 OMG-UML V1.2 May 1998

5

562 raises (Reflective::NotSet, Reflective::SemanticError);

563 void set_behavioral_feature (in UmlCore::BehavioralFeature new_value)

564 raises (Reflective::SemanticError);

565 void unset_behavioral_feature ()

566 raises (Reflective::SemanticError);

567 Classifier type ()

568 raises (Reflective::SemanticError);

569 void set_type (in Classifier new_value)

570 raises (Reflective::SemanticError);

571 };

572

573 interface ConstraintClass : ModelElementClass {

574 readonly attribute ConstraintUList all_of_kind_constraint;

575 readonly attribute ConstraintUList all_of_type_constraint;

576 Constraint create_constraint (in UmlCore::Name name,

577 in BooleanExpression body)

578 raises (Reflective::SemanticError);

579 };

580

581 interface Constraint : ConstraintClass, ModelElement {

582 BooleanExpression body ()

583 raises (Reflective::SemanticError);

584 void set_body (in BooleanExpression new_value)

585 raises (Reflective::SemanticError);

586 ModelElementUList constrained_element ()

587 raises (Reflective::SemanticError);

588 void add_constrained_element (in ModelElementUList new_value)

589 raises (Reflective::StructuralError, Reflective::SemanticError);

590 void add_constrained_element_before (in ModelElement new_value,

591 in ModelElement before)

592 raises (Reflective::StructuralError,

593 Reflective::NotFound,

594 Reflective::SemanticError);

595 void remove_constrained_element ()

596 raises (Reflective::SemanticError);

597 };

598

599 interface DependencyClass : ModelElementClass {

600 readonly attribute DependencyUList all_of_kind_dependency;

601 };

602

OMG-UML V1.1 IDL Modules March 1998 5-25

5

603 interface Dependency : DependencyClass, ModelElement {

604 string description ()

605 raises (Reflective::SemanticError);

606 void set_description (in string new_value)

607 raises (Reflective::SemanticError);

608 ModelElementSet supplier ()

609 raises (Reflective::NotSet, Reflective::SemanticError);

610 void add_supplier (in ModelElementSet new_value)

611 raises (Reflective::StructuralError, Reflective::SemanticError);

612 void remove_supplier ()

613 raises (Reflective::SemanticError);

614 ModelElementSet client ()

615 raises (Reflective::NotSet, Reflective::SemanticError);

616 void add_client (in ModelElementSet new_value)

617 raises (Reflective::StructuralError, Reflective::SemanticError);

618 void remove_client ()

619 raises (Reflective::SemanticError);

620 };

621

622 interface RequestClass : ModelElementClass {

623 readonly attribute RequestUList all_of_kind_request;

624 readonly attribute RequestUList all_of_type_request;

625 Request create_request (in UmlCore::Name name)

626 raises (Reflective::SemanticError);

627 };

628

629 interface Request : RequestClass, ModelElement { };

630

631 interface GeneralizableElementClass : UmlCore::NamespaceClass {

632 readonly attribute GeneralizableElementUList

633 all_of_kind_generalizable_element;

634 };

635

636 interface GeneralizableElement : GeneralizableElementClass,

637 UmlCore::Namespace {

638 boolean is_root ()

639 raises (Reflective::SemanticError);

640 void set_is_root (in boolean new_value)

641 raises (Reflective::SemanticError);

642 boolean is_leaf ()

643 raises (Reflective::SemanticError);

5-26 OMG-UML V1.2 May 1998

5

644 void set_is_leaf (in boolean new_value)

645 raises (Reflective::SemanticError);

646 boolean is_abstract ()

647 raises (Reflective::SemanticError);

648 void set_is_abstract (in boolean new_value)

649 raises (Reflective::SemanticError);

650 UmlCore::GeneralizationSet generalization ()

651 raises (Reflective::NotSet, Reflective::SemanticError);

652 void add_generalization (in UmlCore::GeneralizationSet new_value)

653 raises (Reflective::StructuralError, Reflective::SemanticError);

654 void remove_generalization ()

655 raises (Reflective::SemanticError);

656 UmlCore::GeneralizationSet specialization ()

657 raises (Reflective::NotSet, Reflective::SemanticError);

658 void add_specialization (in UmlCore::GeneralizationSet new_value)

659 raises (Reflective::StructuralError, Reflective::SemanticError);

660 void remove_specialization ()

661 raises (Reflective::SemanticError);

662 };

663

664 interface BehavioralFeatureClass : FeatureClass {

665 readonly attribute BehavioralFeatureUList
all_of_kind_behavioral_feature;

666 };

667

668 interface BehavioralFeature : BehavioralFeatureClass, Feature {

669 boolean is_query ()

670 raises (Reflective::SemanticError);

671 void set_is_query (in boolean new_value)

672 raises (Reflective::SemanticError);

673 UmlCore::ParameterUList parameter ()

674 raises (Reflective::NotSet, Reflective::SemanticError);

675 void add_parameter (in UmlCore::ParameterUList new_value)

676 raises (Reflective::StructuralError, Reflective::SemanticError);

677 void add_parameter_before (in UmlCore::Parameter new_value,

678 in UmlCore::Parameter before)

679 raises (Reflective::StructuralError,

680 Reflective::NotFound,

681 Reflective::SemanticError);

682 void remove_parameter ()

683 raises (Reflective::SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-27

5

684 };

685

686 interface ClassifierClass : GeneralizableElementClass {

687 readonly attribute ClassifierUList all_of_kind_classifier;

688 };

689

690 interface Classifier : ClassifierClass, GeneralizableElement {

691 UmlCore::FeatureUList feature ()

692 raises (Reflective::NotSet, Reflective::SemanticError);

693 void add_feature (in UmlCore::FeatureUList new_value)

694 raises (Reflective::StructuralError, Reflective::SemanticError);

695 void add_feature_before (in UmlCore::Feature new_value,

696 in UmlCore::Feature before)

697 raises (Reflective::StructuralError,

698 Reflective::NotFound,

699 Reflective::SemanticError);

700 void remove_feature ()

701 raises (Reflective::SemanticError);

702 StructuralFeatureUList features ()

703 raises (Reflective::NotSet, Reflective::SemanticError);

704 void add_features (in StructuralFeatureUList new_value)

705 raises (Reflective::StructuralError, Reflective::SemanticError);

706 void add_features_before (in StructuralFeature new_value,

707 in StructuralFeature before)

708 raises (Reflective::StructuralError,

709 Reflective::NotFound,

710 Reflective::SemanticError);

711 void remove_features ()

712 raises (Reflective::SemanticError);

713 UmlCore::ParameterUList parameter ()

714 raises (Reflective::NotSet, Reflective::SemanticError);

715 void add_parameter (in UmlCore::ParameterUList new_value)

716 raises (Reflective::StructuralError, Reflective::SemanticError);

717 void add_parameter_before (in UmlCore::Parameter new_value,

718 in UmlCore::Parameter before)

719 raises (Reflective::StructuralError,

720 Reflective::NotFound,

721 Reflective::SemanticError);

722 void remove_parameter ()

723 raises (Reflective::SemanticError);

724 UmlCore::AssociationEndSet participant ()

5-28 OMG-UML V1.2 May 1998

5

725 raises (Reflective::NotSet, Reflective::SemanticError);

726 void add_participant (in UmlCore::AssociationEndSet new_value)

727 raises (Reflective::StructuralError, Reflective::SemanticError);

728 void remove_participant ()

729 raises (Reflective::SemanticError);

730 ClassifierSet realization ()

731 raises (Reflective::NotSet, Reflective::SemanticError);

732 void add_realization (in ClassifierSet new_value)

733 raises (Reflective::StructuralError, Reflective::SemanticError);

734 void remove_realization ()

735 raises (Reflective::SemanticError);

736 ClassifierSet specification ()

737 raises (Reflective::NotSet, Reflective::SemanticError);

738 void add_specification (in ClassifierSet new_value)

739 raises (Reflective::StructuralError, Reflective::SemanticError);

740 void remove_specification ()

741 raises (Reflective::SemanticError);

742 UmlCore::AssociationEndSet association_end ()

743 raises (Reflective::NotSet, Reflective::SemanticError);

744 void add_association_end (in UmlCore::AssociationEndSet new_value)

745 raises (Reflective::StructuralError, Reflective::SemanticError);

746 void remove_association_end ()

747 raises (Reflective::SemanticError);

748 };

749

750 interface OperationClass : BehavioralFeatureClass {

751 readonly attribute OperationUList all_of_kind_operation;

752 readonly attribute OperationUList all_of_type_operation;

753 Operation create_operation (in UmlCore::Name name,

754 in ScopeKind owner_scope,

755 in VisibilityKind visibility,

756 in boolean is_query,

757 in Uninterpreted specification,

758 in boolean is_polymorphic,

759 in CallConcurrencyKind concurrency)

760 raises (Reflective::SemanticError);

761 };

762

763 interface Operation : OperationClass, BehavioralFeature {

764 Uninterpreted specification ()

765 raises (Reflective::SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-29

5

766 void set_specification (in Uninterpreted new_value)

767 raises (Reflective::SemanticError);

768 boolean is_polymorphic ()

769 raises (Reflective::SemanticError);

770 void set_is_polymorphic (in boolean new_value)

771 raises (Reflective::SemanticError);

772 CallConcurrencyKind concurrency ()

773 raises (Reflective::SemanticError);

774 void set_concurrency (in CallConcurrencyKind new_value)

775 raises (Reflective::SemanticError);

776 UmlCore::MethodSet method ()

777 raises (Reflective::NotSet, Reflective::SemanticError);

778 void add_method (in UmlCore::MethodSet new_value)

779 raises (Reflective::StructuralError, Reflective::SemanticError);

780 void remove_method ()

781 raises (Reflective::SemanticError);

782 };

783

784 interface StereotypeClass : GeneralizableElementClass {

785 readonly attribute StereotypeUList all_of_kind_stereotype;

786 readonly attribute StereotypeUList all_of_type_stereotype;

787 Stereotype create_stereotype (in UmlCore::Name name,

788 in boolean is_root,

789 in boolean is_leaf,

790 in boolean is_abstract,

791 in Geometry icon)

792 raises (Reflective::SemanticError);

793 };

794

795 interface Stereotype : StereotypeClass, GeneralizableElement {

796 Geometry icon ()

797 raises (Reflective::SemanticError);

798 void set_icon (in Geometry new_value)

799 raises (Reflective::SemanticError);

800 UmlCore::TaggedValueSet required_tag ()

801 raises (Reflective::NotSet, Reflective::SemanticError);

802 void add_required_tag (in UmlCore::TaggedValueSet new_value)

803 raises (Reflective::StructuralError, Reflective::SemanticError);

804 void remove_required_tag ()

805 raises (Reflective::SemanticError);

806 ModelElementSet extended_element ()

5-30 OMG-UML V1.2 May 1998

5

807 raises (Reflective::NotSet, Reflective::SemanticError);

808 void add_extended_element (in ModelElementSet new_value)

809 raises (Reflective::StructuralError, Reflective::SemanticError);

810 void remove_extended_element ()

811 raises (Reflective::SemanticError);

812 UmlCore::ConstraintSet stereotype_constraint ()

813 raises (Reflective::NotSet, Reflective::SemanticError);

814 void add_stereotype_constraint (in UmlCore::ConstraintSet new_value)

815 raises (Reflective::StructuralError, Reflective::SemanticError);

816 void remove_stereotype_constraint ()

817 raises (Reflective::SemanticError);

818 };

819

820 interface StructuralFeatureClass : FeatureClass {

821 readonly attribute StructuralFeatureUList
all_of_kind_structural_feature;

822 };

823

824 interface StructuralFeature : StructuralFeatureClass, Feature {

825 UmlCore::Multiplicity multiplicity ()

826 raises (Reflective::SemanticError);

827 void set_multiplicity (in UmlCore::Multiplicity new_value)

828 raises (Reflective::SemanticError);

829 ChangeableKind changeable ()

830 raises (Reflective::SemanticError);

831 void set_changeable (in ChangeableKind new_value)

832 raises (Reflective::SemanticError);

833 ScopeKind target_scope ()

834 raises (Reflective::SemanticError);

835 void set_target_scope (in ScopeKind new_value)

836 raises (Reflective::SemanticError);

837 Classifier type ()

838 raises (Reflective::SemanticError);

839 void set_type (in Classifier new_value)

840 raises (Reflective::SemanticError);

841 };

842

843 interface DataTypeClass : ClassifierClass {

844 readonly attribute DataTypeUList all_of_kind_data_type;

845 readonly attribute DataTypeUList all_of_type_data_type;

846 DataType create_data_type (in UmlCore::Name name,

OMG-UML V1.1 IDL Modules March 1998 5-31

5

847 in boolean is_root,

848 in boolean is_leaf,

849 in boolean is_abstract)

850 raises (Reflective::SemanticError);

851 };

852

853 interface DataType : DataTypeClass, Classifier { };

854

855 interface UmlInterfaceClass : ClassifierClass {

856 readonly attribute UmlInterfaceUList all_of_kind_uml_interface;

857 readonly attribute UmlInterfaceUList all_of_type_uml_interface;

858 UmlInterface create_uml_interface (in UmlCore::Name name,

859 in boolean is_root,

860 in boolean is_leaf,

861 in boolean is_abstract)

862 raises (Reflective::SemanticError);

863 };

864

865 interface UmlInterface : UmlInterfaceClass, Classifier { };

866

867 interface UmlAttributeClass : StructuralFeatureClass {

868 readonly attribute UmlAttributeUList all_of_kind_uml_attribute;

869 readonly attribute UmlAttributeUList all_of_type_uml_attribute;

870 UmlAttribute create_uml_attribute (in UmlCore::Name name,

871 in ScopeKind owner_scope,

872 in VisibilityKind visibility,

873 in UmlCore::Multiplicity multiplicity,

874 in ChangeableKind changeable,

875 in ScopeKind target_scope,

876 in Expression initial_value)

877 raises (Reflective::SemanticError);

878 };

879

880 interface UmlAttribute : UmlAttributeClass, StructuralFeature {

881 Expression initial_value ()

882 raises (Reflective::SemanticError);

883 void set_initial_value (in Expression new_value)

884 raises (Reflective::SemanticError);

885 UmlCore::AssociationEnd association_end ()

886 raises (Reflective::NotSet, Reflective::SemanticError);

887 void set_association_end (in UmlCore::AssociationEnd new_value)

5-32 OMG-UML V1.2 May 1998

5

888 raises (Reflective::SemanticError);

889 void unset_association_end ()

890 raises (Reflective::SemanticError);

891 };

892

893 interface AssociationEndClass : ModelElementClass {

894 readonly attribute AssociationEndUList all_of_kind_association_end;

895 readonly attribute AssociationEndUList all_of_type_association_end;

896 AssociationEnd create_association_end (

897 in UmlCore::Name name,

898 in boolean is_navigable,

899 in boolean is_ordered,

900 in AggregationKind aggregation,

901 in ScopeKind target_scope,

902 in UmlCore::Multiplicity multiplicity,

903 in ChangeableKind changeable)

904 raises (Reflective::SemanticError);

905 };

906

907 interface AssociationEnd : AssociationEndClass, ModelElement {

908 boolean is_navigable ()

909 raises (Reflective::SemanticError);

910 void set_is_navigable (in boolean new_value)

911 raises (Reflective::SemanticError);

912 boolean is_ordered ()

913 raises (Reflective::SemanticError);

914 void set_is_ordered (in boolean new_value)

915 raises (Reflective::SemanticError);

916 AggregationKind aggregation ()

917 raises (Reflective::SemanticError);

918 void set_aggregation (in AggregationKind new_value)

919 raises (Reflective::SemanticError);

920 ScopeKind target_scope ()

921 raises (Reflective::SemanticError);

922 void set_target_scope (in ScopeKind new_value)

923 raises (Reflective::SemanticError);

924 UmlCore::Multiplicity multiplicity ()

925 raises (Reflective::SemanticError);

926 void set_multiplicity (in UmlCore::Multiplicity new_value)

927 raises (Reflective::SemanticError);

928 ChangeableKind changeable ()

OMG-UML V1.1 IDL Modules March 1998 5-33

5

929 raises (Reflective::SemanticError);

930 void set_changeable (in ChangeableKind new_value)

931 raises (Reflective::SemanticError);

932 UmlCore::Association association ()

933 raises (Reflective::SemanticError);

934 void set_association (in UmlCore::Association new_value)

935 raises (Reflective::SemanticError);

936 UmlAttributeUList qualifier ()

937 raises (Reflective::NotSet, Reflective::SemanticError);

938 void add_qualifier (in UmlAttributeUList new_value)

939 raises (Reflective::StructuralError, Reflective::SemanticError);

940 void add_qualifier_before (in UmlAttribute new_value,

941 in UmlAttribute before)

942 raises (Reflective::StructuralError,

943 Reflective::NotFound,

944 Reflective::SemanticError);

945 void remove_qualifier ()

946 raises (Reflective::SemanticError);

947 Classifier type2 ()

948 raises (Reflective::SemanticError);

949 void set_type2 (in Classifier new_value)

950 raises (Reflective::SemanticError);

951 ClassifierSet specification ()

952 raises (Reflective::NotSet, Reflective::SemanticError);

953 void add_specification (in ClassifierSet new_value)

954 raises (Reflective::StructuralError, Reflective::SemanticError);

955 void remove_specification ()

956 raises (Reflective::SemanticError);

957 };

958

959 interface AssociationClass : GeneralizableElementClass {

960 readonly attribute AssociationUList all_of_kind_association;

961 readonly attribute AssociationUList all_of_type_association;

962 Association create_association (in UmlCore::Name name,

963 in boolean is_root,

964 in boolean is_leaf,

965 in boolean is_abstract)

966 raises (Reflective::SemanticError);

967 };

968

969 interface Association : AssociationClass, GeneralizableElement {

5-34 OMG-UML V1.2 May 1998

5

970 AssociationEndUList connection ()

971 raises (Reflective::SemanticError);

972 void add_connection (in AssociationEndUList new_value)

973 raises (Reflective::StructuralError, Reflective::SemanticError);

974 void add_connection_before (in AssociationEnd new_value,

975 in AssociationEnd before)

976 raises (Reflective::StructuralError,

977 Reflective::NotFound,

978 Reflective::SemanticError);

979 void modify_connection (in AssociationEnd old_value,

980 in AssociationEnd new_value)

981 raises (Reflective::StructuralError,

982 Reflective::NotFound,

983 Reflective::SemanticError);

984 void remove_connection ()

985 raises (Reflective::StructuralError, Reflective::SemanticError);

986 };

987

988 interface MethodClass : BehavioralFeatureClass {

989 readonly attribute MethodUList all_of_kind_method;

990 readonly attribute MethodUList all_of_type_method;

991 Method create_method (in UmlCore::Name name,

992 in ScopeKind owner_scope,

993 in VisibilityKind visibility,

994 in boolean is_query,

995 in ProcedureExpression body)

996 raises (Reflective::SemanticError);

997 };

998

999 interface Method : MethodClass, BehavioralFeature {

1000 ProcedureExpression body ()

1001 raises (Reflective::SemanticError);

1002 void set_body (in ProcedureExpression new_value)

1003 raises (Reflective::SemanticError);

1004 Operation specification ()

1005 raises (Reflective::SemanticError);

1006 void set_specification (in Operation new_value)

1007 raises (Reflective::SemanticError);

1008 };

1009

1010 interface EnumerationClass : DataTypeClass {

OMG-UML V1.1 IDL Modules March 1998 5-35

5

1011 readonly attribute EnumerationUList all_of_kind_enumeration;

1012 readonly attribute EnumerationUList all_of_type_enumeration;

1013 Enumeration create_enumeration (in UmlCore::Name name,

1014 in boolean is_root,

1015 in boolean is_leaf,

1016 in boolean is_abstract)

1017 raises (Reflective::SemanticError);

1018 };

1019

1020 interface Enumeration : EnumerationClass, DataType {

1021 EnumerationLiteralUList literal ()

1022 raises (Reflective::SemanticError);

1023 void add_literal (in EnumerationLiteralUList new_value)

1024 raises (Reflective::StructuralError, Reflective::SemanticError);

1025 void add_literal_before (in EnumerationLiteral new_value,

1026 in EnumerationLiteral before)

1027 raises (Reflective::StructuralError,

1028 Reflective::NotFound,

1029 Reflective::SemanticError);

1030 void remove_literal ()

1031 raises (Reflective::SemanticError);

1032 };

1033

1034 interface ClassClass : ClassifierClass {

1035 readonly attribute ClassUList all_of_kind_class;

1036 readonly attribute ClassUList all_of_type_class;

1037 Class create_class (in UmlCore::Name name,

1038 in boolean is_root,

1039 in boolean is_leaf,

1040 in boolean is_abstract,

1041 in boolean is_active)

1042 raises (Reflective::SemanticError);

1043 };

1044

1045 interface Class : ClassClass, Classifier {

1046 boolean is_active ()

1047 raises (Reflective::SemanticError);

1048 void set_is_active (in boolean new_value)

1049 raises (Reflective::SemanticError);

1050 };

1051

5-36 OMG-UML V1.2 May 1998

5

1052 interface PrimitiveClass : DataTypeClass {

1053 readonly attribute PrimitiveUList all_of_kind_primitive;

1054 readonly attribute PrimitiveUList all_of_type_primitive;

1055 Primitive create_primitive (in UmlCore::Name name,

1056 in boolean is_root,

1057 in boolean is_leaf,

1058 in boolean is_abstract)

1059 raises (Reflective::SemanticError);

1060 };

1061

1062 interface Primitive : PrimitiveClass, DataType { };

1063

1064 interface StructureClass : DataTypeClass {

1065 readonly attribute StructureUList all_of_kind_structure;

1066 readonly attribute StructureUList all_of_type_structure;

1067 Structure create_structure (in UmlCore::Name name,

1068 in boolean is_root,

1069 in boolean is_leaf,

1070 in boolean is_abstract)

1071 raises (Reflective::SemanticError);

1072 };

1073

1074 interface Structure : StructureClass, DataType { };

1075

1076 interface UmlAssociationClassClass : ClassClass, AssociationClass {

1077 readonly attribute UmlAssociationClassUList

1078 all_of_kind_uml_association_class;

1079 readonly attribute UmlAssociationClassUList

1080 all_of_type_uml_association_class;

1081 UmlAssociationClass create_uml_association_class (in UmlCore::Name
name,

1082 in boolean is_root,

1083 in boolean is_leaf,

1084 in boolean is_abstract,

1085 in boolean is_active)

1086 raises (Reflective::SemanticError);

1087 };

1088

1089 interface UmlAssociationClass : UmlAssociationClassClass,

1090 Class, Association { };

1091

OMG-UML V1.1 IDL Modules March 1998 5-37

5

1092 interface ElementOwnershipClass : ElementClass {

1093 readonly attribute ElementOwnershipUList all_of_kind_element_ownership;

1094 readonly attribute ElementOwnershipUList all_of_type_element_ownership;

1095 ElementOwnership create_element_ownership (in VisibilityKind visibilty)

1096 raises (Reflective::SemanticError);

1097 };

1098

1099 interface ElementOwnership : ElementOwnershipClass, Element {

1100 VisibilityKind visibilty ()

1101 raises (Reflective::SemanticError);

1102 void set_visibilty (in VisibilityKind new_value)

1103 raises (Reflective::SemanticError);

1104 UmlCore::Namespace namespace ()

1105 raises (Reflective::SemanticError);

1106 void set_namespace (in UmlCore::Namespace new_value)

1107 raises (Reflective::SemanticError);

1108 ModelElement owned_element ()

1109 raises (Reflective::SemanticError);

1110 void set_owned_element (in ModelElement new_value)

1111 raises (Reflective::SemanticError);

1112 };

1113

1114 struct AssociationOwnsAssociationEndLink {

1115 UmlCore::Association association;

1116 AssociationEnd connection;

1117 };

1118 typedef sequence <AssociationOwnsAssociationEndLink>

1119 AssociationOwnsAssociationEndLinkSet;

1120

1121 interface AssociationOwnsAssociationEnd : Reflective::RefAssociation {

1122 readonly attribute UmlCorePackage enclosing_package_ref;

1123 AssociationOwnsAssociationEndLinkSet

1124 all_association_owns_association_end_links();

1125 boolean exists (in UmlCore::Association association,

1126 in AssociationEnd connection);

1127 UmlCore::Association with_connection (in AssociationEnd connection);

1128 AssociationEndUList with_association (in UmlCore::Association
association);

1129 void add (in UmlCore::Association association,

1130 in AssociationEnd connection)

1131 raises (Reflective::StructuralError, Reflective::SemanticError);

5-38 OMG-UML V1.2 May 1998

5

1132 void add_before_connection (in UmlCore::Association association,

1133 in AssociationEnd connection,

1134 in AssociationEnd before)

1135 raises (Reflective::StructuralError,

1136 Reflective::SemanticError,

1137 Reflective::NotFound);

1138 void modify_association (in UmlCore::Association association,

1139 in AssociationEnd connection,

1140 in UmlCore::Association new_association)

1141 raises (Reflective::StructuralError,

1142 Reflective::SemanticError,

1143 Reflective::NotFound);

1144 void modify_connection (in UmlCore::Association association,

1145 in AssociationEnd connection,

1146 in AssociationEnd new_connection)

1147 raises (Reflective::StructuralError,

1148 Reflective::SemanticError,

1149 Reflective::NotFound);

1150 void remove (in UmlCore::Association association,

1151 in AssociationEnd connection)

1152 raises (Reflective::StructuralError,

1153 Reflective::SemanticError,

1154 Reflective::NotFound);

1155 };

1156

1157 struct ClassifierOwnsFeatureLink {

1158 Classifier owner;

1159 UmlCore::Feature feature;

1160 };

1161 typedef sequence <ClassifierOwnsFeatureLink>
ClassifierOwnsFeatureLinkSet;

1162

1163 interface ClassifierOwnsFeature : Reflective::RefAssociation {

1164 readonly attribute UmlCorePackage enclosing_package_ref;

1165 ClassifierOwnsFeatureLinkSet all_classifier_owns_feature_links();

1166 boolean exists (in Classifier owner, in UmlCore::Feature feature);

1167 Classifier with_feature (in UmlCore::Feature feature);

1168 UmlCore::FeatureUList with_owner (in Classifier owner);

1169 void add (in Classifier owner, in UmlCore::Feature feature)

1170 raises (Reflective::StructuralError, Reflective::SemanticError);

1171 void add_before_feature (in Classifier owner,

OMG-UML V1.1 IDL Modules March 1998 5-39

5

1172 in UmlCore::Feature feature,

1173 in UmlCore::Feature before)

1174 raises (Reflective::StructuralError,

1175 Reflective::SemanticError,

1176 Reflective::NotFound);

1177 void modify_owner (in Classifier owner,

1178 in UmlCore::Feature feature,

1179 in Classifier new_owner)

1180 raises (Reflective::StructuralError,

1181 Reflective::SemanticError,

1182 Reflective::NotFound);

1183 void modify_feature (in Classifier owner,

1184 in UmlCore::Feature feature,

1185 in UmlCore::Feature new_feature)

1186 raises (Reflective::StructuralError,

1187 Reflective::SemanticError,

1188 Reflective::NotFound);

1189 void remove (in Classifier owner, in UmlCore::Feature feature)

1190 raises (Reflective::StructuralError,

1191 Reflective::SemanticError,

1192 Reflective::NotFound);

1193 };

1194

1195 struct MethodIsSpecifiedByOperationLink {

1196 Operation specification;

1197 UmlCore::Method method;

1198 };

1199 typedef sequence <MethodIsSpecifiedByOperationLink>

1200 MethodIsSpecifiedByOperationLinkSet;

1201

1202 interface MethodIsSpecifiedByOperation : Reflective::RefAssociation {

1203 readonly attribute UmlCorePackage enclosing_package_ref;

1204 MethodIsSpecifiedByOperationLinkSet

1205 all_method_is_specified_by_operation_links();

1206 boolean exists (in Operation specification, in UmlCore::Method method);

1207 Operation with_method (in UmlCore::Method method);

1208 UmlCore::MethodSet with_specification (in Operation specification);

1209 void add (in Operation specification, in UmlCore::Method method)

1210 raises (Reflective::StructuralError, Reflective::SemanticError);

1211 void modify_specification (in Operation specification,

1212 in UmlCore::Method method,

5-40 OMG-UML V1.2 May 1998

5

1213 in Operation new_specification)

1214 raises (Reflective::StructuralError,

1215 Reflective::SemanticError,

1216 Reflective::NotFound);

1217 void modify_method (in Operation specification,

1218 in UmlCore::Method method,

1219 in UmlCore::Method new_method)

1220 raises (Reflective::StructuralError,

1221 Reflective::SemanticError,

1222 Reflective::NotFound);

1223 void remove (in Operation specification, in UmlCore::Method method)

1224 raises (Reflective::StructuralError,

1225 Reflective::SemanticError,

1226 Reflective::NotFound);

1227 };

1228

1229 struct StructuralFeatureIsOfTypeClassifierLink {

1230 StructuralFeature features;

1231 Classifier type;

1232 };

1233 typedef sequence <StructuralFeatureIsOfTypeClassifierLink>

1234 StructuralFeatureIsOfTypeClassifierLinkSet;

1235

1236 interface StructuralFeatureIsOfTypeClassifier :
Reflective::RefAssociation {

1237 readonly attribute UmlCorePackage enclosing_package_ref;

1238 StructuralFeatureIsOfTypeClassifierLinkSet

1239 all_structural_feature_is_of_type_classifier_links();

1240 boolean exists (in StructuralFeature features, in Classifier type);

1241 StructuralFeatureUList with_type (in Classifier type);

1242 Classifier with_features (in StructuralFeature features);

1243 void add (in StructuralFeature features, in Classifier type)

1244 raises (Reflective::StructuralError, Reflective::SemanticError);

1245 void add_before_features (in StructuralFeature features,

1246 in Classifier type,

1247 in StructuralFeature before)

1248 raises (Reflective::StructuralError,

1249 Reflective::SemanticError,

1250 Reflective::NotFound);

1251 void modify_features (in StructuralFeature features,

1252 in Classifier type,

OMG-UML V1.1 IDL Modules March 1998 5-41

5

1253 in StructuralFeature new_features)

1254 raises (Reflective::StructuralError,

1255 Reflective::SemanticError,

1256 Reflective::NotFound);

1257 void modify_type (in StructuralFeature features,

1258 in Classifier type,

1259 in Classifier new_type)

1260 raises (Reflective::StructuralError,

1261 Reflective::SemanticError,

1262 Reflective::NotFound);

1263 void remove (in StructuralFeature features, in Classifier type)

1264 raises (Reflective::StructuralError,

1265 Reflective::SemanticError,

1266 Reflective::NotFound);

1267 };

1268

1269 struct NamespaceOwnsModelElementLink {

1270 UmlCore::Namespace namespace;

1271 ModelElement owned_element;

1272 };

1273 typedef sequence <NamespaceOwnsModelElementLink>

1274 NamespaceOwnsModelElementLinkSet;

1275

1276 interface NamespaceOwnsModelElement : Reflective::RefAssociation {

1277 readonly attribute UmlCorePackage enclosing_package_ref;

1278 NamespaceOwnsModelElementLinkSet
all_namespace_owns_model_element_links();

1279 boolean exists (in UmlCore::Namespace namespace,

1280 in ModelElement owned_element);

1281 UmlCore::Namespace with_owned_element (in ModelElement owned_element);

1282 ModelElementSet with_namespace (in UmlCore::Namespace namespace);

1283 void add (in UmlCore::Namespace namespace, in ModelElement
owned_element)

1284 raises (Reflective::StructuralError, Reflective::SemanticError);

1285 void modify_namespace (in UmlCore::Namespace namespace,

1286 in ModelElement owned_element,

1287 in UmlCore::Namespace new_namespace)

1288 raises (Reflective::StructuralError,

1289 Reflective::SemanticError,

1290 Reflective::NotFound);

1291 void modify_owned_element (in UmlCore::Namespace namespace,

5-42 OMG-UML V1.2 May 1998

5

1292 in ModelElement owned_element,

1293 in ModelElement new_owned_element)

1294 raises (Reflective::StructuralError,

1295 Reflective::SemanticError,

1296 Reflective::NotFound);

1297 void remove (in UmlCore::Namespace namespace,

1298 in ModelElement owned_element)

1299 raises (Reflective::StructuralError,

1300 Reflective::SemanticError,

1301 Reflective::NotFound);

1302 };

1303

1304 struct BehavioralFeatureOwnsParameterLink {

1305 UmlCore::BehavioralFeature behavioral_feature;

1306 UmlCore::Parameter parameter;

1307 };

1308 typedef sequence <BehavioralFeatureOwnsParameterLink>

1309 BehavioralFeatureOwnsParameterLinkSet;

1310

1311 interface BehavioralFeatureOwnsParameter : Reflective::RefAssociation {

1312 readonly attribute UmlCorePackage enclosing_package_ref;

1313 BehavioralFeatureOwnsParameterLinkSet

1314 all_behavioral_feature_owns_parameter_links();

1315 boolean exists (in UmlCore::BehavioralFeature behavioral_feature,

1316 in UmlCore::Parameter parameter);

1317 UmlCore::BehavioralFeature with_parameter (

1318 in UmlCore::Parameter parameter);

1319 UmlCore::ParameterUList with_behavioral_feature (

1320 in UmlCore::BehavioralFeature behavioral_feature);

1321 void add (in UmlCore::BehavioralFeature behavioral_feature,

1322 in UmlCore::Parameter parameter)

1323 raises (Reflective::StructuralError, Reflective::SemanticError);

1324 void add_before_parameter (

1325 in UmlCore::BehavioralFeature behavioral_feature,

1326 in UmlCore::Parameter parameter,

1327 in UmlCore::Parameter before)

1328 raises (Reflective::StructuralError,

1329 Reflective::SemanticError,

1330 Reflective::NotFound);

1331 void modify_behavioral_feature (

1332 in UmlCore::BehavioralFeature behavioral_feature,

OMG-UML V1.1 IDL Modules March 1998 5-43

5

1333 in UmlCore::Parameter parameter,

1334 in UmlCore::BehavioralFeature new_behavioral_feature)

1335 raises (Reflective::StructuralError,

1336 Reflective::SemanticError,

1337 Reflective::NotFound);

1338 void modify_parameter (in UmlCore::BehavioralFeature
behavioral_feature,

1339 in UmlCore::Parameter parameter,

1340 in UmlCore::Parameter new_parameter)

1341 raises (Reflective::StructuralError,

1342 Reflective::SemanticError,

1343 Reflective::NotFound);

1344 void remove (in UmlCore::BehavioralFeature behavioral_feature,

1345 in UmlCore::Parameter parameter)

1346 raises (Reflective::StructuralError,

1347 Reflective::SemanticError,

1348 Reflective::NotFound);

1349 };

1350

1351 struct ParameterIsOfTypeClassifierLink {

1352 Classifier type;

1353 UmlCore::Parameter parameter;

1354 };

1355 typedef sequence <ParameterIsOfTypeClassifierLink>

1356 ParameterIsOfTypeClassifierLinkSet;

1357

1358 interface ParameterIsOfTypeClassifier : Reflective::RefAssociation {

1359 readonly attribute UmlCorePackage enclosing_package_ref;

1360 ParameterIsOfTypeClassifierLinkSet

1361 all_parameter_is_of_type_classifier_links();

1362 boolean exists (in Classifier type, in UmlCore::Parameter parameter);

1363 Classifier with_parameter (in UmlCore::Parameter parameter);

1364 UmlCore::ParameterUList with_type (in Classifier type);

1365 void add (in Classifier type, in UmlCore::Parameter parameter)

1366 raises (Reflective::StructuralError, Reflective::SemanticError);

1367 void add_before_parameter (in Classifier type,

1368 in UmlCore::Parameter parameter,

1369 in UmlCore::Parameter before)

1370 raises (Reflective::StructuralError,

1371 Reflective::SemanticError,

1372 Reflective::NotFound);

5-44 OMG-UML V1.2 May 1998

5

1373 void modify_type (in Classifier type,

1374 in UmlCore::Parameter parameter,

1375 in Classifier new_type)

1376 raises (Reflective::StructuralError,

1377 Reflective::SemanticError,

1378 Reflective::NotFound);

1379 void modify_parameter (in Classifier type,

1380 in UmlCore::Parameter parameter,

1381 in UmlCore::Parameter new_parameter)

1382 raises (Reflective::StructuralError,

1383 Reflective::SemanticError,

1384 Reflective::NotFound);

1385 void remove (in Classifier type, in UmlCore::Parameter parameter)

1386 raises (Reflective::StructuralError,

1387 Reflective::SemanticError,

1388 Reflective::NotFound);

1389 };

1390

1391 struct GeneralizableElementIsSubtypeInGeneralizationLink {

1392 GeneralizableElement subtype;

1393 UmlCore::Generalization generalization;

1394 };

1395 typedef sequence <GeneralizableElementIsSubtypeInGeneralizationLink>

1396 GeneralizableElementIsSubtypeInGeneralizationLinkSet;

1397

1398 interface GeneralizableElementIsSubtypeInGeneralization :

1399 Reflective::RefAssociation {

1400 readonly attribute UmlCorePackage enclosing_package_ref;

1401 GeneralizableElementIsSubtypeInGeneralizationLinkSet

1402 all_generalizable_element_is_subtype_in_generalization_links();

1403 boolean exists (in GeneralizableElement subtype,

1404 in UmlCore::Generalization generalization);

1405 GeneralizableElement with_generalization (

1406 in UmlCore::Generalization generalization);

1407 UmlCore::GeneralizationSet with_subtype (in GeneralizableElement
subtype);

1408 void add (in GeneralizableElement subtype,

1409 in UmlCore::Generalization generalization)

1410 raises (Reflective::StructuralError, Reflective::SemanticError);

1411 void modify_subtype (in GeneralizableElement subtype,

1412 in UmlCore::Generalization generalization,

OMG-UML V1.1 IDL Modules March 1998 5-45

5

1413 in GeneralizableElement new_subtype)

1414 raises (Reflective::StructuralError,

1415 Reflective::SemanticError,

1416 Reflective::NotFound);

1417 void modify_generalization (in GeneralizableElement subtype,

1418 in UmlCore::Generalization generalization,

1419 in UmlCore::Generalization new_generalization)

1420 raises (Reflective::StructuralError,

1421 Reflective::SemanticError,

1422 Reflective::NotFound);

1423 void remove (in GeneralizableElement subtype,

1424 in UmlCore::Generalization generalization)

1425 raises (Reflective::StructuralError,

1426 Reflective::SemanticError,

1427 Reflective::NotFound);

1428 };

1429

1430 struct GeneralizableElementIsSupertypeInGeneralizationLink {

1431 GeneralizableElement supertype;

1432 Generalization specialization;

1433 };

1434 typedef sequence <GeneralizableElementIsSupertypeInGeneralizationLink>

1435 GeneralizableElementIsSupertypeInGeneralizationLinkSet;

1436

1437 interface GeneralizableElementIsSupertypeInGeneralization :

1438 Reflective::RefAssociation {

1439 readonly attribute UmlCorePackage enclosing_package_ref;

1440 GeneralizableElementIsSupertypeInGeneralizationLinkSet

1441 all_generalizable_element_is_supertype_in_generalization_links();

1442 boolean exists (in GeneralizableElement supertype,

1443 in Generalization specialization);

1444 GeneralizableElement with_specialization (

1445 in Generalization specialization);

1446 GeneralizationSet with_supertype (in GeneralizableElement supertype);

1447 void add (in GeneralizableElement supertype,

1448 in Generalization specialization)

1449 raises (Reflective::StructuralError, Reflective::SemanticError);

1450 void modify_supertype (in GeneralizableElement supertype,

1451 in Generalization specialization,

1452 in GeneralizableElement new_supertype)

1453 raises (Reflective::StructuralError,

5-46 OMG-UML V1.2 May 1998

5

1454 Reflective::SemanticError,

1455 Reflective::NotFound);

1456 void modify_specialization (in GeneralizableElement supertype,

1457 in Generalization specialization,

1458 in Generalization new_specialization)

1459 raises (Reflective::StructuralError,

1460 Reflective::SemanticError,

1461 Reflective::NotFound);

1462 void remove (in GeneralizableElement supertype,

1463 in Generalization specialization)

1464 raises (Reflective::StructuralError,

1465 Reflective::SemanticError,

1466 Reflective::NotFound);

1467 };

1468

1469 struct AssociationEndOwnsQualifierAttributeLink {

1470 UmlAttribute qualifier;

1471 UmlCore::AssociationEnd association_end;

1472 };

1473 typedef sequence <AssociationEndOwnsQualifierAttributeLink>

1474 AssociationEndOwnsQualifierAttributeLinkSet;

1475

1476 interface AssociationEndOwnsQualifierAttribute :
Reflective::RefAssociation {

1477 readonly attribute UmlCorePackage enclosing_package_ref;

1478 AssociationEndOwnsQualifierAttributeLinkSet

1479 all_association_end_owns_qualifier_attribute_links();

1480 boolean exists (in UmlAttribute qualifier,

1481 in UmlCore::AssociationEnd association_end);

1482 UmlAttributeUList with_association_end (

1483 in UmlCore::AssociationEnd association_end);

1484 UmlCore::AssociationEnd with_qualifier (in UmlAttribute qualifier);

1485 void add (in UmlAttribute qualifier,

1486 in UmlCore::AssociationEnd association_end)

1487 raises (Reflective::StructuralError, Reflective::SemanticError);

1488 void add_before_qualifier (in UmlAttribute qualifier,

1489 in UmlCore::AssociationEnd association_end,

1490 in UmlAttribute before)

1491 raises (Reflective::StructuralError,

1492 Reflective::SemanticError,

1493 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-47

5

1494 void modify_qualifier (in UmlAttribute qualifier,

1495 in UmlCore::AssociationEnd association_end,

1496 in UmlAttribute new_qualifier)

1497 raises (Reflective::StructuralError,

1498 Reflective::SemanticError,

1499 Reflective::NotFound);

1500 void modify_association_end (

1501 in UmlAttribute qualifier,

1502 in UmlCore::AssociationEnd association_end,

1503 in UmlCore::AssociationEnd new_association_end)

1504 raises (Reflective::StructuralError,

1505 Reflective::SemanticError,

1506 Reflective::NotFound);

1507 void remove (in UmlAttribute qualifier,

1508 in UmlCore::AssociationEnd association_end)

1509 raises (Reflective::StructuralError,

1510 Reflective::SemanticError,

1511 Reflective::NotFound);

1512 };

1513

1514 struct AssociationEndIsOfTypeClassifierLink {

1515 Classifier type2;

1516 AssociationEnd participant;

1517 };

1518 typedef sequence <AssociationEndIsOfTypeClassifierLink>

1519 AssociationEndIsOfTypeClassifierLinkSet;

1520

1521 interface AssociationEndIsOfTypeClassifier : Reflective::RefAssociation {

1522 readonly attribute UmlCorePackage enclosing_package_ref;

1523 AssociationEndIsOfTypeClassifierLinkSet

1524 all_association_end_is_of_type_classifier_links();

1525 boolean exists (in Classifier type2, in AssociationEnd participant);

1526 Classifier with_participant (in AssociationEnd participant);

1527 AssociationEndSet with_type2 (in Classifier type2);

1528 void add (in Classifier type2, in AssociationEnd participant)

1529 raises (Reflective::StructuralError, Reflective::SemanticError);

1530 void modify_type2 (in Classifier type2,

1531 in AssociationEnd participant,

1532 in Classifier new_type2)

1533 raises (Reflective::StructuralError,

1534 Reflective::SemanticError,

5-48 OMG-UML V1.2 May 1998

5

1535 Reflective::NotFound);

1536 void modify_participant (in Classifier type2,

1537 in AssociationEnd participant,

1538 in AssociationEnd new_participant)

1539 raises (Reflective::StructuralError,

1540 Reflective::SemanticError,

1541 Reflective::NotFound);

1542 void remove (in Classifier type2, in AssociationEnd participant)

1543 raises (Reflective::StructuralError,

1544 Reflective::SemanticError,

1545 Reflective::NotFound);

1546 };

1547

1548 struct ClassifierIsRealizedByClassifierLink {

1549 Classifier realization;

1550 Classifier specification;

1551 };

1552 typedef sequence <ClassifierIsRealizedByClassifierLink>

1553 ClassifierIsRealizedByClassifierLinkSet;

1554

1555 interface ClassifierIsRealizedByClassifier : Reflective::RefAssociation {

1556 readonly attribute UmlCorePackage enclosing_package_ref;

1557 ClassifierIsRealizedByClassifierLinkSet

1558 all_classifier_is_realized_by_classifier_links();

1559 boolean exists (in Classifier realization, in Classifier specification);

1560 ClassifierSet with_specification (in Classifier specification);

1561 ClassifierSet with_realization (in Classifier realization);

1562 void add (in Classifier realization, in Classifier specification)

1563 raises (Reflective::StructuralError, Reflective::SemanticError);

1564 void modify_realization (in Classifier realization,

1565 in Classifier specification,

1566 in Classifier new_realization)

1567 raises (Reflective::StructuralError,

1568 Reflective::SemanticError,

1569 Reflective::NotFound);

1570 void modify_specification (in Classifier realization,

1571 in Classifier specification,

1572 in Classifier new_specification)

1573 raises (Reflective::StructuralError,

1574 Reflective::SemanticError,

1575 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-49

5

1576 void remove (in Classifier realization, in Classifier specification)

1577 raises (Reflective::StructuralError,

1578 Reflective::SemanticError,

1579 Reflective::NotFound);

1580 };

1581

1582 struct AssociationEndIsSpecifiedByClassifierLink {

1583 UmlCore::AssociationEnd association_end;

1584 Classifier specification;

1585 };

1586 typedef sequence <AssociationEndIsSpecifiedByClassifierLink>

1587 AssociationEndIsSpecifiedByClassifierLinkSet;

1588

1589 interface AssociationEndIsSpecifiedByClassifier :

1590 Reflective::RefAssociation {

1591 readonly attribute UmlCorePackage enclosing_package_ref;

1592 AssociationEndIsSpecifiedByClassifierLinkSet

1593 all_association_end_is_specified_by_classifier_links();

1594 boolean exists (in UmlCore::AssociationEnd association_end,

1595 in Classifier specification);

1596 UmlCore::AssociationEndSet with_specification (

1597 in Classifier specification);

1598 ClassifierSet with_association_end (

1599 in UmlCore::AssociationEnd association_end);

1600 void add (in UmlCore::AssociationEnd association_end,

1601 in Classifier specification)

1602 raises (Reflective::StructuralError, Reflective::SemanticError);

1603 void modify_association_end (

1604 in UmlCore::AssociationEnd association_end,

1605 in Classifier specification,

1606 in UmlCore::AssociationEnd new_association_end)

1607 raises (Reflective::StructuralError,

1608 Reflective::SemanticError,

1609 Reflective::NotFound);

1610 void modify_specification (in UmlCore::AssociationEnd association_end,

1611 in Classifier specification,

1612 in Classifier new_specification)

1613 raises (Reflective::StructuralError,

1614 Reflective::SemanticError,

1615 Reflective::NotFound);

1616 void remove (in UmlCore::AssociationEnd association_end,

5-50 OMG-UML V1.2 May 1998

5

1617 in Classifier specification)

1618 raises (Reflective::StructuralError,

1619 Reflective::SemanticError,

1620 Reflective::NotFound);

1621 };

1622

1623 struct ModelElementIsSupplierInDependencyLink {

1624 ModelElement supplier;

1625 Dependency provision;

1626 };

1627 typedef sequence <ModelElementIsSupplierInDependencyLink>

1628 ModelElementIsSupplierInDependencyLinkSet;

1629

1630 interface ModelElementIsSupplierInDependency : Reflective::RefAssociation
{

1631 readonly attribute UmlCorePackage enclosing_package_ref;

1632 ModelElementIsSupplierInDependencyLinkSet

1633 all_model_element_is_supplier_in_dependency_links();

1634 boolean exists (in ModelElement supplier, in Dependency provision);

1635 ModelElementSet with_provision (in Dependency provision);

1636 DependencySet with_supplier (in ModelElement supplier);

1637 void add (in ModelElement supplier, in Dependency provision)

1638 raises (Reflective::StructuralError, Reflective::SemanticError);

1639 void modify_supplier (in ModelElement supplier,

1640 in Dependency provision,

1641 in ModelElement new_supplier)

1642 raises (Reflective::StructuralError,

1643 Reflective::SemanticError,

1644 Reflective::NotFound);

1645 void modify_provision (in ModelElement supplier,

1646 in Dependency provision,

1647 in Dependency new_provision)

1648 raises (Reflective::StructuralError,

1649 Reflective::SemanticError,

1650 Reflective::NotFound);

1651 void remove (in ModelElement supplier, in Dependency provision)

1652 raises (Reflective::StructuralError,

1653 Reflective::SemanticError,

1654 Reflective::NotFound);

1655 };

1656

OMG-UML V1.1 IDL Modules March 1998 5-51

5

1657 struct ModelElementOwnsTaggedValueLink {

1658 UmlCore::ModelElement model_element;

1659 UmlCore::TaggedValue tagged_value;

1660 };

1661 typedef sequence <ModelElementOwnsTaggedValueLink>

1662 ModelElementOwnsTaggedValueLinkSet;

1663

1664 interface ModelElementOwnsTaggedValue : Reflective::RefAssociation {

1665 readonly attribute UmlCorePackage enclosing_package_ref;

1666 ModelElementOwnsTaggedValueLinkSet

1667 all_model_element_owns_tagged_value_links();

1668 boolean exists (in UmlCore::ModelElement model_element,

1669 in UmlCore::TaggedValue tagged_value);

1670 UmlCore::ModelElement with_tagged_value (

1671 in UmlCore::TaggedValue tagged_value);

1672 UmlCore::TaggedValueSet with_model_element (

1673 in UmlCore::ModelElement model_element);

1674 void add (in UmlCore::ModelElement model_element,

1675 in UmlCore::TaggedValue tagged_value)

1676 raises (Reflective::StructuralError, Reflective::SemanticError);

1677 void modify_model_element (in UmlCore::ModelElement model_element,

1678 in UmlCore::TaggedValue tagged_value,

1679 in UmlCore::ModelElement new_model_element)

1680 raises (Reflective::StructuralError,

1681 Reflective::SemanticError,

1682 Reflective::NotFound);

1683 void modify_tagged_value (in UmlCore::ModelElement model_element,

1684 in UmlCore::TaggedValue tagged_value,

1685 in UmlCore::TaggedValue new_tagged_value)

1686 raises (Reflective::StructuralError,

1687 Reflective::SemanticError,

1688 Reflective::NotFound);

1689 void remove (in UmlCore::ModelElement model_element,

1690 in UmlCore::TaggedValue tagged_value)

1691 raises (Reflective::StructuralError,

1692 Reflective::SemanticError,

1693 Reflective::NotFound);

1694 };

1695

1696 struct ConstraintConstrainsModelElementLink {

1697 ModelElement constrained_element;

5-52 OMG-UML V1.2 May 1998

5

1698 UmlCore::Constraint constraint;

1699 };

1700 typedef sequence <ConstraintConstrainsModelElementLink>

1701 ConstraintConstrainsModelElementLinkSet;

1702

1703 interface ConstraintConstrainsModelElement : Reflective::RefAssociation {

1704 readonly attribute UmlCorePackage enclosing_package_ref;

1705 ConstraintConstrainsModelElementLinkSet

1706 all_constraint_constrains_model_element_links();

1707 boolean exists (in ModelElement constrained_element,

1708 in UmlCore::Constraint constraint);

1709 ModelElementUList with_constraint (in UmlCore::Constraint constraint);

1710 UmlCore::ConstraintSet with_constrained_element (

1711 in ModelElement constrained_element);

1712 void add (in ModelElement constrained_element,

1713 in UmlCore::Constraint constraint)

1714 raises (Reflective::StructuralError, Reflective::SemanticError);

1715 void add_before_constrained_element (in ModelElement
constrained_element,

1716 in UmlCore::Constraint constraint,

1717 in ModelElement before)

1718 raises (Reflective::StructuralError,

1719 Reflective::SemanticError,

1720 Reflective::NotFound);

1721 void modify_constrained_element (in ModelElement constrained_element,

1722 in UmlCore::Constraint constraint,

1723 in ModelElement new_constrained_element)

1724 raises (Reflective::StructuralError,

1725 Reflective::SemanticError,

1726 Reflective::NotFound);

1727 void modify_constraint (in ModelElement constrained_element,

1728 in UmlCore::Constraint constraint,

1729 in UmlCore::Constraint new_constraint)

1730 raises (Reflective::StructuralError,

1731 Reflective::SemanticError,

1732 Reflective::NotFound);

1733 void remove (in ModelElement constrained_element,

1734 in UmlCore::Constraint constraint)

1735 raises (Reflective::StructuralError,

1736 Reflective::SemanticError,

1737 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-53

5

1738 };

1739

1740 struct ModelElementIsClientInDependencyLink {

1741 ModelElement client;

1742 Dependency requirement;

1743 };

1744 typedef sequence <ModelElementIsClientInDependencyLink>

1745 ModelElementIsClientInDependencyLinkSet;

1746

1747 interface ModelElementIsClientInDependency : Reflective::RefAssociation {

1748 readonly attribute UmlCorePackage enclosing_package_ref;

1749 ModelElementIsClientInDependencyLinkSet

1750 all_model_element_is_client_in_dependency_links();

1751 boolean exists (in ModelElement client, in Dependency requirement);

1752 ModelElementSet with_requirement (in Dependency requirement);

1753 DependencySet with_client (in ModelElement client);

1754 void add (in ModelElement client, in Dependency requirement)

1755 raises (Reflective::StructuralError, Reflective::SemanticError);

1756 void modify_client (in ModelElement client,

1757 in Dependency requirement,

1758 in ModelElement new_client)

1759 raises (Reflective::StructuralError,

1760 Reflective::SemanticError,

1761 Reflective::NotFound);

1762 void modify_requirement (in ModelElement client,

1763 in Dependency requirement,

1764 in Dependency new_requirement)

1765 raises (Reflective::StructuralError,

1766 Reflective::SemanticError,

1767 Reflective::NotFound);

1768 void remove (in ModelElement client, in Dependency requirement)

1769 raises (Reflective::StructuralError,

1770 Reflective::SemanticError,

1771 Reflective::NotFound);

1772 };

1773

1774 struct EnumerationOwnsEnumerationLiteralLink {

1775 UmlCore::Enumeration enumeration;

1776 EnumerationLiteral literal;

1777 };

1778 typedef sequence <EnumerationOwnsEnumerationLiteralLink>

5-54 OMG-UML V1.2 May 1998

5

1779 EnumerationOwnsEnumerationLiteralLinkSet;

1780

1781 interface EnumerationOwnsEnumerationLiteral : Reflective::RefAssociation {

1782 readonly attribute UmlCorePackage enclosing_package_ref;

1783 EnumerationOwnsEnumerationLiteralLinkSet

1784 all_enumeration_owns_enumeration_literal_links();

1785 boolean exists (in UmlCore::Enumeration enumeration,

1786 in EnumerationLiteral literal);

1787 UmlCore::Enumeration with_literal (in EnumerationLiteral literal);

1788 EnumerationLiteralUList with_enumeration (

1789 in UmlCore::Enumeration enumeration);

1790 void add (in UmlCore::Enumeration enumeration,

1791 in EnumerationLiteral literal)

1792 raises (Reflective::StructuralError, Reflective::SemanticError);

1793 void add_before_literal (in UmlCore::Enumeration enumeration,

1794 in EnumerationLiteral literal,

1795 in EnumerationLiteral before)

1796 raises (Reflective::StructuralError,

1797 Reflective::SemanticError,

1798 Reflective::NotFound);

1799 void modify_enumeration (in UmlCore::Enumeration enumeration,

1800 in EnumerationLiteral literal,

1801 in UmlCore::Enumeration new_enumeration)

1802 raises (Reflective::StructuralError,

1803 Reflective::SemanticError,

1804 Reflective::NotFound);

1805 void modify_literal (in UmlCore::Enumeration enumeration,

1806 in EnumerationLiteral literal,

1807 in EnumerationLiteral new_literal)

1808 raises (Reflective::StructuralError,

1809 Reflective::SemanticError,

1810 Reflective::NotFound);

1811 void remove (in UmlCore::Enumeration enumeration,

1812 in EnumerationLiteral literal)

1813 raises (Reflective::StructuralError,

1814 Reflective::SemanticError,

1815 Reflective::NotFound);

1816 };

1817

1818 struct StereotypeOwnsRequiredTaggedValueLink {

1819 TaggedValue required_tag;

OMG-UML V1.1 IDL Modules March 1998 5-55

5

1820 UmlCore::Stereotype stereotype;

1821 };

1822 typedef sequence <StereotypeOwnsRequiredTaggedValueLink>

1823 StereotypeOwnsRequiredTaggedValueLinkSet;

1824

1825 interface StereotypeOwnsRequiredTaggedValue : Reflective::RefAssociation {

1826 readonly attribute UmlCorePackage enclosing_package_ref;

1827 StereotypeOwnsRequiredTaggedValueLinkSet

1828 all_stereotype_owns_required_tagged_value_links();

1829 boolean exists (in TaggedValue required_tag,

1830 in UmlCore::Stereotype stereotype);

1831 TaggedValueSet with_stereotype (in UmlCore::Stereotype stereotype);

1832 UmlCore::Stereotype with_required_tag (in TaggedValue required_tag);

1833 void add (in TaggedValue required_tag, in UmlCore::Stereotype
stereotype)

1834 raises (Reflective::StructuralError, Reflective::SemanticError);

1835 void modify_required_tag (in TaggedValue required_tag,

1836 in UmlCore::Stereotype stereotype,

1837 in TaggedValue new_required_tag)

1838 raises (Reflective::StructuralError,

1839 Reflective::SemanticError,

1840 Reflective::NotFound);

1841 void modify_stereotype (in TaggedValue required_tag,

1842 in UmlCore::Stereotype stereotype,

1843 in UmlCore::Stereotype new_stereotype)

1844 raises (Reflective::StructuralError,

1845 Reflective::SemanticError,

1846 Reflective::NotFound);

1847 void remove (in TaggedValue required_tag,

1848 in UmlCore::Stereotype stereotype)

1849 raises (Reflective::StructuralError,

1850 Reflective::SemanticError,

1851 Reflective::NotFound);

1852 };

1853

1854 struct StereotypeExtendsModelElementLink {

1855 UmlCore::Stereotype stereotype;

1856 ModelElement extended_element;

1857 };

1858 typedef sequence <StereotypeExtendsModelElementLink>

1859 StereotypeExtendsModelElementLinkSet;

5-56 OMG-UML V1.2 May 1998

5

1860

1861 interface StereotypeExtendsModelElement : Reflective::RefAssociation {

1862 readonly attribute UmlCorePackage enclosing_package_ref;

1863 StereotypeExtendsModelElementLinkSet

1864 all_stereotype_extends_model_element_links();

1865 boolean exists (in UmlCore::Stereotype stereotype,

1866 in ModelElement extended_element);

1867 UmlCore::StereotypeSet with_extended_element (

1868 in ModelElement extended_element);

1869 ModelElementSet with_stereotype (in UmlCore::Stereotype stereotype);

1870 void add (in UmlCore::Stereotype stereotype,

1871 in ModelElement extended_element)

1872 raises (Reflective::StructuralError, Reflective::SemanticError);

1873 void modify_stereotype (in UmlCore::Stereotype stereotype,

1874 in ModelElement extended_element,

1875 in UmlCore::Stereotype new_stereotype)

1876 raises (Reflective::StructuralError,

1877 Reflective::SemanticError,

1878 Reflective::NotFound);

1879 void modify_extended_element (in UmlCore::Stereotype stereotype,

1880 in ModelElement extended_element,

1881 in ModelElement new_extended_element)

1882 raises (Reflective::StructuralError,

1883 Reflective::SemanticError,

1884 Reflective::NotFound);

1885 void remove (in UmlCore::Stereotype stereotype,

1886 in ModelElement extended_element)

1887 raises (Reflective::StructuralError,

1888 Reflective::SemanticError,

1889 Reflective::NotFound);

1890 };

1891

1892 struct ModelElementParemeterizedByModelElementLink {

1893 ModelElement template;

1894 ModelElement template_parameter;

1895 };

1896 typedef sequence <ModelElementParemeterizedByModelElementLink>

1897 ModelElementParemeterizedByModelElementLinkSet;

1898

1899 interface ModelElementParemeterizedByModelElement :

1900 Reflective::RefAssociation {

OMG-UML V1.1 IDL Modules March 1998 5-57

5

1901 readonly attribute UmlCorePackage enclosing_package_ref;

1902 ModelElementParemeterizedByModelElementLinkSet

1903 all_model_element_paremeterized_by_model_element_links();

1904 boolean exists (in ModelElement template,

1905 in ModelElement template_parameter);

1906 ModelElement with_template_parameter (in ModelElement
template_parameter);

1907 ModelElementUList with_template (in ModelElement template);

1908 void add (in ModelElement template, in ModelElement template_parameter)

1909 raises (Reflective::StructuralError, Reflective::SemanticError);

1910 void add_before_template_parameter (in ModelElement template,

1911 in ModelElement template_parameter,

1912 in ModelElement before)

1913 raises (Reflective::StructuralError,

1914 Reflective::SemanticError,

1915 Reflective::NotFound);

1916 void modify_template (in ModelElement template,

1917 in ModelElement template_parameter,

1918 in ModelElement new_template)

1919 raises (Reflective::StructuralError,

1920 Reflective::SemanticError,

1921 Reflective::NotFound);

1922 void modify_template_parameter (in ModelElement template,

1923 in ModelElement template_parameter,

1924 in ModelElement new_template_parameter)

1925 raises (Reflective::StructuralError,

1926 Reflective::SemanticError,

1927 Reflective::NotFound);

1928 void remove (in ModelElement template, in ModelElement
template_parameter)

1929 raises (Reflective::StructuralError,

1930 Reflective::SemanticError,

1931 Reflective::NotFound);

1932 };

1933

1934 struct NamespaceOwnsElementOwnershipLink {

1935 UmlCore::Namespace namespace;

1936 UmlCore::ElementOwnership element_ownership;

1937 };

1938 typedef sequence <NamespaceOwnsElementOwnershipLink>

1939 NamespaceOwnsElementOwnershipLinkSet;

5-58 OMG-UML V1.2 May 1998

5

1940

1941 interface NamespaceOwnsElementOwnership : Reflective::RefAssociation {

1942 readonly attribute UmlCorePackage enclosing_package_ref;

1943 NamespaceOwnsElementOwnershipLinkSet

1944 all_namespace_owns_element_ownership_links();

1945 boolean exists (in UmlCore::Namespace namespace,

1946 in UmlCore::ElementOwnership element_ownership);

1947 UmlCore::Namespace with_element_ownership (

1948 in UmlCore::ElementOwnership element_ownership);

1949 UmlCore::ElementOwnershipSet with_namespace (

1950 in UmlCore::Namespace namespace);

1951 void add (in UmlCore::Namespace namespace,

1952 in UmlCore::ElementOwnership element_ownership)

1953 raises (Reflective::StructuralError, Reflective::SemanticError);

1954 void modify_namespace (in UmlCore::Namespace namespace,

1955 in UmlCore::ElementOwnership element_ownership,

1956 in UmlCore::Namespace new_namespace)

1957 raises (Reflective::StructuralError,

1958 Reflective::SemanticError,

1959 Reflective::NotFound);

1960 void modify_element_ownership (

1961 in UmlCore::Namespace namespace,

1962 in UmlCore::ElementOwnership element_ownership,

1963 in UmlCore::ElementOwnership new_element_ownership)

1964 raises (Reflective::StructuralError,

1965 Reflective::SemanticError,

1966 Reflective::NotFound);

1967 void remove (in UmlCore::Namespace namespace,

1968 in UmlCore::ElementOwnership element_ownership)

1969 raises (Reflective::StructuralError,

1970 Reflective::SemanticError,

1971 Reflective::NotFound);

1972 };

1973

1974 struct ModelElementIsOwnedViaElementOwnershipLink {

1975 ModelElement owned_element;

1976 ElementOwnership namespace1;

1977 };

1978 typedef sequence <ModelElementIsOwnedViaElementOwnershipLink>

1979 ModelElementIsOwnedViaElementOwnershipLinkSet;

1980

OMG-UML V1.1 IDL Modules March 1998 5-59

5

1981 interface ModelElementIsOwnedViaElementOwnership :

1982 Reflective::RefAssociation {

1983 readonly attribute UmlCorePackage enclosing_package_ref;

1984 ModelElementIsOwnedViaElementOwnershipLinkSet

1985 all_model_element_is_owned_via_element_ownership_links();

1986 boolean exists (in ModelElement owned_element,

1987 in ElementOwnership namespace1);

1988 ModelElement with_namespace1 (in ElementOwnership namespace1);

1989 ElementOwnership with_owned_element (in ModelElement owned_element);

1990 void add (in ModelElement owned_element, in ElementOwnership namespace1)

1991 raises (Reflective::StructuralError, Reflective::SemanticError);

1992 void modify_owned_element (in ModelElement owned_element,

1993 in ElementOwnership namespace1,

1994 in ModelElement new_owned_element)

1995 raises (Reflective::StructuralError,

1996 Reflective::SemanticError,

1997 Reflective::NotFound);

1998 void modify_namespace1 (in ModelElement owned_element,

1999 in ElementOwnership namespace1,

2000 in ElementOwnership new_namespace1)

2001 raises (Reflective::StructuralError,

2002 Reflective::SemanticError,

2003 Reflective::NotFound);

2004 void remove (in ModelElement owned_element, in ElementOwnership
namespace1)

2005 raises (Reflective::StructuralError,

2006 Reflective::SemanticError,

2007 Reflective::NotFound);

2008 };

2009

2010 struct StereotypeIsConstrainedByConstraintLink {

2011 Constraint stereotype_constraint;

2012 Stereotype constrained_stereotype;

2013 };

2014 typedef sequence <StereotypeIsConstrainedByConstraintLink>

2015 StereotypeIsConstrainedByConstraintLinkSet;

2016

2017 interface StereotypeIsConstrainedByConstraint :
Reflective::RefAssociation {

2018 readonly attribute UmlCorePackage enclosing_package_ref;

2019 StereotypeIsConstrainedByConstraintLinkSet

5-60 OMG-UML V1.2 May 1998

5

2020 all_stereotype_is_constrained_by_constraint_links();

2021 boolean exists (in Constraint stereotype_constraint,

2022 in Stereotype constrained_stereotype);

2023 ConstraintSet with_constrained_stereotype (

2024 in Stereotype constrained_stereotype);

2025 Stereotype with_stereotype_constraint (

2026 in Constraint stereotype_constraint);

2027 void add (in Constraint stereotype_constraint,

2028 in Stereotype constrained_stereotype)

2029 raises (Reflective::StructuralError, Reflective::SemanticError);

2030 void modify_stereotype_constraint (in Constraint stereotype_constraint,

2031 in Stereotype constrained_stereotype,

2032 in Constraint new_stereotype_constraint)

2033 raises (Reflective::StructuralError,

2034 Reflective::SemanticError,

2035 Reflective::NotFound);

2036 void modify_constrained_stereotype (

2037 in Constraint stereotype_constraint,

2038 in Stereotype constrained_stereotype,

2039 in Stereotype new_constrained_stereotype)

2040 raises (Reflective::StructuralError,

2041 Reflective::SemanticError,

2042 Reflective::NotFound);

2043 void remove (in Constraint stereotype_constraint,

2044 in Stereotype constrained_stereotype)

2045 raises (Reflective::StructuralError,

2046 Reflective::SemanticError,

2047 Reflective::NotFound);

2048 };

2049

2050 interface UmlCorePackageFactory {

2051 UmlCorePackage create_uml_core_package ()

2052 raises (Reflective::SemanticError);

2053 };

2054

2055 interface UmlCorePackage : Reflective::RefPackage {

2056 readonly attribute ElementClass element_class_ref;

2057 readonly attribute TaggedValueClass tagged_value_class_ref;

2058 readonly attribute EnumerationLiteralClass
enumeration_literal_class_ref;

2059 readonly attribute ModelElementClass model_element_class_ref;

OMG-UML V1.1 IDL Modules March 1998 5-61

5

2060 readonly attribute FeatureClass feature_class_ref;

2061 readonly attribute GeneralizationClass generalization_class_ref;

2062 readonly attribute NamespaceClass namespace_class_ref;

2063 readonly attribute ParameterClass parameter_class_ref;

2064 readonly attribute ConstraintClass constraint_class_ref;

2065 readonly attribute DependencyClass dependency_class_ref;

2066 readonly attribute RequestClass request_class_ref;

2067 readonly attribute GeneralizableElementClass

2068 generalizable_element_class_ref;

2069 readonly attribute BehavioralFeatureClass behavioral_feature_class_ref;

2070 readonly attribute ClassifierClass classifier_class_ref;

2071 readonly attribute OperationClass operation_class_ref;

2072 readonly attribute StereotypeClass stereotype_class_ref;

2073 readonly attribute StructuralFeatureClass structural_feature_class_ref;

2074 readonly attribute DataTypeClass data_type_class_ref;

2075 readonly attribute UmlInterfaceClass uml_interface_class_ref;

2076 readonly attribute UmlAttributeClass uml_attribute_class_ref;

2077 readonly attribute AssociationEndClass association_end_class_ref;

2078 readonly attribute AssociationClass association_class_ref;

2079 readonly attribute MethodClass method_class_ref;

2080 readonly attribute EnumerationClass enumeration_class_ref;

2081 readonly attribute ClassClass class_class_ref;

2082 readonly attribute PrimitiveClass primitive_class_ref;

2083 readonly attribute StructureClass structure_class_ref;

2084 readonly attribute UmlAssociationClassClass

2085 uml_association_class_class_ref;

2086 readonly attribute ElementOwnershipClass element_ownership_class_ref;

2087

2088 readonly attribute AssociationOwnsAssociationEnd

2089 association_owns_association_end_ref;

2090 readonly attribute ClassifierOwnsFeature classifier_owns_feature_ref;

2091 readonly attribute MethodIsSpecifiedByOperation

2092 method_is_specified_by_operation_ref;

2093 readonly attribute StructuralFeatureIsOfTypeClassifier

2094 structural_feature_is_of_type_classifier_ref;

2095 readonly attribute NamespaceOwnsModelElement

2096 namespace_owns_model_element_ref;

2097 readonly attribute BehavioralFeatureOwnsParameter

2098 behavioral_feature_owns_parameter_ref;

2099 readonly attribute ParameterIsOfTypeClassifier

2100 parameter_is_of_type_classifier_ref;

5-62 OMG-UML V1.2 May 1998

5

2101 readonly attribute GeneralizableElementIsSubtypeInGeneralization

2102 generalizable_element_is_subtype_in_generalization_ref;

2103 readonly attribute GeneralizableElementIsSupertypeInGeneralization

2104 generalizable_element_is_supertype_in_generalization_ref;

2105 readonly attribute AssociationEndOwnsQualifierAttribute

2106 association_end_owns_qualifier_attribute_ref;

2107 readonly attribute AssociationEndIsOfTypeClassifier

2108 association_end_is_of_type_classifier_ref;

2109 readonly attribute ClassifierIsRealizedByClassifier

2110 classifier_is_realized_by_classifier_ref;

2111 readonly attribute AssociationEndIsSpecifiedByClassifier

2112 association_end_is_specified_by_classifier_ref;

2113 readonly attribute ModelElementIsSupplierInDependency

2114 model_element_is_supplier_in_dependency_ref;

2115 readonly attribute ModelElementOwnsTaggedValue

2116 model_element_owns_tagged_value_ref;

2117 readonly attribute ConstraintConstrainsModelElement

2118 constraint_constrains_model_element_ref;

2119 readonly attribute ModelElementIsClientInDependency

2120 model_element_is_client_in_dependency_ref;

2121 readonly attribute EnumerationOwnsEnumerationLiteral

2122 enumeration_owns_enumeration_literal_ref;

2123 readonly attribute StereotypeOwnsRequiredTaggedValue

2124 stereotype_owns_required_tagged_value_ref;

2125 readonly attribute StereotypeExtendsModelElement

2126 stereotype_extends_model_element_ref;

2127 readonly attribute ModelElementParemeterizedByModelElement

2128 model_element_paremeterized_by_model_element_ref;

2129 readonly attribute NamespaceOwnsElementOwnership

2130 namespace_owns_element_ownership_ref;

2131 readonly attribute ModelElementIsOwnedViaElementOwnership

2132 model_element_is_owned_via_element_ownership_ref;

2133 readonly attribute StereotypeIsConstrainedByConstraint

2134 stereotype_is_constrained_by_constraint_ref;

2135 };

2136 };

OMG-UML V1.1 IDL Modules March 1998 5-63

5

5.4.2 UMLModelManagement
1 #include "UmlCore.idl"

2

3 module UmlModelManagement {

4 interface UmlModelManagementPackage;

5 interface ElementReference;

6 interface ElementReferenceClass;

7 typedef sequence<ElementReference> ElementReferenceUList;

8 typedef sequence<ElementReference> ElementReferenceSet;

9 interface Model;

10 interface ModelClass;

11 typedef sequence<Model> ModelUList;

12 interface Package;

13 interface PackageClass;

14 typedef sequence<Package> PackageUList;

15 typedef sequence<Package> PackageSet;

16 interface Subsystem;

17 interface SubsystemClass;

18 typedef sequence<Subsystem> SubsystemUList;

19

20 interface PackageClass : ::UmlCore::GeneralizableElementClass {

21 readonly attribute PackageUList all_of_kind_package;

22 readonly attribute PackageUList all_of_type_package;

23 Package create_package (in ::UmlCore::Name name,

24 in boolean is_root,

25 in boolean is_leaf,

26 in boolean is_abstract)

27 raises (Reflective::SemanticError);

28 };

29

30 interface Package : PackageClass, ::UmlCore::GeneralizableElement {

31 ElementReferenceSet supplier_element_reference ()

32 raises (Reflective::NotSet, Reflective::SemanticError);

33 void add_supplier_element_reference (in ElementReferenceSet new_value)

34 raises (Reflective::StructuralError, Reflective::SemanticError);

35 void remove_supplier_element_reference ()

36 raises (Reflective::SemanticError);

37 ::UmlCore::ModelElementSet referenced_element ()

38 raises (Reflective::SemanticError);

39 void add_referenced_element (in ::UmlCore::ModelElementSet new_value)

5-64 OMG-UML V1.2 May 1998

5

40 raises (Reflective::StructuralError, Reflective::SemanticError);

41 void remove_referenced_element ()

42 raises (Reflective::SemanticError);

43 };

44

45 interface ModelClass : PackageClass {

46 readonly attribute ModelUList all_of_kind_model;

47 readonly attribute ModelUList all_of_type_model;

48 Model create_model (in ::UmlCore::Name name,

49 in boolean is_root,

50 in boolean is_leaf,

51 in boolean is_abstract)

52 raises (Reflective::SemanticError);

53 };

54

55 interface Model : ModelClass, Package { };

56

57 interface SubsystemClass : PackageClass, ::UmlCore::ClassifierClass {

58 readonly attribute SubsystemUList all_of_kind_subsystem;

59 readonly attribute SubsystemUList all_of_type_subsystem;

60 Subsystem create_subsystem (in ::UmlCore::Name name,

61 in boolean is_root,

62 in boolean is_leaf,

63 in boolean is_abstract,

64 in boolean is_instantiable)

65 raises (Reflective::SemanticError);

66 };

67

68 interface Subsystem : SubsystemClass, Package, ::UmlCore::Classifier {

69 boolean is_instantiable ()

70 raises (Reflective::SemanticError);

71 void set_is_instantiable (in boolean new_value)

72 raises (Reflective::SemanticError);

73 };

74

75 interface ElementReferenceClass : ::UmlCore::ElementClass {

76 readonly attribute ElementReferenceUList all_of_kind_element_reference;

77 readonly attribute ElementReferenceUList all_of_type_element_reference;

78 ElementReference create_element_reference (

79 in ::UmlCore::VisibilityKind visibility,

80 in ::UmlCore::Name alias)

OMG-UML V1.1 IDL Modules March 1998 5-65

5

81 raises (Reflective::SemanticError);

82 };

83

84 interface ElementReference : ElementReferenceClass, ::UmlCore::Element {

85 ::UmlCore::VisibilityKind visibility ()

86 raises (Reflective::SemanticError);

87 void set_visibility (in ::UmlCore::VisibilityKind new_value)

88 raises (Reflective::SemanticError);

89 ::UmlCore::Name alias ()

90 raises (Reflective::SemanticError);

91 void set_alias (in ::UmlCore::Name new_value)

92 raises (Reflective::SemanticError);

93 Package referencing_package ()

94 raises (Reflective::SemanticError);

95 void set_referencing_package (in Package new_value)

96 raises (Reflective::SemanticError);

97 ::UmlCore::ModelElementSet referenced_element ()

98 raises (Reflective::SemanticError);

99 void add_referenced_element (in ::UmlCore::ModelElementSet new_value)

100 raises (Reflective::StructuralError, Reflective::SemanticError);

101 void remove_referenced_element ()

102 raises (Reflective::SemanticError);

103 };

104

105 struct PackageElementReferenceLink {

106 Package referencing_package;

107 ElementReference supplier_element_reference;

108 };

109 typedef sequence <PackageElementReferenceLink>
PackageElementReferenceLinkSet;

110

111 interface PackageElementReference : Reflective::RefAssociation {

112 readonly attribute UmlModelManagementPackage enclosing_package_ref;

113 PackageElementReferenceLinkSet all_package_element_reference_links();

114 boolean exists (in Package referencing_package,

115 in ElementReference supplier_element_reference);

116 Package with_supplier_element_reference (

117 in ElementReference supplier_element_reference);

118 ElementReferenceSet with_referencing_package (

119 in Package referencing_package);

120 void add (in Package referencing_package,

5-66 OMG-UML V1.2 May 1998

5

121 in ElementReference supplier_element_reference)

122 raises (Reflective::StructuralError, Reflective::SemanticError);

123 void modify_referencing_package (

124 in Package referencing_package,

125 in ElementReference supplier_element_reference,

126 in Package new_referencing_package)

127 raises (Reflective::StructuralError,

128 Reflective::SemanticError,

129 Reflective::NotFound);

130 void modify_supplier_element_reference (

131 in Package referencing_package,

132 in ElementReference supplier_element_reference,

133 in ElementReference new_supplier_element_reference)

134 raises (Reflective::StructuralError,

135 Reflective::SemanticError,

136 Reflective::NotFound);

137 void remove (in Package referencing_package,

138 in ElementReference supplier_element_reference)

139 raises (Reflective::StructuralError,

140 Reflective::SemanticError,

141 Reflective::NotFound);

142 };

143

144 struct ElementReferenceReferencesModelElementLink {

145 ElementReference client_element_reference;

146 ::UmlCore::ModelElement referenced_element;

147 };

148 typedef sequence <ElementReferenceReferencesModelElementLink>

149 ElementReferenceReferencesModelElementLinkSet;

150

151 interface ElementReferenceReferencesModelElement :

152 Reflective::RefAssociation {

153 readonly attribute UmlModelManagementPackage enclosing_package_ref;

154 ElementReferenceReferencesModelElementLinkSet

155 all_element_reference_references_model_element_links();

156 boolean exists (in ElementReference client_element_reference,

157 in ::UmlCore::ModelElement referenced_element);

158 ElementReferenceSet with_referenced_element (

159 in ::UmlCore::ModelElement referenced_element);

160 ::UmlCore::ModelElementSet with_client_element_reference (

161 in ElementReference client_element_reference);

OMG-UML V1.1 IDL Modules March 1998 5-67

5

162 void add (in ElementReference client_element_reference,

163 in ::UmlCore::ModelElement referenced_element)

164 raises (Reflective::StructuralError, Reflective::SemanticError);

165 void modify_client_element_reference (

166 in ElementReference client_element_reference,

167 in ::UmlCore::ModelElement referenced_element,

168 in ElementReference new_client_element_reference)

169 raises (Reflective::StructuralError,

170 Reflective::SemanticError,

171 Reflective::NotFound);

172 void modify_referenced_element (

173 in ElementReference client_element_reference,

174 in ::UmlCore::ModelElement referenced_element,

175 in ::UmlCore::ModelElement new_referenced_element)

176 raises (Reflective::StructuralError,

177 Reflective::SemanticError,

178 Reflective::NotFound);

179 void remove (in ElementReference client_element_reference,

180 in ::UmlCore::ModelElement referenced_element)

181 raises (Reflective::StructuralError,

182 Reflective::SemanticError,

183 Reflective::NotFound);

184 };

185

186 struct PackageReferencesModelElementLink {

187 ::UmlCore::ModelElement referenced_element;

188 Package referencing_package;

189 };

190 typedef sequence <PackageReferencesModelElementLink>

191 PackageReferencesModelElementLinkSet;

192

193 interface PackageReferencesModelElement : Reflective::RefAssociation {

194 readonly attribute UmlModelManagementPackage enclosing_package_ref;

195 PackageReferencesModelElementLinkSet

196 all_package_references_model_element_links();

197 boolean exists (in ::UmlCore::ModelElement referenced_element,

198 in Package referencing_package);

199 ::UmlCore::ModelElementSet with_referencing_package (

200 in Package referencing_package);

201 PackageSet with_referenced_element (

202 in ::UmlCore::ModelElement referenced_element);

5-68 OMG-UML V1.2 May 1998

5

203 void add (in ::UmlCore::ModelElement referenced_element,

204 in Package referencing_package)

205 raises (Reflective::StructuralError, Reflective::SemanticError);

206 void modify_referenced_element (

207 in ::UmlCore::ModelElement referenced_element,

208 in Package referencing_package,

209 in ::UmlCore::ModelElement new_referenced_element)

210 raises (Reflective::StructuralError,

211 Reflective::SemanticError,

212 Reflective::NotFound);

213 void modify_referencing_package (

214 in ::UmlCore::ModelElement referenced_element,

215 in Package referencing_package,

216 in Package new_referencing_package)

217 raises (Reflective::StructuralError,

218 Reflective::SemanticError,

219 Reflective::NotFound);

220 void remove (in ::UmlCore::ModelElement referenced_element,

221 in Package referencing_package)

222 raises (Reflective::StructuralError,

223 Reflective::SemanticError,

224 Reflective::NotFound);

225 };

226

227 interface UmlModelManagementPackageFactory {

228 UmlModelManagementPackage create_uml_model_management_package ()

229 raises (Reflective::SemanticError);

230 };

231

232 interface UmlModelManagementPackage : Reflective::RefPackage {

233 readonly attribute PackageClass package_class_ref;

234 readonly attribute ModelClass model_class_ref;

235 readonly attribute SubsystemClass subsystem_class_ref;

236 readonly attribute ElementReferenceClass element_reference_class_ref;

237

238 readonly attribute PackageElementReference
package_element_reference_ref;

239 readonly attribute ElementReferenceReferencesModelElement

240 element_reference_references_model_element_ref;

241 readonly attribute PackageReferencesModelElement

242 package_references_model_element_ref;

OMG-UML V1.1 IDL Modules March 1998 5-69

5

243 };

244 };

5.4.3 UMLAuxiliaryElements
1 #include "UmlCore.idl"

2

3 module UmlAuxiliaryElements {

4 interface UmlAuxiliaryElementsPackage;

5 interface Usage;

6 interface UsageClass;

7 typedef sequence<Usage> UsageUList;

8 interface Component;

9 interface ComponentClass;

10 typedef sequence<Component> ComponentUList;

11 typedef sequence<Component> ComponentSet;

12 interface Presentation;

13 interface PresentationClass;

14 typedef sequence<Presentation> PresentationUList;

15 typedef sequence<Presentation> PresentationSet;

16 interface ViewElement;

17 interface ViewElementClass;

18 typedef sequence<ViewElement> ViewElementUList;

19 typedef sequence<ViewElement> ViewElementSet;

20 interface Binding;

21 interface BindingClass;

22 typedef sequence<Binding> BindingUList;

23 interface Comment;

24 interface CommentClass;

25 typedef sequence<Comment> CommentUList;

26 interface Trace;

27 interface TraceClass;

28 typedef sequence<Trace> TraceUList;

29 interface Node;

30 interface NodeClass;

31 typedef sequence<Node> NodeUList;

32 typedef sequence<Node> NodeSet;

33 interface Refinement;

34 interface RefinementClass;

35 typedef sequence<Refinement> RefinementUList;

36

5-70 OMG-UML V1.2 May 1998

5

37 interface ComponentClass : ::UmlCore::ClassifierClass {

38 readonly attribute ComponentUList all_of_kind_component;

39 readonly attribute ComponentUList all_of_type_component;

40 Component create_component (in ::UmlCore::Name name,

41 in boolean is_root,

42 in boolean is_leaf,

43 in boolean is_abstract)

44 raises (Reflective::SemanticError);

45 };

46

47 interface Component : ComponentClass, ::UmlCore::Classifier {

48 ::UmlCore::ModelElementSet model_element ()

49 raises (Reflective::NotSet, Reflective::SemanticError);

50 void add_model_element (in ::UmlCore::ModelElementSet new_value)

51 raises (Reflective::StructuralError, Reflective::SemanticError);

52 void remove_model_element ()

53 raises (Reflective::SemanticError);

54 NodeSet deployment ()

55 raises (Reflective::NotSet, Reflective::SemanticError);

56 void add_deployment (in NodeSet new_value)

57 raises (Reflective::StructuralError, Reflective::SemanticError);

58 void remove_deployment ()

59 raises (Reflective::SemanticError);

60 };

61

62 interface NodeClass : ::UmlCore::ClassifierClass {

63 readonly attribute NodeUList all_of_kind_node;

64 readonly attribute NodeUList all_of_type_node;

65 Node create_node (in ::UmlCore::Name name,

66 in boolean is_root,

67 in boolean is_leaf,

68 in boolean is_abstract)

69 raises (Reflective::SemanticError);

70 };

71

72 interface Node : NodeClass, ::UmlCore::Classifier {

73 UmlAuxiliaryElements::ComponentSet component ()

74 raises (Reflective::NotSet, Reflective::SemanticError);

75 void add_component (in UmlAuxiliaryElements::ComponentSet new_value)

76 raises (Reflective::StructuralError, Reflective::SemanticError);

77 void remove_component ()

OMG-UML V1.1 IDL Modules March 1998 5-71

5

78 raises (Reflective::SemanticError);

79 };

80

81 interface PresentationClass : ::UmlCore::ElementClass {

82 readonly attribute PresentationUList all_of_kind_presentation;

83 readonly attribute PresentationUList all_of_type_presentation;

84 Presentation create_presentation (in ::UmlCore::Geometry geometry,

85 in ::UmlCore::GraphicMarker style)

86 raises (Reflective::SemanticError);

87 };

88

89 interface Presentation : PresentationClass, ::UmlCore::Element {

90 ::UmlCore::Geometry geometry ()

91 raises (Reflective::SemanticError);

92 void set_geometry (in ::UmlCore::Geometry new_value)

93 raises (Reflective::SemanticError);

94 ::UmlCore::GraphicMarker style ()

95 raises (Reflective::SemanticError);

96 void set_style (in ::UmlCore::GraphicMarker new_value)

97 raises (Reflective::SemanticError);

98 ::UmlCore::ModelElement model ()

99 raises (Reflective::SemanticError);

100 void set_model (in ::UmlCore::ModelElement new_value)

101 raises (Reflective::SemanticError);

102 ViewElement view ()

103 raises (Reflective::SemanticError);

104 void set_view (in ViewElement new_value)

105 raises (Reflective::SemanticError);

106 };

107

108 interface ViewElementClass : ::UmlCore::ElementClass {

109 readonly attribute ViewElementUList all_of_kind_view_element;

110 };

111

112 interface ViewElement : ViewElementClass, ::UmlCore::Element {

113 UmlAuxiliaryElements::PresentationSet presentation ()

114 raises (Reflective::NotSet, Reflective::SemanticError);

115 void add_presentation (in UmlAuxiliaryElements::PresentationSet
new_value)

116 raises (Reflective::StructuralError, Reflective::SemanticError);

117 void remove_presentation ()

5-72 OMG-UML V1.2 May 1998

5

118 raises (Reflective::SemanticError);

119 ::UmlCore::ModelElementSet model ()

120 raises (Reflective::NotSet, Reflective::SemanticError);

121 void add_model (in ::UmlCore::ModelElementSet new_value)

122 raises (Reflective::StructuralError, Reflective::SemanticError);

123 void remove_model ()

124 raises (Reflective::SemanticError);

125 };

126

127 interface BindingClass : ::UmlCore::DependencyClass {

128 readonly attribute BindingUList all_of_kind_binding;

129 readonly attribute BindingUList all_of_type_binding;

130 Binding create_binding (in ::UmlCore::Name name,

131 in string description)

132 raises (Reflective::SemanticError);

133 };

134

135 interface Binding : BindingClass, ::UmlCore::Dependency {

136 ::UmlCore::ModelElementSet argument ()

137 raises (Reflective::SemanticError);

138 void add_argument (in ::UmlCore::ModelElementSet new_value)

139 raises (Reflective::StructuralError, Reflective::SemanticError);

140 void remove_argument ()

141 raises (Reflective::SemanticError);

142 };

143

144 interface CommentClass : ::UmlCore::ModelElementClass {

145 readonly attribute CommentUList all_of_kind_comment;

146 readonly attribute CommentUList all_of_type_comment;

147 Comment create_comment (in ::UmlCore::Name name)

148 raises (Reflective::SemanticError);

149 };

150

151 interface Comment : CommentClass, ::UmlCore::ModelElement { };

152

153 interface RefinementClass : ::UmlCore::DependencyClass {

154 readonly attribute RefinementUList all_of_kind_refinement;

155 readonly attribute RefinementUList all_of_type_refinement;

156 Refinement create_refinement (in ::UmlCore::Name name,

157 in string description,

158 in ::UmlCore::Mapping mapping)

OMG-UML V1.1 IDL Modules March 1998 5-73

5

159 raises (Reflective::SemanticError);

160 };

161

162 interface Refinement : RefinementClass, ::UmlCore::Dependency {

163 ::UmlCore::Mapping mapping ()

164 raises (Reflective::SemanticError);

165 void set_mapping (in ::UmlCore::Mapping new_value)

166 raises (Reflective::SemanticError);

167 };

168

169 interface TraceClass : ::UmlCore::DependencyClass {

170 readonly attribute TraceUList all_of_kind_trace;

171 readonly attribute TraceUList all_of_type_trace;

172 Trace create_trace (in ::UmlCore::Name name,

173 in string description)

174 raises (Reflective::SemanticError);

175 };

176

177 interface Trace : TraceClass, ::UmlCore::Dependency { };

178

179 interface UsageClass : ::UmlCore::DependencyClass {

180 readonly attribute UsageUList all_of_kind_usage;

181 readonly attribute UsageUList all_of_type_usage;

182 Usage create_usage (in ::UmlCore::Name name,

183 in string description)

184 raises (Reflective::SemanticError);

185 };

186

187 interface Usage : UsageClass, ::UmlCore::Dependency { };

188

189 struct ComponentImplementsModelElementLink {

190 Component implementation;

191 ::UmlCore::ModelElement model_element;

192 };

193 typedef sequence <ComponentImplementsModelElementLink>

194 ComponentImplementsModelElementLinkSet;

195

196 interface ComponentImplementsModelElement : Reflective::RefAssociation {

197 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

198 ComponentImplementsModelElementLinkSet

199 all_component_implements_model_element_links();

5-74 OMG-UML V1.2 May 1998

5

200 boolean exists (in Component implementation,

201 in ::UmlCore::ModelElement model_element);

202 ComponentSet with_model_element (in ::UmlCore::ModelElement
model_element);

203 ::UmlCore::ModelElementSet with_implementation (

204 in Component implementation);

205 void add (in Component implementation,

206 in ::UmlCore::ModelElement model_element)

207 raises (Reflective::StructuralError, Reflective::SemanticError);

208 void modify_implementation (in Component implementation,

209 in ::UmlCore::ModelElement model_element,

210 in Component new_implementation)

211 raises (Reflective::StructuralError,

212 Reflective::SemanticError,

213 Reflective::NotFound);

214 void modify_model_element (in Component implementation,

215 in ::UmlCore::ModelElement model_element,

216 in ::UmlCore::ModelElement new_model_element)

217 raises (Reflective::StructuralError,

218 Reflective::SemanticError,

219 Reflective::NotFound);

220 void remove (in Component implementation,

221 in ::UmlCore::ModelElement model_element)

222 raises (Reflective::StructuralError,

223 Reflective::SemanticError,

224 Reflective::NotFound);

225 };

226

227 struct NodeDeploysComponentLink {

228 Node deployment;

229 UmlAuxiliaryElements::Component component;

230 };

231 typedef sequence <NodeDeploysComponentLink> NodeDeploysComponentLinkSet;

232

233 interface NodeDeploysComponent : Reflective::RefAssociation {

234 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

235 NodeDeploysComponentLinkSet all_node_deploys_component_links();

236 boolean exists (in Node deployment,

237 in UmlAuxiliaryElements::Component component);

238 NodeSet with_component (in UmlAuxiliaryElements::Component component);

239 UmlAuxiliaryElements::ComponentSet with_deployment (in Node deployment);

OMG-UML V1.1 IDL Modules March 1998 5-75

5

240 void add (in Node deployment, in UmlAuxiliaryElements::Component
component)

241 raises (Reflective::StructuralError, Reflective::SemanticError);

242 void modify_deployment (in Node deployment,

243 in UmlAuxiliaryElements::Component component,

244 in Node new_deployment)

245 raises (Reflective::StructuralError,

246 Reflective::SemanticError,

247 Reflective::NotFound);

248 void modify_component (in Node deployment,

249 in UmlAuxiliaryElements::Component component,

250 in UmlAuxiliaryElements::Component new_component)

251 raises (Reflective::StructuralError,

252 Reflective::SemanticError,

253 Reflective::NotFound);

254 void remove (in Node deployment,

255 in UmlAuxiliaryElements::Component component)

256 raises (Reflective::StructuralError,

257 Reflective::SemanticError,

258 Reflective::NotFound);

259 };

260

261 struct PresentationPresentsModelElementLink {

262 ::UmlCore::ModelElement model;

263 UmlAuxiliaryElements::Presentation presentation;

264 };

265 typedef sequence <PresentationPresentsModelElementLink>

266 PresentationPresentsModelElementLinkSet;

267

268 interface PresentationPresentsModelElement : Reflective::RefAssociation {

269 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

270 PresentationPresentsModelElementLinkSet

271 all_presentation_presents_model_element_links();

272 boolean exists (in ::UmlCore::ModelElement model,

273 in UmlAuxiliaryElements::Presentation presentation);

274 ::UmlCore::ModelElement with_presentation (

275 in UmlAuxiliaryElements::Presentation presentation);

276 UmlAuxiliaryElements::PresentationSet with_model (

277 in ::UmlCore::ModelElement model);

278 void add (in ::UmlCore::ModelElement model,

279 in UmlAuxiliaryElements::Presentation presentation)

5-76 OMG-UML V1.2 May 1998

5

280 raises (Reflective::StructuralError, Reflective::SemanticError);

281 void modify_model (in ::UmlCore::ModelElement model,

282 in UmlAuxiliaryElements::Presentation presentation,

283 in ::UmlCore::ModelElement new_model)

284 raises (Reflective::StructuralError,

285 Reflective::SemanticError,

286 Reflective::NotFound);

287 void modify_presentation (

288 in ::UmlCore::ModelElement model,

289 in UmlAuxiliaryElements::Presentation presentation,

290 in UmlAuxiliaryElements::Presentation new_presentation)

291 raises (Reflective::StructuralError,

292 Reflective::SemanticError,

293 Reflective::NotFound);

294 void remove (in ::UmlCore::ModelElement model,

295 in UmlAuxiliaryElements::Presentation presentation)

296 raises (Reflective::StructuralError,

297 Reflective::SemanticError,

298 Reflective::NotFound);

299 };

300

301 struct PresentationPresentsViewElementLink {

302 ViewElement view;

303 UmlAuxiliaryElements::Presentation presentation;

304 };

305 typedef sequence <PresentationPresentsViewElementLink>

306 PresentationPresentsViewElementLinkSet;

307

308 interface PresentationPresentsViewElement : Reflective::RefAssociation {

309 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

310 PresentationPresentsViewElementLinkSet

311 all_presentation_presents_view_element_links();

312 boolean exists (in ViewElement view,

313 in UmlAuxiliaryElements::Presentation presentation);

314 ViewElement with_presentation (

315 in UmlAuxiliaryElements::Presentation presentation);

316 UmlAuxiliaryElements::PresentationSet with_view (in ViewElement view);

317 void add (in ViewElement view,

318 in UmlAuxiliaryElements::Presentation presentation)

319 raises (Reflective::StructuralError, Reflective::SemanticError);

320 void modify_view (in ViewElement view,

OMG-UML V1.1 IDL Modules March 1998 5-77

5

321 in UmlAuxiliaryElements::Presentation presentation,

322 in ViewElement new_view)

323 raises (Reflective::StructuralError,

324 Reflective::SemanticError,

325 Reflective::NotFound);

326 void modify_presentation (

327 in ViewElement view,

328 in UmlAuxiliaryElements::Presentation presentation,

329 in UmlAuxiliaryElements::Presentation new_presentation)

330 raises (Reflective::StructuralError,

331 Reflective::SemanticError,

332 Reflective::NotFound);

333 void remove (in ViewElement view,

334 in UmlAuxiliaryElements::Presentation presentation)

335 raises (Reflective::StructuralError,

336 Reflective::SemanticError,

337 Reflective::NotFound);

338 };

339

340 struct BindingOwnsArgumentModelElementLink {

341 UmlAuxiliaryElements::Binding binding;

342 ::UmlCore::ModelElement argument;

343 };

344 typedef sequence <BindingOwnsArgumentModelElementLink>

345 BindingOwnsArgumentModelElementLinkSet;

346

347 interface BindingOwnsArgumentModelElement : Reflective::RefAssociation {

348 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

349 BindingOwnsArgumentModelElementLinkSet

350 all_binding_owns_argument_model_element_links();

351 boolean exists (in UmlAuxiliaryElements::Binding binding,

352 in ::UmlCore::ModelElement argument);

353 UmlAuxiliaryElements::Binding with_argument (

354 in ::UmlCore::ModelElement argument);

355 ::UmlCore::ModelElementSet with_binding (

356 in UmlAuxiliaryElements::Binding binding);

357 void add (in UmlAuxiliaryElements::Binding binding,

358 in ::UmlCore::ModelElement argument)

359 raises (Reflective::StructuralError, Reflective::SemanticError);

360 void modify_binding (in UmlAuxiliaryElements::Binding binding,

361 in ::UmlCore::ModelElement argument,

5-78 OMG-UML V1.2 May 1998

5

362 in UmlAuxiliaryElements::Binding new_binding)

363 raises (Reflective::StructuralError,

364 Reflective::SemanticError,

365 Reflective::NotFound);

366 void modify_argument (in UmlAuxiliaryElements::Binding binding,

367 in ::UmlCore::ModelElement argument,

368 in ::UmlCore::ModelElement new_argument)

369 raises (Reflective::StructuralError,

370 Reflective::SemanticError,

371 Reflective::NotFound);

372 void remove (in UmlAuxiliaryElements::Binding binding,

373 in ::UmlCore::ModelElement argument)

374 raises (Reflective::StructuralError,

375 Reflective::SemanticError,

376 Reflective::NotFound);

377 };

378

379 struct ViewElementProvidesViewOfModelElementLink {

380 ViewElement view;

381 ::UmlCore::ModelElement model;

382 };

383 typedef sequence <ViewElementProvidesViewOfModelElementLink>

384 ViewElementProvidesViewOfModelElementLinkSet;

385

386 interface ViewElementProvidesViewOfModelElement :

387 Reflective::RefAssociation {

388 readonly attribute UmlAuxiliaryElementsPackage enclosing_package_ref;

389 ViewElementProvidesViewOfModelElementLinkSet

390 all_view_element_provides_view_of_model_element_links();

391 boolean exists (in ViewElement view, in ::UmlCore::ModelElement model);

392 ViewElementSet with_model (in ::UmlCore::ModelElement model);

393 ::UmlCore::ModelElementSet with_view (in ViewElement view);

394 void add (in ViewElement view, in ::UmlCore::ModelElement model)

395 raises (Reflective::StructuralError, Reflective::SemanticError);

396 void modify_view (in ViewElement view,

397 in ::UmlCore::ModelElement model,

398 in ViewElement new_view)

399 raises (Reflective::StructuralError,

400 Reflective::SemanticError,

401 Reflective::NotFound);

402 void modify_model (in ViewElement view,

OMG-UML V1.1 IDL Modules March 1998 5-79

5

403 in ::UmlCore::ModelElement model,

404 in ::UmlCore::ModelElement new_model)

405 raises (Reflective::StructuralError,

406 Reflective::SemanticError,

407 Reflective::NotFound);

408 void remove (in ViewElement view, in ::UmlCore::ModelElement model)

409 raises (Reflective::StructuralError,

410 Reflective::SemanticError,

411 Reflective::NotFound);

412 };

413

414 interface UmlAuxiliaryElementsPackageFactory {

415 UmlAuxiliaryElementsPackage create_uml_auxiliary_elements_package ()

416 raises (Reflective::SemanticError);

417 };

418

419 interface UmlAuxiliaryElementsPackage : Reflective::RefPackage {

420 readonly attribute ComponentClass component_class_ref;

421 readonly attribute NodeClass node_class_ref;

422 readonly attribute PresentationClass presentation_class_ref;

423 readonly attribute ViewElementClass view_element_class_ref;

424 readonly attribute BindingClass binding_class_ref;

425 readonly attribute CommentClass comment_class_ref;

426 readonly attribute RefinementClass refinement_class_ref;

427 readonly attribute TraceClass trace_class_ref;

428 readonly attribute UsageClass usage_class_ref;

429

430 readonly attribute ComponentImplementsModelElement

431 component_implements_model_element_ref;

432 readonly attribute NodeDeploysComponent node_deploys_component_ref;

433 readonly attribute PresentationPresentsModelElement

434 presentation_presents_model_element_ref;

435 readonly attribute PresentationPresentsViewElement

436 presentation_presents_view_element_ref;

437 readonly attribute BindingOwnsArgumentModelElement

438 binding_owns_argument_model_element_ref;

439 readonly attribute ViewElementProvidesViewOfModelElement

440 view_element_provides_view_of_model_element_ref;

441 };

442 };

5-80 OMG-UML V1.2 May 1998

5

5.4.4 UMLCollaborations
1 #include "UmlCommonBehavior.idl"

2

3 module UmlCollaborations {

4 interface UmlCollaborationsPackage;

5 interface Message;

6 interface MessageClass;

7 typedef sequence<Message> MessageUList;

8 typedef sequence<Message> MessageSet;

9 interface ClassifierRole;

10 interface ClassifierRoleClass;

11 typedef sequence<ClassifierRole> ClassifierRoleUList;

12 typedef sequence<ClassifierRole> ClassifierRoleSet;

13 interface AssociationRole;

14 interface AssociationRoleClass;

15 typedef sequence<AssociationRole> AssociationRoleUList;

16 typedef sequence<AssociationRole> AssociationRoleSet;

17 interface Interaction;

18 interface InteractionClass;

19 typedef sequence<Interaction> InteractionUList;

20 interface AssociationEndRole;

21 interface AssociationEndRoleClass;

22 typedef sequence<AssociationEndRole> AssociationEndRoleUList;

23 typedef sequence<AssociationEndRole> AssociationEndRoleSet;

24 interface Collaboration;

25 interface CollaborationClass;

26 typedef sequence<Collaboration> CollaborationUList;

27 typedef sequence<Collaboration> CollaborationSet;

28

29 interface AssociationEndRoleClass : ::UmlCore::AssociationEndClass {

30 readonly attribute AssociationEndRoleUList

31 all_of_kind_association_end_role;

32 readonly attribute AssociationEndRoleUList

33 all_of_type_association_end_role;

34 AssociationEndRole create_association_end_role (

35 in ::UmlCore::Name name,

36 in boolean is_navigable,

37 in boolean is_ordered,

38 in ::UmlCore::AggregationKind aggregation,

39 in ::UmlCore::ScopeKind target_scope,

OMG-UML V1.1 IDL Modules March 1998 5-81

5

40 in ::UmlCore::Multiplicity multiplicity,

41 in ::UmlCore::ChangeableKind changeable)

42 raises (Reflective::SemanticError);

43 };

44

45 interface AssociationEndRole : AssociationEndRoleClass,

46 ::UmlCore::AssociationEnd {

47 ::UmlCore::AssociationEnd base ()

48 raises (Reflective::SemanticError);

49 void set_base (in ::UmlCore::AssociationEnd new_value)

50 raises (Reflective::SemanticError);

51 };

52

53 interface ClassifierRoleClass : ::UmlCore::ClassifierClass {

54 readonly attribute ClassifierRoleUList all_of_kind_classifier_role;

55 readonly attribute ClassifierRoleUList all_of_type_classifier_role;

56 ClassifierRole create_classifier_role (

57 in ::UmlCore::Name name,

58 in boolean is_root,

59 in boolean is_leaf,

60 in boolean is_abstract,

61 in ::UmlCore::Multiplicity multiplicity)

62 raises (Reflective::SemanticError);

63 };

64

65 interface ClassifierRole : ClassifierRoleClass, ::UmlCore::Classifier {

66 ::UmlCore::Multiplicity multiplicity ()

67 raises (Reflective::SemanticError);

68 void set_multiplicity (in ::UmlCore::Multiplicity new_value)

69 raises (Reflective::SemanticError);

70 ::UmlCore::Classifier base ()

71 raises (Reflective::SemanticError);

72 void set_base (in ::UmlCore::Classifier new_value)

73 raises (Reflective::SemanticError);

74 ::UmlCore::FeatureSet available_feature ()

75 raises (Reflective::NotSet, Reflective::SemanticError);

76 void add_available_feature (in ::UmlCore::FeatureSet new_value)

77 raises (Reflective::StructuralError, Reflective::SemanticError);

78 void remove_available_feature ()

79 raises (Reflective::SemanticError);

80 UmlCollaborations::MessageSet message ()

5-82 OMG-UML V1.2 May 1998

5

81 raises (Reflective::NotSet, Reflective::SemanticError);

82 void add_message (in UmlCollaborations::MessageSet new_value)

83 raises (Reflective::StructuralError, Reflective::SemanticError);

84 void remove_message ()

85 raises (Reflective::SemanticError);

86 UmlCollaborations::MessageSet received_message ()

87 raises (Reflective::NotSet, Reflective::SemanticError);

88 void add_received_message (in UmlCollaborations::MessageSet new_value)

89 raises (Reflective::StructuralError, Reflective::SemanticError);

90 void remove_received_message ()

91 raises (Reflective::SemanticError);

92 };

93

94 interface MessageClass : ::UmlCore::ModelElementClass {

95 readonly attribute MessageUList all_of_kind_message;

96 readonly attribute MessageUList all_of_type_message;

97 Message create_message (in ::UmlCore::Name name)

98 raises (Reflective::SemanticError);

99 };

100

101 interface Message : MessageClass, ::UmlCore::ModelElement {

102 UmlCollaborations::InteractionUList interaction ()

103 raises (Reflective::NotSet, Reflective::SemanticError);

104 void add_interaction (in UmlCollaborations::InteractionUList new_value)

105 raises (Reflective::StructuralError, Reflective::SemanticError);

106 void add_interaction_before (in UmlCollaborations::Interaction
new_value,

107 in UmlCollaborations::Interaction before)

108 raises (Reflective::StructuralError,

109 Reflective::NotFound,

110 Reflective::SemanticError);

111 void remove_interaction ()

112 raises (Reflective::SemanticError);

113 Message activator ()

114 raises (Reflective::NotSet, Reflective::SemanticError);

115 void set_activator (in Message new_value)

116 raises (Reflective::SemanticError);

117 void unset_activator ()

118 raises (Reflective::SemanticError);

119 MessageUList activated_message ()

120 raises (Reflective::NotSet, Reflective::SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-83

5

121 void add_activated_message (in MessageUList new_value)

122 raises (Reflective::StructuralError, Reflective::SemanticError);

123 void add_activated_message_before (in Message new_value,

124 in Message before)

125 raises (Reflective::StructuralError,

126 Reflective::NotFound,

127 Reflective::SemanticError);

128 void remove_activated_message ()

129 raises (Reflective::SemanticError);

130 ::UmlCommonBehavior::Action action ()

131 raises (Reflective::SemanticError);

132 void set_action (in ::UmlCommonBehavior::Action new_value)

133 raises (Reflective::SemanticError);

134 ClassifierRole sender ()

135 raises (Reflective::SemanticError);

136 void set_sender (in ClassifierRole new_value)

137 raises (Reflective::SemanticError);

138 ClassifierRole receiver ()

139 raises (Reflective::SemanticError);

140 void set_receiver (in ClassifierRole new_value)

141 raises (Reflective::SemanticError);

142 MessageSet predecessor ()

143 raises (Reflective::NotSet, Reflective::SemanticError);

144 void add_predecessor (in MessageSet new_value)

145 raises (Reflective::StructuralError, Reflective::SemanticError);

146 void remove_predecessor ()

147 raises (Reflective::SemanticError);

148 MessageSet successor ()

149 raises (Reflective::NotSet, Reflective::SemanticError);

150 void add_successor (in MessageSet new_value)

151 raises (Reflective::StructuralError, Reflective::SemanticError);

152 void remove_successor ()

153 raises (Reflective::SemanticError);

154 };

155

156 interface InteractionClass : ::UmlCore::ModelElementClass {

157 readonly attribute InteractionUList all_of_kind_interaction;

158 readonly attribute InteractionUList all_of_type_interaction;

159 Interaction create_interaction (in ::UmlCore::Name name)

160 raises (Reflective::SemanticError);

161 };

5-84 OMG-UML V1.2 May 1998

5

162

163 interface Interaction : InteractionClass, ::UmlCore::ModelElement {

164 UmlCollaborations::MessageSet message ()

165 raises (Reflective::SemanticError);

166 void add_message (in UmlCollaborations::MessageSet new_value)

167 raises (Reflective::StructuralError, Reflective::SemanticError);

168 void remove_message ()

169 raises (Reflective::SemanticError);

170 Collaboration uml_context ()

171 raises (Reflective::NotSet, Reflective::SemanticError);

172 void set_uml_context (in Collaboration new_value)

173 raises (Reflective::SemanticError);

174 void unset_uml_context ()

175 raises (Reflective::SemanticError);

176 };

177

178 interface AssociationRoleClass : ::UmlCore::AssociationClass {

179 readonly attribute AssociationRoleUList all_of_kind_association_role;

180 readonly attribute AssociationRoleUList all_of_type_association_role;

181 AssociationRole create_association_role (

182 in ::UmlCore::Name name,

183 in boolean is_root,

184 in boolean is_leaf,

185 in boolean is_abstract,

186 in ::UmlCore::Multiplicity multiplicity)

187 raises (Reflective::SemanticError);

188 };

189

190 interface AssociationRole : AssociationRoleClass, ::UmlCore::Association {

191 ::UmlCore::Multiplicity multiplicity ()

192 raises (Reflective::SemanticError);

193 void set_multiplicity (in ::UmlCore::Multiplicity new_value)

194 raises (Reflective::SemanticError);

195 ::UmlCore::Association base ()

196 raises (Reflective::SemanticError);

197 void set_base (in ::UmlCore::Association new_value)

198 raises (Reflective::SemanticError);

199 };

200

201 interface CollaborationClass : ::UmlCore::NamespaceClass {

202 readonly attribute CollaborationUList all_of_kind_collaboration;

OMG-UML V1.1 IDL Modules March 1998 5-85

5

203 readonly attribute CollaborationUList all_of_type_collaboration;

204 Collaboration create_collaboration (in ::UmlCore::Name name)

205 raises (Reflective::SemanticError);

206 };

207

208 interface Collaboration : CollaborationClass, ::UmlCore::Namespace {

209 UmlCollaborations::InteractionUList interaction ()

210 raises (Reflective::NotSet, Reflective::SemanticError);

211 void add_interaction (in UmlCollaborations::InteractionUList new_value)

212 raises (Reflective::StructuralError, Reflective::SemanticError);

213 void add_interaction_before (in UmlCollaborations::Interaction
new_value,

214 in UmlCollaborations::Interaction before)

215 raises (Reflective::StructuralError,

216 Reflective::NotFound,

217 Reflective::SemanticError);

218 void remove_interaction ()

219 raises (Reflective::SemanticError);

220 ::UmlCore::ModelElementSet constraining_element ()

221 raises (Reflective::NotSet, Reflective::SemanticError);

222 void add_constraining_element (in ::UmlCore::ModelElementSet new_value)

223 raises (Reflective::StructuralError, Reflective::SemanticError);

224 void remove_constraining_element ()

225 raises (Reflective::SemanticError);

226 ::UmlCore::Classifier represented_classifier ()

227 raises (Reflective::NotSet, Reflective::SemanticError);

228 void set_represented_classifier (in ::UmlCore::Classifier new_value)

229 raises (Reflective::SemanticError);

230 void unset_represented_classifier ()

231 raises (Reflective::SemanticError);

232 ::UmlCore::Operation represented_operation ()

233 raises (Reflective::NotSet, Reflective::SemanticError);

234 void set_represented_operation (in ::UmlCore::Operation new_value)

235 raises (Reflective::SemanticError);

236 void unset_represented_operation ()

237 raises (Reflective::SemanticError);

238 };

239

240 struct InteractionContainsMessageLink {

241 UmlCollaborations::Interaction interaction;

242 UmlCollaborations::Message message;

5-86 OMG-UML V1.2 May 1998

5

243 };

244 typedef sequence <InteractionContainsMessageLink>

245 InteractionContainsMessageLinkSet;

246

247 interface InteractionContainsMessage : Reflective::RefAssociation {

248 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

249 InteractionContainsMessageLinkSet

250 all_interaction_contains_message_links();

251 boolean exisits (in UmlCollaborations::Interaction interaction,

252 in UmlCollaborations::Message message);

253 UmlCollaborations::InteractionUList

254 with_message (in UmlCollaborations::Message message);

255 UmlCollaborations::MessageSet with_interaction (

256 in UmlCollaborations::Interaction interaction);

257 void add (in UmlCollaborations::Interaction interaction,

258 in UmlCollaborations::Message message)

259 raises (Reflective::StructuralError, Reflective::SemanticError);

260 void add_before_interaction (in UmlCollaborations::Interaction
interaction,

261 in UmlCollaborations::Message message,

262 in UmlCollaborations::Interaction before)

263 raises (Reflective::StructuralError,

264 Reflective::SemanticError,

265 Reflective::NotFound);

266 void modify_interaction (in UmlCollaborations::Interaction interaction,

267 in UmlCollaborations::Message message,

268 in UmlCollaborations::Interaction new_interaction)

269 raises (Reflective::StructuralError,

270 Reflective::SemanticError,

271 Reflective::NotFound);

272 void modify_message (in UmlCollaborations::Interaction interaction,

273 in UmlCollaborations::Message message,

274 in UmlCollaborations::Message new_message)

275 raises (Reflective::StructuralError,

276 Reflective::SemanticError,

277 Reflective::NotFound);

278 void remove (in UmlCollaborations::Interaction interaction,

279 in UmlCollaborations::Message message)

280 raises (Reflective::StructuralError,

281 Reflective::SemanticError,

282 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-87

5

283 };

284

285 struct CollaborationOwnsInteractionLink {

286 Collaboration uml_context;

287 UmlCollaborations::Interaction interaction;

288 };

289 typedef sequence <CollaborationOwnsInteractionLink>

290 CollaborationOwnsInteractionLinkSet;

291

292 interface CollaborationOwnsInteraction : Reflective::RefAssociation {

293 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

294 CollaborationOwnsInteractionLinkSet

295 all_collaboration_owns_interaction_links();

296 boolean exisits (in Collaboration uml_context,

297 in UmlCollaborations::Interaction interaction);

298 Collaboration with_interaction (

299 in UmlCollaborations::Interaction interaction);

300 UmlCollaborations::InteractionUList with_uml_context (

301 in Collaboration uml_context);

302 void add (in Collaboration uml_context,

303 in UmlCollaborations::Interaction interaction)

304 raises (Reflective::StructuralError, Reflective::SemanticError);

305 void add_before_interaction (in Collaboration uml_context,

306 in UmlCollaborations::Interaction interaction,

307 in UmlCollaborations::Interaction before)

308 raises (Reflective::StructuralError,

309 Reflective::SemanticError,

310 Reflective::NotFound);

311 void modify_uml_context (in Collaboration uml_context,

312 in UmlCollaborations::Interaction interaction,

313 in Collaboration new_uml_context)

314 raises (Reflective::StructuralError,

315 Reflective::SemanticError,

316 Reflective::NotFound);

317 void modify_interaction (in Collaboration uml_context,

318 in UmlCollaborations::Interaction interaction,

319 in UmlCollaborations::Interaction new_interaction)

320 raises (Reflective::StructuralError,

321 Reflective::SemanticError,

322 Reflective::NotFound);

323 void remove (in Collaboration uml_context,

5-88 OMG-UML V1.2 May 1998

5

324 in UmlCollaborations::Interaction interaction)

325 raises (Reflective::StructuralError,

326 Reflective::SemanticError,

327 Reflective::NotFound);

328 };

329

330 struct ClassifierRoleHasBaseOfClassifierLink {

331 UmlCollaborations::ClassifierRole classifier_role;

332 ::UmlCore::Classifier base;

333 };

334 typedef sequence <ClassifierRoleHasBaseOfClassifierLink>

335 ClassifierRoleHasBaseOfClassifierLinkSet;

336

337 interface ClassifierRoleHasBaseOfClassifier : Reflective::RefAssociation {

338 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

339 ClassifierRoleHasBaseOfClassifierLinkSet

340 all_classifier_role_has_base_of_classifier_links();

341 boolean exisits (in UmlCollaborations::ClassifierRole classifier_role,

342 in ::UmlCore::Classifier base);

343 UmlCollaborations::ClassifierRoleSet with_base (

344 in ::UmlCore::Classifier base);

345 ::UmlCore::Classifier with_classifier_role (

346 in UmlCollaborations::ClassifierRole classifier_role);

347 void add (in UmlCollaborations::ClassifierRole classifier_role,

348 in ::UmlCore::Classifier base)

349 raises (Reflective::StructuralError, Reflective::SemanticError);

350 void modify_classifier_role (

351 in UmlCollaborations::ClassifierRole classifier_role,

352 in ::UmlCore::Classifier base,

353 in UmlCollaborations::ClassifierRole new_classifier_role)

354 raises (Reflective::StructuralError,

355 Reflective::SemanticError,

356 Reflective::NotFound);

357 void modify_base (in UmlCollaborations::ClassifierRole classifier_role,

358 in ::UmlCore::Classifier base,

359 in ::UmlCore::Classifier new_base)

360 raises (Reflective::StructuralError,

361 Reflective::SemanticError,

362 Reflective::NotFound);

363 void remove (in UmlCollaborations::ClassifierRole classifier_role,

364 in ::UmlCore::Classifier base)

OMG-UML V1.1 IDL Modules March 1998 5-89

5

365 raises (Reflective::StructuralError,

366 Reflective::SemanticError,

367 Reflective::NotFound);

368 };

369

370 struct AssociationEndRoleHasBaseOfAssociationEndLink {

371 ::UmlCore::AssociationEnd base;

372 UmlCollaborations::AssociationEndRole association_end_role;

373 };

374 typedef sequence <AssociationEndRoleHasBaseOfAssociationEndLink>

375 AssociationEndRoleHasBaseOfAssociationEndLinkSet;

376

377 interface AssociationEndRoleHasBaseOfAssociationEnd :

378 Reflective::RefAssociation {

379 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

380 AssociationEndRoleHasBaseOfAssociationEndLinkSet

381 all_association_end_role_has_base_of_association_end_links();

382 boolean

383 exisits (in ::UmlCore::AssociationEnd base,

384 in UmlCollaborations::AssociationEndRole association_end_role);

385 ::UmlCore::AssociationEnd with_association_end_role (

386 in UmlCollaborations::AssociationEndRole association_end_role);

387 UmlCollaborations::AssociationEndRoleSet with_base (

388 in ::UmlCore::AssociationEnd base);

389 void add (in ::UmlCore::AssociationEnd base,

390 in UmlCollaborations::AssociationEndRole association_end_role)

391 raises (Reflective::StructuralError, Reflective::SemanticError);

392 void modify_base (

393 in ::UmlCore::AssociationEnd base,

394 in UmlCollaborations::AssociationEndRole association_end_role,

395 in ::UmlCore::AssociationEnd new_base)

396 raises (Reflective::StructuralError,

397 Reflective::SemanticError,

398 Reflective::NotFound);

399 void modify_association_end_role (

400 in ::UmlCore::AssociationEnd base,

401 in UmlCollaborations::AssociationEndRole association_end_role,

402 in UmlCollaborations::AssociationEndRole
new_association_end_role)

403 raises (Reflective::StructuralError,

404 Reflective::SemanticError,

5-90 OMG-UML V1.2 May 1998

5

405 Reflective::NotFound);

406 void remove (in ::UmlCore::AssociationEnd base,

407 in UmlCollaborations::AssociationEndRole association_end_role)

408 raises (Reflective::StructuralError,

409 Reflective::SemanticError,

410 Reflective::NotFound);

411 };

412

413 struct AssociationRoleHasBaseOfAssociationLink {

414 ::UmlCore::Association base;

415 UmlCollaborations::AssociationRole association_role;

416 };

417 typedef sequence <AssociationRoleHasBaseOfAssociationLink>

418 AssociationRoleHasBaseOfAssociationLinkSet;

419

420 interface AssociationRoleHasBaseOfAssociation : Reflective::RefAssociation
{

421 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

422 AssociationRoleHasBaseOfAssociationLinkSet

423 all_association_role_has_base_of_association_links();

424 boolean exisits (in ::UmlCore::Association base,

425 in UmlCollaborations::AssociationRole association_role);

426 ::UmlCore::Association with_association_role (

427 in UmlCollaborations::AssociationRole association_role);

428 UmlCollaborations::AssociationRoleSet with_base (

429 in ::UmlCore::Association base);

430 void add (in ::UmlCore::Association base,

431 in UmlCollaborations::AssociationRole association_role)

432 raises (Reflective::StructuralError, Reflective::SemanticError);

433 void modify_base (in ::UmlCore::Association base,

434 in UmlCollaborations::AssociationRole association_role,

435 in ::UmlCore::Association new_base)

436 raises (Reflective::StructuralError,

437 Reflective::SemanticError,

438 Reflective::NotFound);

439 void modify_association_role (

440 in ::UmlCore::Association base,

441 in UmlCollaborations::AssociationRole association_role,

442 in UmlCollaborations::AssociationRole new_association_role)

443 raises (Reflective::StructuralError,

444 Reflective::SemanticError,

OMG-UML V1.1 IDL Modules March 1998 5-91

5

445 Reflective::NotFound);

446 void remove (in ::UmlCore::Association base,

447 in UmlCollaborations::AssociationRole association_role)

448 raises (Reflective::StructuralError,

449 Reflective::SemanticError,

450 Reflective::NotFound);

451 };

452

453 struct ClassifierRoleProvidesAvailableFeaturesLink {

454 UmlCollaborations::ClassifierRole classifier_role;

455 ::UmlCore::Feature available_feature;

456 };

457 typedef sequence <ClassifierRoleProvidesAvailableFeaturesLink>

458 ClassifierRoleProvidesAvailableFeaturesLinkSet;

459

460 interface ClassifierRoleProvidesAvailableFeatures :

461 Reflective::RefAssociation {

462 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

463 ClassifierRoleProvidesAvailableFeaturesLinkSet

464 all_classifier_role_provides_available_features_links();

465 boolean exisits (in UmlCollaborations::ClassifierRole classifier_role,

466 in ::UmlCore::Feature available_feature);

467 UmlCollaborations::ClassifierRoleSet with_available_feature (

468 in ::UmlCore::Feature available_feature);

469 ::UmlCore::FeatureSet with_classifier_role (

470 in UmlCollaborations::ClassifierRole classifier_role);

471 void add (in UmlCollaborations::ClassifierRole classifier_role,

472 in ::UmlCore::Feature available_feature)

473 raises (Reflective::StructuralError, Reflective::SemanticError);

474 void modify_classifier_role (

475 in UmlCollaborations::ClassifierRole classifier_role,

476 in ::UmlCore::Feature available_feature,

477 in UmlCollaborations::ClassifierRole new_classifier_role)

478 raises (Reflective::StructuralError,

479 Reflective::SemanticError,

480 Reflective::NotFound);

481 void modify_available_feature (

482 in UmlCollaborations::ClassifierRole classifier_role,

483 in ::UmlCore::Feature available_feature,

484 in ::UmlCore::Feature new_available_feature)

485 raises (Reflective::StructuralError,

5-92 OMG-UML V1.2 May 1998

5

486 Reflective::SemanticError,

487 Reflective::NotFound);

488 void remove (in UmlCollaborations::ClassifierRole classifier_role,

489 in ::UmlCore::Feature available_feature)

490 raises (Reflective::StructuralError,

491 Reflective::SemanticError,

492 Reflective::NotFound);

493 };

494

495 struct CollaborationHasConstrainingModelElementLink {

496 Collaboration constrained_collab;

497 ::UmlCore::ModelElement constraining_element;

498 };

499 typedef sequence <CollaborationHasConstrainingModelElementLink>

500 CollaborationHasConstrainingModelElementLinkSet;

501

502 interface CollaborationHasConstrainingModelElement :

503 Reflective::RefAssociation {

504 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

505 CollaborationHasConstrainingModelElementLinkSet

506 all_collaboration_has_constraining_model_element_links();

507 boolean exisits (in Collaboration constrained_collab,

508 in ::UmlCore::ModelElement constraining_element);

509 CollaborationSet with_constraining_element (

510 in ::UmlCore::ModelElement constraining_element);

511 ::UmlCore::ModelElementSet with_constrained_collab (

512 in Collaboration constrained_collab);

513 void add (in Collaboration constrained_collab,

514 in ::UmlCore::ModelElement constraining_element)

515 raises (Reflective::StructuralError, Reflective::SemanticError);

516 void modify_constrained_collab (

517 in Collaboration constrained_collab,

518 in ::UmlCore::ModelElement constraining_element,

519 in Collaboration new_constrained_collab)

520 raises (Reflective::StructuralError,

521 Reflective::SemanticError,

522 Reflective::NotFound);

523 void modify_constraining_element (

524 in Collaboration constrained_collab,

525 in ::UmlCore::ModelElement constraining_element,

526 in ::UmlCore::ModelElement new_constraining_element)

OMG-UML V1.1 IDL Modules March 1998 5-93

5

527 raises (Reflective::StructuralError,

528 Reflective::SemanticError,

529 Reflective::NotFound);

530 void remove (in Collaboration constrained_collab,

531 in ::UmlCore::ModelElement constraining_element)

532 raises (Reflective::StructuralError,

533 Reflective::SemanticError,

534 Reflective::NotFound);

535 };

536

537 struct MessageActivatesMessageLink {

538 Message activator;

539 Message activated_message;

540 };

541 typedef sequence <MessageActivatesMessageLink>
MessageActivatesMessageLinkSet;

542

543 interface MessageActivatesMessage : Reflective::RefAssociation {

544 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

545 MessageActivatesMessageLinkSet all_message_activates_message_links();

546 boolean exisits (in Message activator, in Message activated_message);

547 Message with_activated_message (in Message activated_message);

548 MessageUList with_activator (in Message activator);

549 void add (in Message activator, in Message activated_message)

550 raises (Reflective::StructuralError, Reflective::SemanticError);

551 void add_before_activated_message (in Message activator,

552 in Message activated_message,

553 in Message before)

554 raises (Reflective::StructuralError,

555 Reflective::SemanticError,

556 Reflective::NotFound);

557 void modify_activator (in Message activator,

558 in Message activated_message,

559 in Message new_activator)

560 raises (Reflective::StructuralError,

561 Reflective::SemanticError,

562 Reflective::NotFound);

563 void modify_activated_message (in Message activator,

564 in Message activated_message,

565 in Message new_activated_message)

566 raises (Reflective::StructuralError,

5-94 OMG-UML V1.2 May 1998

5

567 Reflective::SemanticError,

568 Reflective::NotFound);

569 void remove (in Message activator, in Message activated_message)

570 raises (Reflective::StructuralError,

571 Reflective::SemanticError,

572 Reflective::NotFound);

573 };

574

575 struct CollaborationRepresentsClassifierLink {

576 Collaboration representing_collaboration;

577 ::UmlCore::Classifier represented_classifier;

578 };

579 typedef sequence <CollaborationRepresentsClassifierLink>

580 CollaborationRepresentsClassifierLinkSet;

581

582 interface CollaborationRepresentsClassifier : Reflective::RefAssociation {

583 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

584 CollaborationRepresentsClassifierLinkSet

585 all_collaboration_represents_classifier_links();

586 boolean exisits (in Collaboration representing_collaboration,

587 in ::UmlCore::Classifier represented_classifier);

588 CollaborationSet with_represented_classifier (

589 in ::UmlCore::Classifier represented_classifier);

590 ::UmlCore::Classifier with_representing_collaboration (

591 in Collaboration representing_collaboration);

592 void add (in Collaboration representing_collaboration,

593 in ::UmlCore::Classifier represented_classifier)

594 raises (Reflective::StructuralError, Reflective::SemanticError);

595 void modify_representing_collaboration (

596 in Collaboration representing_collaboration,

597 in ::UmlCore::Classifier represented_classifier,

598 in Collaboration new_representing_collaboration)

599 raises (Reflective::StructuralError,

600 Reflective::SemanticError,

601 Reflective::NotFound);

602 void modify_represented_classifier (

603 in Collaboration representing_collaboration,

604 in ::UmlCore::Classifier represented_classifier,

605 in ::UmlCore::Classifier new_represented_classifier)

606 raises (Reflective::StructuralError,

607 Reflective::SemanticError,

OMG-UML V1.1 IDL Modules March 1998 5-95

5

608 Reflective::NotFound);

609 void remove (in Collaboration representing_collaboration,

610 in ::UmlCore::Classifier represented_classifier)

611 raises (Reflective::StructuralError,

612 Reflective::SemanticError,

613 Reflective::NotFound);

614 };

615

616 struct CollaborationRepresentsOperationLink {

617 Collaboration representing_collaboration;

618 ::UmlCore::Operation represented_operation;

619 };

620 typedef sequence <CollaborationRepresentsOperationLink>

621 CollaborationRepresentsOperationLinkSet;

622

623 interface CollaborationRepresentsOperation : Reflective::RefAssociation {

624 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

625 CollaborationRepresentsOperationLinkSet

626 all_collaboration_represents_operation_links();

627 boolean exisits (in Collaboration representing_collaboration,

628 in ::UmlCore::Operation represented_operation);

629 CollaborationSet with_represented_operation (

630 in ::UmlCore::Operation represented_operation);

631 ::UmlCore::Operation with_representing_collaboration (

632 in Collaboration representing_collaboration);

633 void add (in Collaboration representing_collaboration,

634 in ::UmlCore::Operation represented_operation)

635 raises (Reflective::StructuralError, Reflective::SemanticError);

636 void modify_representing_collaboration (

637 in Collaboration representing_collaboration,

638 in ::UmlCore::Operation represented_operation,

639 in Collaboration new_representing_collaboration)

640 raises (Reflective::StructuralError,

641 Reflective::SemanticError,

642 Reflective::NotFound);

643 void modify_represented_operation (

644 in Collaboration representing_collaboration,

645 in ::UmlCore::Operation represented_operation,

646 in ::UmlCore::Operation new_represented_operation)

647 raises (Reflective::StructuralError,

648 Reflective::SemanticError,

5-96 OMG-UML V1.2 May 1998

5

649 Reflective::NotFound);

650 void remove (in Collaboration representing_collaboration,

651 in ::UmlCore::Operation represented_operation)

652 raises (Reflective::StructuralError,

653 Reflective::SemanticError,

654 Reflective::NotFound);

655 };

656

657 struct MessageIsSentByActionLink {

658 Message message0;

659 ::UmlCommonBehavior::Action action;

660 };

661 typedef sequence <MessageIsSentByActionLink> MessageIsSentByActionLinkSet;

662

663 interface MessageIsSentByAction : Reflective::RefAssociation {

664 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

665 MessageIsSentByActionLinkSet all_message_is_sent_by_action_links();

666 boolean exisits (in Message message0,

667 in ::UmlCommonBehavior::Action action);

668 MessageSet with_action (in ::UmlCommonBehavior::Action action);

669 ::UmlCommonBehavior::Action with_message0 (in Message message0);

670 void add (in Message message0,

671 in ::UmlCommonBehavior::Action action)

672 raises (Reflective::StructuralError, Reflective::SemanticError);

673 void modify_message0 (in Message message0,

674 in ::UmlCommonBehavior::Action action,

675 in Message new_message0)

676 raises (Reflective::StructuralError,

677 Reflective::SemanticError,

678 Reflective::NotFound);

679 void modify_action (in Message message0,

680 in ::UmlCommonBehavior::Action action,

681 in ::UmlCommonBehavior::Action new_action)

682 raises (Reflective::StructuralError,

683 Reflective::SemanticError,

684 Reflective::NotFound);

685 void remove (in Message message0,

686 in ::UmlCommonBehavior::Action action)

687 raises (Reflective::StructuralError,

688 Reflective::SemanticError,

689 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-97

5

690 };

691

692 struct MessageIsSentByClassifierRoleLink {

693 UmlCollaborations::Message message;

694 ClassifierRole sender;

695 };

696 typedef sequence <MessageIsSentByClassifierRoleLink>

697 MessageIsSentByClassifierRoleLinkSet;

698

699 interface MessageIsSentByClassifierRole : Reflective::RefAssociation {

700 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

701 MessageIsSentByClassifierRoleLinkSet

702 all_message_is_sent_by_classifier_role_links();

703 boolean exisits (in UmlCollaborations::Message message,

704 in ClassifierRole sender);

705 UmlCollaborations::MessageSet with_sender (in ClassifierRole sender);

706 ClassifierRole with_message (in UmlCollaborations::Message message);

707 void add (in UmlCollaborations::Message message, in ClassifierRole
sender)

708 raises (Reflective::StructuralError, Reflective::SemanticError);

709 void modify_message (in UmlCollaborations::Message message,

710 in ClassifierRole sender,

711 in UmlCollaborations::Message new_message)

712 raises (Reflective::StructuralError,

713 Reflective::SemanticError,

714 Reflective::NotFound);

715 void modify_sender (in UmlCollaborations::Message message,

716 in ClassifierRole sender,

717 in ClassifierRole new_sender)

718 raises (Reflective::StructuralError,

719 Reflective::SemanticError,

720 Reflective::NotFound);

721 void remove (in UmlCollaborations::Message message,

722 in ClassifierRole sender)

723 raises (Reflective::StructuralError,

724 Reflective::SemanticError,

725 Reflective::NotFound);

726 };

727

728 struct MessageIsReceivedByClassifierRoleLink {

729 ClassifierRole receiver;

5-98 OMG-UML V1.2 May 1998

5

730 Message received_message;

731 };

732 typedef sequence <MessageIsReceivedByClassifierRoleLink>

733 MessageIsReceivedByClassifierRoleLinkSet;

734

735 interface MessageIsReceivedByClassifierRole : Reflective::RefAssociation {

736 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

737 MessageIsReceivedByClassifierRoleLinkSet

738 all_message_is_received_by_classifier_role_links();

739 boolean exisits (in ClassifierRole receiver, in Message
received_message);

740 ClassifierRole with_received_message (in Message received_message);

741 MessageSet with_receiver (in ClassifierRole receiver);

742 void add (in ClassifierRole receiver, in Message received_message)

743 raises (Reflective::StructuralError, Reflective::SemanticError);

744 void modify_receiver (in ClassifierRole receiver,

745 in Message received_message,

746 in ClassifierRole new_receiver)

747 raises (Reflective::StructuralError,

748 Reflective::SemanticError,

749 Reflective::NotFound);

750 void modify_received_message (in ClassifierRole receiver,

751 in Message received_message,

752 in Message new_received_message)

753 raises (Reflective::StructuralError,

754 Reflective::SemanticError,

755 Reflective::NotFound);

756 void remove (in ClassifierRole receiver, in Message received_message)

757 raises (Reflective::StructuralError,

758 Reflective::SemanticError,

759 Reflective::NotFound);

760 };

761

762 struct MessageHasPredecessorMessageLink {

763 Message predecessor;

764 Message successor;

765 };

766 typedef sequence <MessageHasPredecessorMessageLink>

767 MessageHasPredecessorMessageLinkSet;

768

769 interface MessageHasPredecessorMessage : Reflective::RefAssociation {

OMG-UML V1.1 IDL Modules March 1998 5-99

5

770 readonly attribute UmlCollaborationsPackage enclosing_package_ref;

771 MessageHasPredecessorMessageLinkSet

772 all_message_has_predecessor_message_links();

773 boolean exisits (in Message predecessor, in Message successor);

774 MessageSet with_successor (in Message successor);

775 MessageSet with_predecessor (in Message predecessor);

776 void add (in Message predecessor, in Message successor)

777 raises (Reflective::StructuralError, Reflective::SemanticError);

778 void modify_predecessor (in Message predecessor,

779 in Message successor,

780 in Message new_predecessor)

781 raises (Reflective::StructuralError,

782 Reflective::SemanticError,

783 Reflective::NotFound);

784 void modify_successor (in Message predecessor,

785 in Message successor,

786 in Message new_successor)

787 raises (Reflective::StructuralError,

788 Reflective::SemanticError,

789 Reflective::NotFound);

790 void remove (in Message predecessor, in Message successor)

791 raises (Reflective::StructuralError,

792 Reflective::SemanticError,

793 Reflective::NotFound);

794 };

795

796 interface UmlCollaborationsPackageFactory {

797 UmlCollaborationsPackage create_uml_collaborations_package ()

798 raises (Reflective::SemanticError);

799 };

800

801 interface UmlCollaborationsPackage : Reflective::RefPackage {

802 readonly attribute AssociationEndRoleClass
association_end_role_class_ref;

803 readonly attribute ClassifierRoleClass classifier_role_class_ref;

804 readonly attribute MessageClass message_class_ref;

805 readonly attribute InteractionClass interaction_class_ref;

806 readonly attribute AssociationRoleClass association_role_class_ref;

807 readonly attribute CollaborationClass collaboration_class_ref;

808

809 readonly attribute InteractionContainsMessage

5-100 OMG-UML V1.2 May 1998

5

810 interaction_contains_message_ref;

811 readonly attribute CollaborationOwnsInteraction

812 collaboration_owns_interaction_ref;

813 readonly attribute ClassifierRoleHasBaseOfClassifier

814 classifier_role_has_base_of_classifier_ref;

815 readonly attribute AssociationEndRoleHasBaseOfAssociationEnd

816 association_end_role_has_base_of_association_end_ref;

817 readonly attribute AssociationRoleHasBaseOfAssociation

818 association_role_has_base_of_association_ref;

819 readonly attribute ClassifierRoleProvidesAvailableFeatures

820 classifier_role_provides_available_features_ref;

821 readonly attribute CollaborationHasConstrainingModelElement

822 collaboration_has_constraining_model_element_ref;

823 readonly attribute MessageActivatesMessage
message_activates_message_ref;

824 readonly attribute CollaborationRepresentsClassifier

825 collaboration_represents_classifier_ref;

826 readonly attribute CollaborationRepresentsOperation

827 collaboration_represents_operation_ref;

828 readonly attribute MessageIsSentByAction message_is_sent_by_action_ref;

829 readonly attribute MessageIsSentByClassifierRole

830 message_is_sent_by_classifier_role_ref;

831 readonly attribute MessageIsReceivedByClassifierRole

832 message_is_received_by_classifier_role_ref;

833 readonly attribute MessageHasPredecessorMessage

834 message_has_predecessor_message_ref;

835 };

836 };

OMG-UML V1.1 IDL Modules March 1998 5-101

5

5.4.5 UMLCommonBehavior
1 #include "UmlCore.idl"

2

3 module UmlCommonBehavior {

4 interface UmlCommonBehaviorPackage;

5 interface LinkEnd;

6 interface LinkEndClass;

7 typedef sequence<LinkEnd> LinkEndUList;

8 typedef sequence<LinkEnd> LinkEndSet;

9 interface Action;

10 interface ActionClass;

11 typedef sequence<Action> ActionUList;

12 typedef sequence<Action> ActionSet;

13 interface UmlObject;

14 interface UmlObjectClass;

15 typedef sequence<UmlObject> UmlObjectUList;

16 interface DataValue;

17 interface DataValueClass;

18 typedef sequence<DataValue> DataValueUList;

19 interface UmlInstance;

20 interface UmlInstanceClass;

21 typedef sequence<UmlInstance> UmlInstanceUList;

22 typedef sequence<UmlInstance> UmlInstanceSet;

23 interface ReturnAction;

24 interface ReturnActionClass;

25 typedef sequence<ReturnAction> ReturnActionUList;

26 interface ActionSequence;

27 interface ActionSequenceClass;

28 typedef sequence<ActionSequence> ActionSequenceUList;

29 interface LocalInvocation;

30 interface LocalInvocationClass;

31 typedef sequence<LocalInvocation> LocalInvocationUList;

32 interface Reception;

33 interface ReceptionClass;

34 typedef sequence<Reception> ReceptionUList;

35 typedef sequence<Reception> ReceptionSet;

36 interface Signal;

37 interface SignalClass;

38 typedef sequence<Signal> SignalUList;

39 interface TerminateAction;

5-102 OMG-UML V1.2 May 1998

5

40 interface TerminateActionClass;

41 typedef sequence<TerminateAction> TerminateActionUList;

42 interface MessageInstance;

43 interface MessageInstanceClass;

44 typedef sequence<MessageInstance> MessageInstanceUList;

45 typedef sequence<MessageInstance> MessageInstanceSet;

46 interface Argument;

47 interface ArgumentClass;

48 typedef sequence<Argument> ArgumentUList;

49 interface CallAction;

50 interface CallActionClass;

51 typedef sequence<CallAction> CallActionUList;

52 interface CreateAction;

53 interface CreateActionClass;

54 typedef sequence<CreateAction> CreateActionUList;

55 typedef sequence<CreateAction> CreateActionSet;

56 interface UninterpretedAction;

57 interface UninterpretedActionClass;

58 typedef sequence<UninterpretedAction> UninterpretedActionUList;

59 interface Call;

60 interface CallClass;

61 typedef sequence<Call> CallUList;

62 interface Link;

63 interface LinkClass;

64 typedef sequence<Link> LinkUList;

65 typedef sequence<Link> LinkSet;

66 interface SendAction;

67 interface SendActionClass;

68 typedef sequence<SendAction> SendActionUList;

69 interface AttributeLink;

70 interface AttributeLinkClass;

71 typedef sequence<AttributeLink> AttributeLinkUList;

72 typedef sequence<AttributeLink> AttributeLinkSet;

73 interface UmlException;

74 interface UmlExceptionClass;

75 typedef sequence<UmlException> UmlExceptionUList;

76 typedef sequence<UmlException> UmlExceptionSet;

77 interface DestroyAction;

78 interface DestroyActionClass;

79 typedef sequence<DestroyAction> DestroyActionUList;

80 interface LinkObject;

OMG-UML V1.1 IDL Modules March 1998 5-103

5

81 interface LinkObjectClass;

82 typedef sequence<LinkObject> LinkObjectUList;

83

84 interface CallClass : ::UmlCore::ModelElementClass {

85 readonly attribute CallUList all_of_kind_call;

86 readonly attribute CallUList all_of_type_call;

87 Call create_call (in ::UmlCore::Name name)

88 raises (Reflective::SemanticError);

89 };

90

91 interface Call : CallClass, ::UmlCore::ModelElement { };

92

93 interface LinkEndClass : ::UmlCore::ModelElementClass {

94 readonly attribute LinkEndUList all_of_kind_link_end;

95 readonly attribute LinkEndUList all_of_type_link_end;

96 LinkEnd create_link_end (in ::UmlCore::Name name)

97 raises (Reflective::SemanticError);

98 };

99

100 interface LinkEnd : LinkEndClass, ::UmlCore::ModelElement {

101 UmlCommonBehavior::UmlInstance uml_instance ()

102 raises (Reflective::SemanticError);

103 void set_uml_instance (in UmlCommonBehavior::UmlInstance new_value)

104 raises (Reflective::SemanticError);

105 Link owning_link ()

106 raises (Reflective::SemanticError);

107 void set_owning_link (in Link new_value)

108 raises (Reflective::SemanticError);

109 void add_owning_link_before (in Link new_value, in Link before)

110 raises (Reflective::StructuralError,

111 Reflective::NotFound,

112 Reflective::SemanticError);

113 ::UmlCore::AssociationEnd association_end ()

114 raises (Reflective::SemanticError);

115 void set_association_end (in ::UmlCore::AssociationEnd new_value)

116 raises (Reflective::SemanticError);

117 };

118

119 interface LinkClass : ::UmlCore::ModelElementClass {

120 readonly attribute LinkUList all_of_kind_link;

121 readonly attribute LinkUList all_of_type_link;

5-104 OMG-UML V1.2 May 1998

5

122 Link create_link (in ::UmlCore::Name name)

123 raises (Reflective::SemanticError);

124 };

125

126 interface Link : LinkClass, ::UmlCore::ModelElement {

127 ::UmlCore::Association association ()

128 raises (Reflective::SemanticError);

129 void set_association (in ::UmlCore::Association new_value)

130 raises (Reflective::SemanticError);

131 LinkEndSet link_role ()

132 raises (Reflective::SemanticError);

133 void add_link_role (in LinkEndSet new_value)

134 raises (Reflective::StructuralError, Reflective::SemanticError);

135 void modify_link_role (in LinkEnd old_value, in LinkEnd new_value)

136 raises (Reflective::StructuralError,

137 Reflective::NotFound,

138 Reflective::SemanticError);

139 void remove_link_role ()

140 raises (Reflective::StructuralError, Reflective::SemanticError);

141 };

142

143 interface AttributeLinkClass : ::UmlCore::ModelElementClass {

144 readonly attribute AttributeLinkUList all_of_kind_attribute_link;

145 readonly attribute AttributeLinkUList all_of_type_attribute_link;

146 AttributeLink create_attribute_link (in ::UmlCore::Name name)

147 raises (Reflective::SemanticError);

148 };

149

150 interface AttributeLink : AttributeLinkClass, ::UmlCore::ModelElement {

151 ::UmlCore::UmlAttribute uml_attribute ()

152 raises (Reflective::SemanticError);

153 void set_uml_attribute (in ::UmlCore::UmlAttribute new_value)

154 raises (Reflective::SemanticError);

155 UmlInstance uml_value ()

156 raises (Reflective::SemanticError);

157 void set_uml_value (in UmlInstance new_value)

158 raises (Reflective::SemanticError);

159 UmlInstance owning_instance ()

160 raises (Reflective::SemanticError);

161 void set_owning_instance (in UmlInstance new_value)

162 raises (Reflective::SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-105

5

163 void add_owning_instance_before (in UmlInstance new_value,

164 in UmlInstance before)

165 raises (Reflective::StructuralError,

166 Reflective::NotFound,

167 Reflective::SemanticError);

168 };

169

170 interface UmlInstanceClass : ::UmlCore::ModelElementClass {

171 readonly attribute UmlInstanceUList all_of_kind_uml_instance;

172 readonly attribute UmlInstanceUList all_of_type_uml_instance;

173 UmlInstance create_uml_instance (in ::UmlCore::Name name)

174 raises (Reflective::SemanticError);

175 };

176

177 interface UmlInstance : UmlInstanceClass, ::UmlCore::ModelElement {

178 ::UmlCore::ClassifierSet classifier ()

179 raises (Reflective::SemanticError);

180 void add_classifier (in ::UmlCore::ClassifierSet new_value)

181 raises (Reflective::StructuralError, Reflective::SemanticError);

182 void remove_classifier ()

183 raises (Reflective::SemanticError);

184 AttributeLinkSet slot ()

185 raises (Reflective::NotSet, Reflective::SemanticError);

186 void add_slot (in AttributeLinkSet new_value)

187 raises (Reflective::StructuralError, Reflective::SemanticError);

188 void remove_slot ()

189 raises (Reflective::SemanticError);

190 UmlCommonBehavior::LinkEndSet link_end ()

191 raises (Reflective::NotSet, Reflective::SemanticError);

192 void add_link_end (in UmlCommonBehavior::LinkEndSet new_value)

193 raises (Reflective::StructuralError, Reflective::SemanticError);

194 void remove_link_end ()

195 raises (Reflective::SemanticError);

196 MessageInstanceSet received_message_instance ()

197 raises (Reflective::NotSet, Reflective::SemanticError);

198 void add_received_message_instance (in MessageInstanceSet new_value)

199 raises (Reflective::StructuralError, Reflective::SemanticError);

200 void remove_received_message_instance ()

201 raises (Reflective::SemanticError);

202 AttributeLinkSet owned_attribute_link ()

203 raises (Reflective::NotSet, Reflective::SemanticError);

5-106 OMG-UML V1.2 May 1998

5

204 void add_owned_attribute_link (in AttributeLinkSet new_value)

205 raises (Reflective::StructuralError, Reflective::SemanticError);

206 void remove_owned_attribute_link ()

207 raises (Reflective::SemanticError);

208 MessageInstanceSet argument_owner ()

209 raises (Reflective::NotSet, Reflective::SemanticError);

210 void add_argument_owner (in MessageInstanceSet new_value)

211 raises (Reflective::StructuralError, Reflective::SemanticError);

212 void remove_argument_owner ()

213 raises (Reflective::SemanticError);

214 MessageInstanceSet sent_message_instance ()

215 raises (Reflective::NotSet, Reflective::SemanticError);

216 void add_sent_message_instance (in MessageInstanceSet new_value)

217 raises (Reflective::StructuralError, Reflective::SemanticError);

218 void remove_sent_message_instance ()

219 raises (Reflective::SemanticError);

220 };

221

222 interface UmlObjectClass : UmlInstanceClass {

223 readonly attribute UmlObjectUList all_of_kind_uml_object;

224 readonly attribute UmlObjectUList all_of_type_uml_object;

225 UmlObject create_uml_object (in ::UmlCore::Name name)

226 raises (Reflective::SemanticError);

227 };

228

229 interface UmlObject : UmlObjectClass, UmlInstance { };

230

231 interface MessageInstanceClass : ::UmlCore::ModelElementClass {

232 readonly attribute MessageInstanceUList all_of_kind_message_instance;

233 readonly attribute MessageInstanceUList all_of_type_message_instance;

234 MessageInstance create_message_instance (in ::UmlCore::Name name)

235 raises (Reflective::SemanticError);

236 };

237

238 interface MessageInstance : MessageInstanceClass, ::UmlCore::ModelElement {

239 ::UmlCore::Request specification ()

240 raises (Reflective::SemanticError);

241 void set_specification (in ::UmlCore::Request new_value)

242 raises (Reflective::SemanticError);

243 UmlInstance receiver ()

244 raises (Reflective::SemanticError);

OMG-UML V1.1 IDL Modules March 1998 5-107

5

245 void set_receiver (in UmlInstance new_value)

246 raises (Reflective::SemanticError);

247 UmlInstanceSet argument ()

248 raises (Reflective::NotSet, Reflective::SemanticError);

249 void add_argument (in UmlInstanceSet new_value)

250 raises (Reflective::StructuralError, Reflective::SemanticError);

251 void remove_argument ()

252 raises (Reflective::SemanticError);

253 UmlInstance sender ()

254 raises (Reflective::SemanticError);

255 void set_sender (in UmlInstance new_value)

256 raises (Reflective::SemanticError);

257 };

258

259 interface DataValueClass : UmlInstanceClass {

260 readonly attribute DataValueUList all_of_kind_data_value;

261 readonly attribute DataValueUList all_of_type_data_value;

262 DataValue create_data_value (in ::UmlCore::Name name)

263 raises (Reflective::SemanticError);

264 };

265

266 interface DataValue : DataValueClass, UmlInstance { };

267

268 interface SignalClass : ::UmlCore::GeneralizableElementClass,

269 ::UmlCore::RequestClass {

270 readonly attribute SignalUList all_of_kind_signal;

271 readonly attribute SignalUList all_of_type_signal;

272 Signal create_signal (in ::UmlCore::Name name,

273 in boolean is_root,

274 in boolean is_leaf,

275 in boolean is_abstract)

276 raises (Reflective::SemanticError);

277 };

278

279 interface Signal : SignalClass, ::UmlCore::GeneralizableElement,

280 ::UmlCore::Request {

281 UmlCommonBehavior::ReceptionSet reception ()

282 raises (Reflective::NotSet, Reflective::SemanticError);

283 void add_reception (in UmlCommonBehavior::ReceptionSet new_value)

284 raises (Reflective::StructuralError, Reflective::SemanticError);

285 void remove_reception ()

5-108 OMG-UML V1.2 May 1998

5

286 raises (Reflective::SemanticError);

287 ::UmlCore::ParameterUList parameter ()

288 raises (Reflective::NotSet, Reflective::SemanticError);

289 void add_parameter (in ::UmlCore::ParameterUList new_value)

290 raises (Reflective::StructuralError, Reflective::SemanticError);

291 void add_parameter_before (in ::UmlCore::Parameter new_value,

292 in ::UmlCore::Parameter before)

293 raises (Reflective::StructuralError,

294 Reflective::NotFound,

295 Reflective::SemanticError);

296 void remove_parameter ()

297 raises (Reflective::SemanticError);

298 };

299

300 interface UmlExceptionClass : SignalClass {

301 readonly attribute UmlExceptionUList all_of_kind_uml_exception;

302 readonly attribute UmlExceptionUList all_of_type_uml_exception;

303 UmlException create_uml_exception (in ::UmlCore::Name name,

304 in boolean is_root,

305 in boolean is_leaf,

306 in boolean is_abstract)

307 raises (Reflective::SemanticError);

308 };

309

310 interface UmlException : UmlExceptionClass, Signal {

311 ::UmlCore::BehavioralFeatureSet uml_context ()

312 raises (Reflective::NotSet, Reflective::SemanticError);

313 void add_uml_context (in ::UmlCore::BehavioralFeatureSet new_value)

314 raises (Reflective::StructuralError, Reflective::SemanticError);

315 void remove_uml_context ()

316 raises (Reflective::SemanticError);

317 };

318

319 interface ReceptionClass : ::UmlCore::BehavioralFeatureClass {

320 readonly attribute ReceptionUList all_of_kind_reception;

321 readonly attribute ReceptionUList all_of_type_reception;

322 Reception create_reception (in ::UmlCore::Name name,

323 in ::UmlCore::ScopeKind owner_scope,

324 in ::UmlCore::VisibilityKind visibility,

325 in boolean is_query,

326 in boolean is_polymorphic,

OMG-UML V1.1 IDL Modules March 1998 5-109

5

327 in ::UmlCore::Uninterpreted specification)

328 raises (Reflective::SemanticError);

329 };

330

331 interface Reception : ReceptionClass, ::UmlCore::BehavioralFeature {

332 boolean is_polymorphic ()

333 raises (Reflective::SemanticError);

334 void set_is_polymorphic (in boolean new_value)

335 raises (Reflective::SemanticError);

336 ::UmlCore::Uninterpreted specification ()

337 raises (Reflective::SemanticError);

338 void set_specification (in ::UmlCore::Uninterpreted new_value)

339 raises (Reflective::SemanticError);

340 UmlCommonBehavior::Signal signal ()

341 raises (Reflective::SemanticError);

342 void set_signal (in UmlCommonBehavior::Signal new_value)

343 raises (Reflective::SemanticError);

344 };

345

346 interface ArgumentClass : ::UmlCore::ModelElementClass {

347 readonly attribute ArgumentUList all_of_kind_argument;

348 readonly attribute ArgumentUList all_of_type_argument;

349 Argument create_argument (in ::UmlCore::Name name,

350 in ::UmlCore::Expression uml_value)

351 raises (Reflective::SemanticError);

352 };

353

354 interface Argument : ArgumentClass, ::UmlCore::ModelElement {

355 ::UmlCore::Expression uml_value ()

356 raises (Reflective::SemanticError);

357 void set_uml_value (in ::UmlCore::Expression new_value)

358 raises (Reflective::SemanticError);

359 Action owning_action ()

360 raises (Reflective::NotSet, Reflective::SemanticError);

361 void set_owning_action (in Action new_value)

362 raises (Reflective::SemanticError);

363 void unset_owning_action ()

364 raises (Reflective::SemanticError);

365 };

366

367 interface ActionClass : ::UmlCore::ModelElementClass {

5-110 OMG-UML V1.2 May 1998

5

368 readonly attribute ActionUList all_of_kind_action;

369 readonly attribute ActionUList all_of_type_action;

370 Action create_action (in ::UmlCore::Name name,

371 in ::UmlCore::Expression recurrence,

372 in ::UmlCore::ObjectSetExpression target,

373 in boolean is_asynchronous,

374 in string script)

375 raises (Reflective::SemanticError);

376 };

377

378 interface Action : ActionClass, ::UmlCore::ModelElement {

379 ::UmlCore::Expression recurrence ()

380 raises (Reflective::SemanticError);

381 void set_recurrence (in ::UmlCore::Expression new_value)

382 raises (Reflective::SemanticError);

383 ::UmlCore::ObjectSetExpression target ()

384 raises (Reflective::SemanticError);

385 void set_target (in ::UmlCore::ObjectSetExpression new_value)

386 raises (Reflective::SemanticError);

387 boolean is_asynchronous ()

388 raises (Reflective::SemanticError);

389 void set_is_asynchronous (in boolean new_value)

390 raises (Reflective::SemanticError);

391 string script ()

392 raises (Reflective::SemanticError);

393 void set_script (in string new_value)

394 raises (Reflective::SemanticError);

395 ArgumentUList actual_argument ()

396 raises (Reflective::NotSet, Reflective::SemanticError);

397 void add_actual_argument (in ArgumentUList new_value)

398 raises (Reflective::StructuralError, Reflective::SemanticError);

399 void add_actual_argument_before (in Argument new_value,

400 in Argument before)

401 raises (Reflective::StructuralError,

402 Reflective::NotFound,

403 Reflective::SemanticError);

404 void remove_actual_argument ()

405 raises (Reflective::SemanticError);

406 ::UmlCore::Request message ()

407 raises (Reflective::NotSet, Reflective::SemanticError);

408 void set_message (in ::UmlCore::Request new_value)

OMG-UML V1.1 IDL Modules March 1998 5-111

5

409 raises (Reflective::SemanticError);

410 void unset_message ()

411 raises (Reflective::SemanticError);

412 UmlCommonBehavior::ActionSequence action_sequence ()

413 raises (Reflective::NotSet, Reflective::SemanticError);

414 void set_action_sequence (in UmlCommonBehavior::ActionSequence
new_value)

415 raises (Reflective::SemanticError);

416 void unset_action_sequence ()

417 raises (Reflective::SemanticError);

418 };

419

420 interface CallActionClass : ActionClass {

421 readonly attribute CallActionUList all_of_kind_call_action;

422 readonly attribute CallActionUList all_of_type_call_action;

423 CallAction create_call_action (in ::UmlCore::Name name,

424 in ::UmlCore::Expression recurrence,

425 in ::UmlCore::ObjectSetExpression target,

426 in boolean is_asynchronous,

427 in string script,

428 in ::UmlCore::SynchronousKind mode)

429 raises (Reflective::SemanticError);

430 };

431

432 interface CallAction : CallActionClass, Action {

433 ::UmlCore::SynchronousKind mode ()

434 raises (Reflective::SemanticError);

435 void set_mode (in ::UmlCore::SynchronousKind new_value)

436 raises (Reflective::SemanticError);

437 };

438

439 interface CreateActionClass : ActionClass {

440 readonly attribute CreateActionUList all_of_kind_create_action;

441 readonly attribute CreateActionUList all_of_type_create_action;

442 CreateAction create_create_action (

443 in ::UmlCore::Name name,

444 in ::UmlCore::Expression recurrence,

445 in ::UmlCore::ObjectSetExpression target,

446 in boolean is_asynchronous,

447 in string script)

448 raises (Reflective::SemanticError);

5-112 OMG-UML V1.2 May 1998

5

449 };

450

451 interface CreateAction : CreateActionClass, Action {

452 ::UmlCore::Classifier instantiation ()

453 raises (Reflective::SemanticError);

454 void set_instantiation (in ::UmlCore::Classifier new_value)

455 raises (Reflective::SemanticError);

456 };

457

458 interface DestroyActionClass : ActionClass {

459 readonly attribute DestroyActionUList all_of_kind_destroy_action;

460 readonly attribute DestroyActionUList all_of_type_destroy_action;

461 DestroyAction create_destroy_action (

462 in ::UmlCore::Name name,

463 in ::UmlCore::Expression recurrence,

464 in ::UmlCore::ObjectSetExpression target,

465 in boolean is_asynchronous,

466 in string script)

467 raises (Reflective::SemanticError);

468 };

469

470 interface DestroyAction : DestroyActionClass, Action { };

471

472 interface LocalInvocationClass : ActionClass {

473 readonly attribute LocalInvocationUList all_of_kind_local_invocation;

474 readonly attribute LocalInvocationUList all_of_type_local_invocation;

475 LocalInvocation create_local_invocation (

476 in ::UmlCore::Name name,

477 in ::UmlCore::Expression recurrence,

478 in ::UmlCore::ObjectSetExpression target,

479 in boolean is_asynchronous,

480 in string script)

481 raises (Reflective::SemanticError);

482 };

483

484 interface LocalInvocation : LocalInvocationClass, Action { };

485

486 interface SendActionClass : ActionClass {

487 readonly attribute SendActionUList all_of_kind_send_action;

488 readonly attribute SendActionUList all_of_type_send_action;

489 SendAction create_send_action (in ::UmlCore::Name name,

OMG-UML V1.1 IDL Modules March 1998 5-113

5

490 in ::UmlCore::Expression recurrence,

491 in ::UmlCore::ObjectSetExpression target,

492 in boolean is_asynchronous,

493 in string script)

494 raises (Reflective::SemanticError);

495 };

496

497 interface SendAction : SendActionClass, Action { };

498

499 interface ReturnActionClass : ActionClass {

500 readonly attribute ReturnActionUList all_of_kind_return_action;

501 readonly attribute ReturnActionUList all_of_type_return_action;

502 ReturnAction create_return_action (

503 in ::UmlCore::Name name,

504 in ::UmlCore::Expression recurrence,

505 in ::UmlCore::ObjectSetExpression target,

506 in boolean is_asynchronous,

507 in string script)

508 raises (Reflective::SemanticError);

509 };

510

511 interface ReturnAction : ReturnActionClass, Action { };

512

513 interface TerminateActionClass : ActionClass {

514 readonly attribute TerminateActionUList all_of_kind_terminate_action;

515 readonly attribute TerminateActionUList all_of_type_terminate_action;

516 TerminateAction create_terminate_action (

517 in ::UmlCore::Name name,

518 in ::UmlCore::Expression recurrence,

519 in ::UmlCore::ObjectSetExpression target,

520 in boolean is_asynchronous,

521 in string script)

522 raises (Reflective::SemanticError);

523 };

524

525 interface TerminateAction : TerminateActionClass, Action { };

526

527 interface UninterpretedActionClass : ActionClass {

528 readonly attribute UninterpretedActionUList

529 all_of_kind_uninterpreted_action;

530 readonly attribute UninterpretedActionUList

5-114 OMG-UML V1.2 May 1998

5

531 all_of_type_uninterpreted_action;

532 UninterpretedAction create_uninterpreted_action (

533 in ::UmlCore::Name name,

534 in ::UmlCore::Expression recurrence,

535 in ::UmlCore::ObjectSetExpression target,

536 in boolean is_asynchronous,

537 in string script)

538 raises (Reflective::SemanticError);

539 };

540

541 interface UninterpretedAction : UninterpretedActionClass, Action { };

542

543 interface ActionSequenceClass : ::UmlCore::ModelElementClass {

544 readonly attribute ActionSequenceUList all_of_kind_action_sequence;

545 readonly attribute ActionSequenceUList all_of_type_action_sequence;

546 ActionSequence create_action_sequence (in ::UmlCore::Name name)

547 raises (Reflective::SemanticError);

548 };

549

550 interface ActionSequence : ActionSequenceClass, ::UmlCore::ModelElement {

551 UmlCommonBehavior::ActionSet action ()

552 raises (Reflective::NotSet, Reflective::SemanticError);

553 void add_action (in UmlCommonBehavior::ActionSet new_value)

554 raises (Reflective::StructuralError, Reflective::SemanticError);

555 void remove_action ()

556 raises (Reflective::SemanticError);

557 };

558

559 interface LinkObjectClass : UmlObjectClass, LinkClass {

560 readonly attribute LinkObjectUList all_of_kind_link_object;

561 readonly attribute LinkObjectUList all_of_type_link_object;

562 LinkObject create_link_object (in ::UmlCore::Name name)

563 raises (Reflective::SemanticError);

564 };

565

566 interface LinkObject : LinkObjectClass, UmlObject, Link { };

567

568 struct InstanceInstantiatesClassifierLink {

569 UmlInstance instantiated_instance;

570 ::UmlCore::Classifier classifier;

571 };

OMG-UML V1.1 IDL Modules March 1998 5-115

5

572 typedef sequence <InstanceInstantiatesClassifierLink>

573 InstanceInstantiatesClassifierLinkSet;

574

575 interface InstanceInstantiatesClassifier : Reflective::RefAssociation {

576 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

577 InstanceInstantiatesClassifierLinkSet

578 all_instance_instantiates_classifier_links();

579 boolean exists (in UmlInstance instantiated_instance,

580 in ::UmlCore::Classifier classifier);

581 UmlInstanceSet with_classifier (in ::UmlCore::Classifier classifier);

582 ::UmlCore::ClassifierSet with_instantiated_instance (

583 in UmlInstance instantiated_instance);

584 void add (in UmlInstance instantiated_instance,

585 in ::UmlCore::Classifier classifier)

586 raises (Reflective::StructuralError, Reflective::SemanticError);

587 void modify_instantiated_instance (

588 in UmlInstance instantiated_instance,

589 in ::UmlCore::Classifier classifier,

590 in UmlInstance new_instantiated_instance)

591 raises (Reflective::StructuralError,

592 Reflective::SemanticError,

593 Reflective::NotFound);

594 void modify_classifier (in UmlInstance instantiated_instance,

595 in ::UmlCore::Classifier classifier,

596 in ::UmlCore::Classifier new_classifier)

597 raises (Reflective::StructuralError,

598 Reflective::SemanticError,

599 Reflective::NotFound);

600 void remove (in UmlInstance instantiated_instance,

601 in ::UmlCore::Classifier classifier)

602 raises (Reflective::StructuralError,

603 Reflective::SemanticError,

604 Reflective::NotFound);

605 };

606

607 struct ActionOwnsArgumentLink {

608 Argument actual_argument;

609 Action owning_action;

610 };

611 typedef sequence <ActionOwnsArgumentLink> ActionOwnsArgumentLinkSet;

612

5-116 OMG-UML V1.2 May 1998

5

613 interface ActionOwnsArgument : Reflective::RefAssociation {

614 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

615 ActionOwnsArgumentLinkSet all_action_owns_argument_links();

616 boolean exists (in Argument actual_argument, in Action owning_action);

617 ArgumentUList with_owning_action (in Action owning_action);

618 Action with_actual_argument (in Argument actual_argument);

619 void add (in Argument actual_argument, in Action owning_action)

620 raises (Reflective::StructuralError, Reflective::SemanticError);

621 void add_before_actual_argument (in Argument actual_argument,

622 in Action owning_action,

623 in Argument before)

624 raises (Reflective::StructuralError,

625 Reflective::SemanticError,

626 Reflective::NotFound);

627 void modify_actual_argument (in Argument actual_argument,

628 in Action owning_action,

629 in Argument new_actual_argument)

630 raises (Reflective::StructuralError,

631 Reflective::SemanticError,

632 Reflective::NotFound);

633 void modify_owning_action (in Argument actual_argument,

634 in Action owning_action,

635 in Action new_owning_action)

636 raises (Reflective::StructuralError,

637 Reflective::SemanticError,

638 Reflective::NotFound);

639 void remove (in Argument actual_argument, in Action owning_action)

640 raises (Reflective::StructuralError,

641 Reflective::SemanticError,

642 Reflective::NotFound);

643 };

644

645 struct CreateActionInstantiatesClassifierLink {

646 UmlCommonBehavior::CreateAction create_action;

647 ::UmlCore::Classifier instantiation;

648 };

649 typedef sequence <CreateActionInstantiatesClassifierLink>

650 CreateActionInstantiatesClassifierLinkSet;

651

652 interface CreateActionInstantiatesClassifier : Reflective::RefAssociation {

653 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

OMG-UML V1.1 IDL Modules March 1998 5-117

5

654 CreateActionInstantiatesClassifierLinkSet

655 all_create_action_instantiates_classifier_links();

656 boolean exists (in UmlCommonBehavior::CreateAction create_action,

657 in ::UmlCore::Classifier instantiation);

658 UmlCommonBehavior::CreateActionSet with_instantiation (

659 in ::UmlCore::Classifier instantiation);

660 ::UmlCore::Classifier with_create_action (

661 in UmlCommonBehavior::CreateAction create_action);

662 void add (in UmlCommonBehavior::CreateAction create_action,

663 in ::UmlCore::Classifier instantiation)

664 raises (Reflective::StructuralError, Reflective::SemanticError);

665 void modify_create_action (

666 in UmlCommonBehavior::CreateAction create_action,

667 in ::UmlCore::Classifier instantiation,

668 in UmlCommonBehavior::CreateAction new_create_action)

669 raises (Reflective::StructuralError,

670 Reflective::SemanticError,

671 Reflective::NotFound);

672 void modify_instantiation (

673 in UmlCommonBehavior::CreateAction create_action,

674 in ::UmlCore::Classifier instantiation,

675 in ::UmlCore::Classifier new_instantiation)

676 raises (Reflective::StructuralError,

677 Reflective::SemanticError,

678 Reflective::NotFound);

679 void remove (in UmlCommonBehavior::CreateAction create_action,

680 in ::UmlCore::Classifier instantiation)

681 raises (Reflective::StructuralError,

682 Reflective::SemanticError,

683 Reflective::NotFound);

684 };

685

686 struct AttributeLinkIsInstanceOfAttributeLink {

687 AttributeLink instance;

688 ::UmlCore::UmlAttribute uml_attribute;

689 };

690 typedef sequence <AttributeLinkIsInstanceOfAttributeLink>

691 AttributeLinkIsInstanceOfAttributeLinkSet;

692

693 interface AttributeLinkIsInstanceOfAttribute : Reflective::RefAssociation {

694 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

5-118 OMG-UML V1.2 May 1998

5

695 AttributeLinkIsInstanceOfAttributeLinkSet

696 all_attribute_link_is_instance_of_attribute_links();

697 boolean exists (in AttributeLink instance,

698 in ::UmlCore::UmlAttribute uml_attribute);

699 AttributeLinkSet with_uml_attribute (in ::UmlCore::UmlAttribute

700 uml_attribute);

701 ::UmlCore::UmlAttribute with_instance (in AttributeLink instance);

702 void add (in AttributeLink instance,

703 in ::UmlCore::UmlAttribute uml_attribute)

704 raises (Reflective::StructuralError, Reflective::SemanticError);

705 void modify_instance (in AttributeLink instance,

706 in ::UmlCore::UmlAttribute uml_attribute,

707 in AttributeLink new_instance)

708 raises (Reflective::StructuralError,

709 Reflective::SemanticError,

710 Reflective::NotFound);

711 void modify_uml_attribute (in AttributeLink instance,

712 in ::UmlCore::UmlAttribute uml_attribute,

713 in ::UmlCore::UmlAttribute new_uml_attribute)

714 raises (Reflective::StructuralError,

715 Reflective::SemanticError,

716 Reflective::NotFound);

717 void remove (in AttributeLink instance,

718 in ::UmlCore::UmlAttribute uml_attribute)

719 raises (Reflective::StructuralError,

720 Reflective::SemanticError,

721 Reflective::NotFound);

722 };

723

724 struct AttributeLilnkHasValueOfLinkLink {

725 AttributeLink slot;

726 UmlInstance uml_value;

727 };

728 typedef sequence <AttributeLilnkHasValueOfLinkLink>

729 AttributeLilnkHasValueOfLinkLinkSet;

730

731 interface AttributeLilnkHasValueOfLink : Reflective::RefAssociation {

732 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

733 AttributeLilnkHasValueOfLinkLinkSet

734 all_attribute_lilnk_has_value_of_link_links();

735 boolean exists (in AttributeLink slot, in UmlInstance uml_value);

OMG-UML V1.1 IDL Modules March 1998 5-119

5

736 AttributeLinkSet with_uml_value (in UmlInstance uml_value);

737 UmlInstance with_slot (in AttributeLink slot);

738 void add (in AttributeLink slot, in UmlInstance uml_value)

739 raises (Reflective::StructuralError, Reflective::SemanticError);

740 void modify_slot (in AttributeLink slot,

741 in UmlInstance uml_value,

742 in AttributeLink new_slot)

743 raises (Reflective::StructuralError,

744 Reflective::SemanticError,

745 Reflective::NotFound);

746 void modify_uml_value (in AttributeLink slot,

747 in UmlInstance uml_value,

748 in UmlInstance new_uml_value)

749 raises (Reflective::StructuralError,

750 Reflective::SemanticError,

751 Reflective::NotFound);

752 void remove (in AttributeLink slot, in UmlInstance uml_value)

753 raises (Reflective::StructuralError,

754 Reflective::SemanticError,

755 Reflective::NotFound);

756 };

757

758 struct LinkEndIsOfTypeInstanceLink {

759 UmlCommonBehavior::UmlInstance uml_instance;

760 UmlCommonBehavior::LinkEnd link_end;

761 };

762 typedef sequence <LinkEndIsOfTypeInstanceLink>
LinkEndIsOfTypeInstanceLinkSet;

763

764 interface LinkEndIsOfTypeInstance : Reflective::RefAssociation {

765 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

766 LinkEndIsOfTypeInstanceLinkSet all_link_end_is_of_type_instance_links();

767 boolean exists (in UmlCommonBehavior::UmlInstance uml_instance,

768 in UmlCommonBehavior::LinkEnd link_end);

769 UmlCommonBehavior::UmlInstance with_link_end (

770 in UmlCommonBehavior::LinkEnd link_end);

771 UmlCommonBehavior::LinkEndSet with_uml_instance (

772 in UmlCommonBehavior::UmlInstance uml_instance);

773 void add (in UmlCommonBehavior::UmlInstance uml_instance,

774 in UmlCommonBehavior::LinkEnd link_end)

775 raises (Reflective::StructuralError, Reflective::SemanticError);

5-120 OMG-UML V1.2 May 1998

5

776 void modify_uml_instance (

777 in UmlCommonBehavior::UmlInstance uml_instance,

778 in UmlCommonBehavior::LinkEnd link_end,

779 in UmlCommonBehavior::UmlInstance new_uml_instance)

780 raises (Reflective::StructuralError,

781 Reflective::SemanticError,

782 Reflective::NotFound);

783 void modify_link_end (in UmlCommonBehavior::UmlInstance uml_instance,

784 in UmlCommonBehavior::LinkEnd link_end,

785 in UmlCommonBehavior::LinkEnd new_link_end)

786 raises (Reflective::StructuralError,

787 Reflective::SemanticError,

788 Reflective::NotFound);

789 void remove (in UmlCommonBehavior::UmlInstance uml_instance,

790 in UmlCommonBehavior::LinkEnd link_end)

791 raises (Reflective::StructuralError,

792 Reflective::SemanticError,

793 Reflective::NotFound);

794 };

795

796 struct ReceptionFeatureReceivesSignalLink {

797 UmlCommonBehavior::Signal signal;

798 UmlCommonBehavior::Reception reception;

799 };

800 typedef sequence <ReceptionFeatureReceivesSignalLink>

801 ReceptionFeatureReceivesSignalLinkSet;

802

803 interface ReceptionFeatureReceivesSignal : Reflective::RefAssociation {

804 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

805 ReceptionFeatureReceivesSignalLinkSet

806 all_reception_feature_receives_signal_links();

807 boolean exists (in UmlCommonBehavior::Signal signal,

808 in UmlCommonBehavior::Reception reception);

809 UmlCommonBehavior::Signal with_reception (

810 in UmlCommonBehavior::Reception reception);

811 UmlCommonBehavior::ReceptionSet with_signal (

812 in UmlCommonBehavior::Signal signal);

813 void add (in UmlCommonBehavior::Signal signal,

814 in UmlCommonBehavior::Reception reception)

815 raises (Reflective::StructuralError, Reflective::SemanticError);

816 void modify_signal (in UmlCommonBehavior::Signal signal,

OMG-UML V1.1 IDL Modules March 1998 5-121

5

817 in UmlCommonBehavior::Reception reception,

818 in UmlCommonBehavior::Signal new_signal)

819 raises (Reflective::StructuralError,

820 Reflective::SemanticError,

821 Reflective::NotFound);

822 void modify_reception (in UmlCommonBehavior::Signal signal,

823 in UmlCommonBehavior::Reception reception,

824 in UmlCommonBehavior::Reception new_reception)

825 raises (Reflective::StructuralError,

826 Reflective::SemanticError,

827 Reflective::NotFound);

828 void remove (in UmlCommonBehavior::Signal signal,

829 in UmlCommonBehavior::Reception reception)

830 raises (Reflective::StructuralError,

831 Reflective::SemanticError,

832 Reflective::NotFound);

833 };

834

835 struct SignalOwnsParameterLink {

836 UmlCommonBehavior::Signal signal;

837 ::UmlCore::Parameter parameter;

838 };

839 typedef sequence <SignalOwnsParameterLink> SignalOwnsParameterLinkSet;

840

841 interface SignalOwnsParameter : Reflective::RefAssociation {

842 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

843 SignalOwnsParameterLinkSet all_signal_owns_parameter_links();

844 boolean exists (in UmlCommonBehavior::Signal signal,

845 in ::UmlCore::Parameter parameter);

846 UmlCommonBehavior::Signal with_parameter (

847 in ::UmlCore::Parameter parameter);

848 ::UmlCore::ParameterUList with_signal (

849 in UmlCommonBehavior::Signal signal);

850 void add (in UmlCommonBehavior::Signal signal,

851 in ::UmlCore::Parameter parameter)

852 raises (Reflective::StructuralError, Reflective::SemanticError);

853 void add_before_parameter (in UmlCommonBehavior::Signal signal,

854 in ::UmlCore::Parameter parameter,

855 in ::UmlCore::Parameter before)

856 raises (Reflective::StructuralError,

857 Reflective::SemanticError,

5-122 OMG-UML V1.2 May 1998

5

858 Reflective::NotFound);

859 void modify_signal (in UmlCommonBehavior::Signal signal,

860 in ::UmlCore::Parameter parameter,

861 in UmlCommonBehavior::Signal new_signal)

862 raises (Reflective::StructuralError,

863 Reflective::SemanticError,

864 Reflective::NotFound);

865 void modify_parameter (in UmlCommonBehavior::Signal signal,

866 in ::UmlCore::Parameter parameter,

867 in ::UmlCore::Parameter new_parameter)

868 raises (Reflective::StructuralError,

869 Reflective::SemanticError,

870 Reflective::NotFound);

871 void remove (in UmlCommonBehavior::Signal signal,

872 in ::UmlCore::Parameter parameter)

873 raises (Reflective::StructuralError,

874 Reflective::SemanticError,

875 Reflective::NotFound);

876 };

877

878 struct ActionIsInitiatedByRequestLink {

879 ::UmlCore::Request message;

880 UmlCommonBehavior::Action action;

881 };

882 typedef sequence <ActionIsInitiatedByRequestLink>

883 ActionIsInitiatedByRequestLinkSet;

884

885 interface ActionIsInitiatedByRequest : Reflective::RefAssociation {

886 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

887 ActionIsInitiatedByRequestLinkSet

888 all_action_is_initiated_by_request_links();

889 boolean exists (in ::UmlCore::Request message,

890 in UmlCommonBehavior::Action action);

891 ::UmlCore::Request with_action (in UmlCommonBehavior::Action action);

892 UmlCommonBehavior::ActionSet with_message (in ::UmlCore::Request
message);

893 void add (in ::UmlCore::Request message,

894 in UmlCommonBehavior::Action action)

895 raises (Reflective::StructuralError, Reflective::SemanticError);

896 void modify_message (in ::UmlCore::Request message,

897 in UmlCommonBehavior::Action action,

OMG-UML V1.1 IDL Modules March 1998 5-123

5

898 in ::UmlCore::Request new_message)

899 raises (Reflective::StructuralError,

900 Reflective::SemanticError,

901 Reflective::NotFound);

902 void modify_action (in ::UmlCore::Request message,

903 in UmlCommonBehavior::Action action,

904 in UmlCommonBehavior::Action new_action)

905 raises (Reflective::StructuralError,

906 Reflective::SemanticError,

907 Reflective::NotFound);

908 void remove (in ::UmlCore::Request message,

909 in UmlCommonBehavior::Action action)

910 raises (Reflective::StructuralError,

911 Reflective::SemanticError,

912 Reflective::NotFound);

913 };

914

915 struct MessageInstanceIsSpecifiedByRequestLink {

916 MessageInstance instance;

917 ::UmlCore::Request specification;

918 };

919 typedef sequence <MessageInstanceIsSpecifiedByRequestLink>

920 MessageInstanceIsSpecifiedByRequestLinkSet;

921

922 interface MessageInstanceIsSpecifiedByRequest : Reflective::RefAssociation
{

923 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

924 MessageInstanceIsSpecifiedByRequestLinkSet

925 all_message_instance_is_specified_by_request_links();

926 boolean exists (in MessageInstance instance,

927 in ::UmlCore::Request specification);

928 MessageInstanceSet with_specification (

929 in ::UmlCore::Request specification);

930 ::UmlCore::Request with_instance (in MessageInstance instance);

931 void add (in MessageInstance instance, in ::UmlCore::Request
specification)

932 raises (Reflective::StructuralError, Reflective::SemanticError);

933 void modify_instance (in MessageInstance instance,

934 in ::UmlCore::Request specification,

935 in MessageInstance new_instance)

936 raises (Reflective::StructuralError,

5-124 OMG-UML V1.2 May 1998

5

937 Reflective::SemanticError,

938 Reflective::NotFound);

939 void modify_specification (in MessageInstance instance,

940 in ::UmlCore::Request specification,

941 in ::UmlCore::Request new_specification)

942 raises (Reflective::StructuralError,

943 Reflective::SemanticError,

944 Reflective::NotFound);

945 void remove (in MessageInstance instance,

946 in ::UmlCore::Request specification)

947 raises (Reflective::StructuralError,

948 Reflective::SemanticError,

949 Reflective::NotFound);

950 };

951

952 struct InstanceReceivesMessageInstanceLink {

953 UmlInstance receiver;

954 MessageInstance received_message_instance;

955 };

956 typedef sequence <InstanceReceivesMessageInstanceLink>

957 InstanceReceivesMessageInstanceLinkSet;

958

959 interface InstanceReceivesMessageInstance : Reflective::RefAssociation {

960 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

961 InstanceReceivesMessageInstanceLinkSet

962 all_instance_receives_message_instance_links();

963 boolean exists (in UmlInstance receiver,

964 in MessageInstance received_message_instance);

965 UmlInstance with_received_message_instance (

966 in MessageInstance received_message_instance);

967 MessageInstanceSet with_receiver (in UmlInstance receiver);

968 void add (in UmlInstance receiver,

969 in MessageInstance received_message_instance)

970 raises (Reflective::StructuralError, Reflective::SemanticError);

971 void modify_receiver (in UmlInstance receiver,

972 in MessageInstance received_message_instance,

973 in UmlInstance new_receiver)

974 raises (Reflective::StructuralError,

975 Reflective::SemanticError,

976 Reflective::NotFound);

977 void modify_received_message_instance (

OMG-UML V1.1 IDL Modules March 1998 5-125

5

978 in UmlInstance receiver,

979 in MessageInstance received_message_instance,

980 in MessageInstance new_received_message_instance)

981 raises (Reflective::StructuralError,

982 Reflective::SemanticError,

983 Reflective::NotFound);

984 void remove (in UmlInstance receiver,

985 in MessageInstance received_message_instance)

986 raises (Reflective::StructuralError,

987 Reflective::SemanticError,

988 Reflective::NotFound);

989 };

990

991 struct InstanceOwnsAttributeLinkLink {

992 AttributeLink owned_attribute_link;

993 UmlInstance owning_instance;

994 };

995 typedef sequence <InstanceOwnsAttributeLinkLink>

996 InstanceOwnsAttributeLinkLinkSet;

997

998 interface InstanceOwnsAttributeLink : Reflective::RefAssociation {

999 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1000 InstanceOwnsAttributeLinkLinkSet
all_instance_owns_attribute_link_links();

1001 boolean exists (in AttributeLink owned_attribute_link,

1002 in UmlInstance owning_instance);

1003 AttributeLinkSet with_owning_instance (in UmlInstance owning_instance);

1004 UmlInstance with_owned_attribute_link (

1005 in AttributeLink owned_attribute_link);

1006 void add (in AttributeLink owned_attribute_link,

1007 in UmlInstance owning_instance)

1008 raises (Reflective::StructuralError, Reflective::SemanticError);

1009 void add_before_owning_instance (in AttributeLink owned_attribute_link,

1010 in UmlInstance owning_instance,

1011 in UmlInstance before)

1012 raises (Reflective::StructuralError,

1013 Reflective::SemanticError,

1014 Reflective::NotFound);

1015 void modify_owned_attribute_link (

1016 in AttributeLink owned_attribute_link,

1017 in UmlInstance owning_instance,

5-126 OMG-UML V1.2 May 1998

5

1018 in AttributeLink new_owned_attribute_link)

1019 raises (Reflective::StructuralError,

1020 Reflective::SemanticError,

1021 Reflective::NotFound);

1022 void modify_owning_instance (in AttributeLink owned_attribute_link,

1023 in UmlInstance owning_instance,

1024 in UmlInstance new_owning_instance)

1025 raises (Reflective::StructuralError,

1026 Reflective::SemanticError,

1027 Reflective::NotFound);

1028 void remove (in AttributeLink owned_attribute_link,

1029 in UmlInstance owning_instance)

1030 raises (Reflective::StructuralError,

1031 Reflective::SemanticError,

1032 Reflective::NotFound);

1033 };

1034

1035 struct MessageInstanceHasArgumentOfInstanceLink {

1036 UmlInstance argument;

1037 MessageInstance argument_owner;

1038 };

1039 typedef sequence <MessageInstanceHasArgumentOfInstanceLink>

1040 MessageInstanceHasArgumentOfInstanceLinkSet;

1041

1042 interface MessageInstanceHasArgumentOfInstance :
Reflective::RefAssociation {

1043 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1044 MessageInstanceHasArgumentOfInstanceLinkSet

1045 all_message_instance_has_argument_of_instance_links();

1046 boolean exists (in UmlInstance argument,

1047 in MessageInstance argument_owner);

1048 UmlInstanceSet with_argument_owner (in MessageInstance argument_owner);

1049 MessageInstanceSet with_argument (in UmlInstance argument);

1050 void add (in UmlInstance argument, in MessageInstance argument_owner)

1051 raises (Reflective::StructuralError, Reflective::SemanticError);

1052 void modify_argument (in UmlInstance argument,

1053 in MessageInstance argument_owner,

1054 in UmlInstance new_argument)

1055 raises (Reflective::StructuralError,

1056 Reflective::SemanticError,

1057 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-127

5

1058 void modify_argument_owner (in UmlInstance argument,

1059 in MessageInstance argument_owner,

1060 in MessageInstance new_argument_owner)

1061 raises (Reflective::StructuralError,

1062 Reflective::SemanticError,

1063 Reflective::NotFound);

1064 void remove (in UmlInstance argument, in MessageInstance argument_owner)

1065 raises (Reflective::StructuralError,

1066 Reflective::SemanticError,

1067 Reflective::NotFound);

1068 };

1069

1070 struct ExceptionIsRaisedByBehavioralFeatureLink {

1071 ::UmlCore::BehavioralFeature uml_context;

1072 UmlException raised_exception;

1073 };

1074 typedef sequence <ExceptionIsRaisedByBehavioralFeatureLink>

1075 ExceptionIsRaisedByBehavioralFeatureLinkSet;

1076

1077 interface ExceptionIsRaisedByBehavioralFeature :
Reflective::RefAssociation {

1078 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1079 ExceptionIsRaisedByBehavioralFeatureLinkSet

1080 all_exception_is_raised_by_behavioral_feature_links();

1081 boolean exists (in ::UmlCore::BehavioralFeature uml_context,

1082 in UmlException raised_exception);

1083 ::UmlCore::BehavioralFeatureSet with_raised_exception (

1084 in UmlException raised_exception);

1085 UmlExceptionSet with_uml_context (

1086 in ::UmlCore::BehavioralFeature uml_context);

1087 void add (in ::UmlCore::BehavioralFeature uml_context,

1088 in UmlException raised_exception)

1089 raises (Reflective::StructuralError, Reflective::SemanticError);

1090 void modify_uml_context (in ::UmlCore::BehavioralFeature uml_context,

1091 in UmlException raised_exception,

1092 in ::UmlCore::BehavioralFeature new_uml_context)

1093 raises (Reflective::StructuralError,

1094 Reflective::SemanticError,

1095 Reflective::NotFound);

1096 void modify_raised_exception (in ::UmlCore::BehavioralFeature
uml_context,

5-128 OMG-UML V1.2 May 1998

5

1097 in UmlException raised_exception,

1098 in UmlException new_raised_exception)

1099 raises (Reflective::StructuralError,

1100 Reflective::SemanticError,

1101 Reflective::NotFound);

1102 void remove (in ::UmlCore::BehavioralFeature uml_context,

1103 in UmlException raised_exception)

1104 raises (Reflective::StructuralError,

1105 Reflective::SemanticError,

1106 Reflective::NotFound);

1107 };

1108

1109 struct LinkInstantiatesAssociationLink {

1110 ::UmlCore::Association association;

1111 Link instance;

1112 };

1113 typedef sequence <LinkInstantiatesAssociationLink>

1114 LinkInstantiatesAssociationLinkSet;

1115

1116 interface LinkInstantiatesAssociation : Reflective::RefAssociation {

1117 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1118 LinkInstantiatesAssociationLinkSet

1119 all_link_instantiates_association_links();

1120 boolean exists (in ::UmlCore::Association association, in Link
instance);

1121 ::UmlCore::Association with_instance (in Link instance);

1122 LinkSet with_association (in ::UmlCore::Association association);

1123 void add (in ::UmlCore::Association association, in Link instance)

1124 raises (Reflective::StructuralError, Reflective::SemanticError);

1125 void modify_association (in ::UmlCore::Association association,

1126 in Link instance,

1127 in ::UmlCore::Association new_association)

1128 raises (Reflective::StructuralError,

1129 Reflective::SemanticError,

1130 Reflective::NotFound);

1131 void modify_instance (in ::UmlCore::Association association,

1132 in Link instance,

1133 in Link new_instance)

1134 raises (Reflective::StructuralError,

1135 Reflective::SemanticError,

1136 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-129

5

1137 void remove (in ::UmlCore::Association association, in Link instance)

1138 raises (Reflective::StructuralError,

1139 Reflective::SemanticError,

1140 Reflective::NotFound);

1141 };

1142

1143 struct LinkOwnsLinkEndLink {

1144 Link owning_link;

1145 LinkEnd link_role;

1146 };

1147 typedef sequence <LinkOwnsLinkEndLink> LinkOwnsLinkEndLinkSet;

1148

1149 interface LinkOwnsLinkEnd : Reflective::RefAssociation {

1150 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1151 LinkOwnsLinkEndLinkSet all_link_owns_link_end_links();

1152 boolean exists (in Link owning_link, in LinkEnd link_role);

1153 Link with_link_role (in LinkEnd link_role);

1154 LinkEndSet with_owning_link (in Link owning_link);

1155 void add (in Link owning_link, in LinkEnd link_role)

1156 raises (Reflective::StructuralError, Reflective::SemanticError);

1157 void add_before_owning_link (in Link owning_link,

1158 in LinkEnd link_role,

1159 in Link before)

1160 raises (Reflective::StructuralError,

1161 Reflective::SemanticError,

1162 Reflective::NotFound);

1163 void modify_owning_link (in Link owning_link,

1164 in LinkEnd link_role,

1165 in Link new_owning_link)

1166 raises (Reflective::StructuralError,

1167 Reflective::SemanticError,

1168 Reflective::NotFound);

1169 void modify_link_role (in Link owning_link,

1170 in LinkEnd link_role,

1171 in LinkEnd new_link_role)

1172 raises (Reflective::StructuralError,

1173 Reflective::SemanticError,

1174 Reflective::NotFound);

1175 void remove (in Link owning_link, in LinkEnd link_role)

1176 raises (Reflective::StructuralError,

1177 Reflective::SemanticError,

5-130 OMG-UML V1.2 May 1998

5

1178 Reflective::NotFound);

1179 };

1180

1181 struct LinkEndInstantiatesAssociationEndLink {

1182 ::UmlCore::AssociationEnd association_end;

1183 LinkEnd instance;

1184 };

1185 typedef sequence <LinkEndInstantiatesAssociationEndLink>

1186 LinkEndInstantiatesAssociationEndLinkSet;

1187

1188 interface LinkEndInstantiatesAssociationEnd : Reflective::RefAssociation {

1189 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1190 LinkEndInstantiatesAssociationEndLinkSet

1191 all_link_end_instantiates_association_end_links();

1192 boolean exists (in ::UmlCore::AssociationEnd association_end,

1193 in LinkEnd instance);

1194 ::UmlCore::AssociationEnd with_instance (in LinkEnd instance);

1195 LinkEndSet with_association_end (

1196 in ::UmlCore::AssociationEnd association_end);

1197 void add (in ::UmlCore::AssociationEnd association_end,

1198 in LinkEnd instance)

1199 raises (Reflective::StructuralError, Reflective::SemanticError);

1200 void modify_association_end (

1201 in ::UmlCore::AssociationEnd association_end,

1202 in LinkEnd instance,

1203 in ::UmlCore::AssociationEnd new_association_end)

1204 raises (Reflective::StructuralError,

1205 Reflective::SemanticError,

1206 Reflective::NotFound);

1207 void modify_instance (in ::UmlCore::AssociationEnd association_end,

1208 in LinkEnd instance,

1209 in LinkEnd new_instance)

1210 raises (Reflective::StructuralError,

1211 Reflective::SemanticError,

1212 Reflective::NotFound);

1213 void remove (in ::UmlCore::AssociationEnd association_end,

1214 in LinkEnd instance)

1215 raises (Reflective::StructuralError,

1216 Reflective::SemanticError,

1217 Reflective::NotFound);

1218 };

OMG-UML V1.1 IDL Modules March 1998 5-131

5

1219

1220 struct InstanceSendsMessageInstanceLink {

1221 UmlInstance sender;

1222 MessageInstance sent_message_instance;

1223 };

1224 typedef sequence <InstanceSendsMessageInstanceLink>

1225 InstanceSendsMessageInstanceLinkSet;

1226

1227 interface InstanceSendsMessageInstance : Reflective::RefAssociation {

1228 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1229 InstanceSendsMessageInstanceLinkSet

1230 all_instance_sends_message_instance_links();

1231 boolean exists (in UmlInstance sender,

1232 in MessageInstance sent_message_instance);

1233 UmlInstance with_sent_message_instance (

1234 in MessageInstance sent_message_instance);

1235 MessageInstanceSet with_sender (in UmlInstance sender);

1236 void add (in UmlInstance sender, in MessageInstance
sent_message_instance)

1237 raises (Reflective::StructuralError, Reflective::SemanticError);

1238 void modify_sender (in UmlInstance sender,

1239 in MessageInstance sent_message_instance,

1240 in UmlInstance new_sender)

1241 raises (Reflective::StructuralError,

1242 Reflective::SemanticError,

1243 Reflective::NotFound);

1244 void modify_sent_message_instance (

1245 in UmlInstance sender,

1246 in MessageInstance sent_message_instance,

1247 in MessageInstance new_sent_message_instance)

1248 raises (Reflective::StructuralError,

1249 Reflective::SemanticError,

1250 Reflective::NotFound);

1251 void remove (in UmlInstance sender,

1252 in MessageInstance sent_message_instance)

1253 raises (Reflective::StructuralError,

1254 Reflective::SemanticError,

1255 Reflective::NotFound);

1256 };

1257

1258 struct ActionSequenceOwnsActionLink {

5-132 OMG-UML V1.2 May 1998

5

1259 UmlCommonBehavior::ActionSequence action_sequence;

1260 UmlCommonBehavior::Action action;

1261 };

1262 typedef sequence <ActionSequenceOwnsActionLink>

1263 ActionSequenceOwnsActionLinkSet;

1264

1265 interface ActionSequenceOwnsAction : Reflective::RefAssociation {

1266 readonly attribute UmlCommonBehaviorPackage enclosing_package_ref;

1267 ActionSequenceOwnsActionLinkSet
all_action_sequence_owns_action_links();

1268 boolean exists (in UmlCommonBehavior::ActionSequence action_sequence,

1269 in UmlCommonBehavior::Action action);

1270 UmlCommonBehavior::ActionSequence with_action (

1271 in UmlCommonBehavior::Action action);

1272 UmlCommonBehavior::ActionSet with_action_sequence (

1273 in UmlCommonBehavior::ActionSequence action_sequence);

1274 void add (in UmlCommonBehavior::ActionSequence action_sequence,

1275 in UmlCommonBehavior::Action action)

1276 raises (Reflective::StructuralError, Reflective::SemanticError);

1277 void modify_action_sequence (

1278 in UmlCommonBehavior::ActionSequence action_sequence,

1279 in UmlCommonBehavior::Action action,

1280 in UmlCommonBehavior::ActionSequence new_action_sequence)

1281 raises (Reflective::StructuralError,

1282 Reflective::SemanticError,

1283 Reflective::NotFound);

1284 void modify_action (in UmlCommonBehavior::ActionSequence
action_sequence,

1285 in UmlCommonBehavior::Action action,

1286 in UmlCommonBehavior::Action new_action)

1287 raises (Reflective::StructuralError,

1288 Reflective::SemanticError,

1289 Reflective::NotFound);

1290 void remove (in UmlCommonBehavior::ActionSequence action_sequence,

1291 in UmlCommonBehavior::Action action)

1292 raises (Reflective::StructuralError,

1293 Reflective::SemanticError,

1294 Reflective::NotFound);

1295 };

1296

1297 interface UmlCommonBehaviorPackageFactory {

OMG-UML V1.1 IDL Modules March 1998 5-133

5

1298 UmlCommonBehaviorPackage create_uml_common_behavior_package ()

1299 raises (Reflective::SemanticError);

1300 };

1301

1302 interface UmlCommonBehaviorPackage : Reflective::RefPackage {

1303 readonly attribute CallClass call_class_ref;

1304 readonly attribute LinkEndClass link_end_class_ref;

1305 readonly attribute LinkClass link_class_ref;

1306 readonly attribute AttributeLinkClass attribute_link_class_ref;

1307 readonly attribute UmlInstanceClass uml_instance_class_ref;

1308 readonly attribute UmlObjectClass uml_object_class_ref;

1309 readonly attribute MessageInstanceClass message_instance_class_ref;

1310 readonly attribute DataValueClass data_value_class_ref;

1311 readonly attribute SignalClass signal_class_ref;

1312 readonly attribute UmlExceptionClass uml_exception_class_ref;

1313 readonly attribute ReceptionClass reception_class_ref;

1314 readonly attribute ArgumentClass argument_class_ref;

1315 readonly attribute ActionClass action_class_ref;

1316 readonly attribute CallActionClass call_action_class_ref;

1317 readonly attribute CreateActionClass create_action_class_ref;

1318 readonly attribute DestroyActionClass destroy_action_class_ref;

1319 readonly attribute LocalInvocationClass local_invocation_class_ref;

1320 readonly attribute SendActionClass send_action_class_ref;

1321 readonly attribute ReturnActionClass return_action_class_ref;

1322 readonly attribute TerminateActionClass terminate_action_class_ref;

1323 readonly attribute UninterpretedActionClass
uninterpreted_action_class_ref;

1324 readonly attribute ActionSequenceClass action_sequence_class_ref;

1325 readonly attribute LinkObjectClass link_object_class_ref;

1326

1327 readonly attribute InstanceInstantiatesClassifier

1328 instance_instantiates_classifier_ref;

1329 readonly attribute ActionOwnsArgument action_owns_argument_ref;

1330 readonly attribute CreateActionInstantiatesClassifier

1331 create_action_instantiates_classifier_ref;

1332 readonly attribute AttributeLinkIsInstanceOfAttribute

1333 attribute_link_is_instance_of_attribute_ref;

1334 readonly attribute AttributeLilnkHasValueOfLink

1335 attribute_lilnk_has_value_of_link_ref;

1336 readonly attribute LinkEndIsOfTypeInstance

1337 link_end_is_of_type_instance_ref;

5-134 OMG-UML V1.2 May 1998

5

1338 readonly attribute ReceptionFeatureReceivesSignal

1339 reception_feature_receives_signal_ref;

1340 readonly attribute SignalOwnsParameter signal_owns_parameter_ref;

1341 readonly attribute ActionIsInitiatedByRequest

1342 action_is_initiated_by_request_ref;

1343 readonly attribute MessageInstanceIsSpecifiedByRequest

1344 message_instance_is_specified_by_request_ref;

1345 readonly attribute InstanceReceivesMessageInstance

1346 instance_receives_message_instance_ref;

1347 readonly attribute InstanceOwnsAttributeLink

1348 instance_owns_attribute_link_ref;

1349 readonly attribute MessageInstanceHasArgumentOfInstance

1350 message_instance_has_argument_of_instance_ref;

1351 readonly attribute ExceptionIsRaisedByBehavioralFeature

1352 exception_is_raised_by_behavioral_feature_ref;

1353 readonly attribute LinkInstantiatesAssociation

1354 link_instantiates_association_ref;

1355 readonly attribute LinkOwnsLinkEnd link_owns_link_end_ref;

1356 readonly attribute LinkEndInstantiatesAssociationEnd

1357 link_end_instantiates_association_end_ref;

1358 readonly attribute InstanceSendsMessageInstance

1359 instance_sends_message_instance_ref;

1360 readonly attribute ActionSequenceOwnsAction

1361 action_sequence_owns_action_ref;

1362 };

1363 };

5.4.6 UMLStateMachines
1 #include "UmlCommonBehavior.idl"

2

3 module UmlStateMachines {

4 interface UmlStateMachinesPackage;

5 interface ActivityState;

6 interface ActivityStateClass;

7 typedef sequence<ActivityState> ActivityStateUList;

8 interface CompositeState;

9 interface CompositeStateClass;

10 typedef sequence<CompositeState> CompositeStateUList;

11 interface TimeEvent;

12 interface TimeEventClass;

OMG-UML V1.1 IDL Modules March 1998 5-135

5

13 typedef sequence<TimeEvent> TimeEventUList;

14 interface ActionState;

15 interface ActionStateClass;

16 typedef sequence<ActionState> ActionStateUList;

17 interface CallEvent;

18 interface CallEventClass;

19 typedef sequence<CallEvent> CallEventUList;

20 typedef sequence<CallEvent> CallEventSet;

21 interface ChangeEvent;

22 interface ChangeEventClass;

23 typedef sequence<ChangeEvent> ChangeEventUList;

24 interface SignalEvent;

25 interface SignalEventClass;

26 typedef sequence<SignalEvent> SignalEventUList;

27 typedef sequence<SignalEvent> SignalEventSet;

28 interface Pseudostate;

29 interface PseudostateClass;

30 typedef sequence<Pseudostate> PseudostateUList;

31 interface Event;

32 interface EventClass;

33 typedef sequence<Event> EventUList;

34 typedef sequence<Event> EventSet;

35 interface StateVertex;

36 interface StateVertexClass;

37 typedef sequence<StateVertex> StateVertexUList;

38 typedef sequence<StateVertex> StateVertexSet;

39 interface StateMachine;

40 interface StateMachineClass;

41 typedef sequence<StateMachine> StateMachineUList;

42 typedef sequence<StateMachine> StateMachineSet;

43 interface SimpleState;

44 interface SimpleStateClass;

45 typedef sequence<SimpleState> SimpleStateUList;

46 interface ObjectFlowState;

47 interface ObjectFlowStateClass;

48 typedef sequence<ObjectFlowState> ObjectFlowStateUList;

49 typedef sequence<ObjectFlowState> ObjectFlowStateSet;

50 interface SubmachineState;

51 interface SubmachineStateClass;

52 typedef sequence<SubmachineState> SubmachineStateUList;

53 typedef sequence<SubmachineState> SubmachineStateSet;

5-136 OMG-UML V1.2 May 1998

5

54 interface ActivityModel;

55 interface ActivityModelClass;

56 typedef sequence<ActivityModel> ActivityModelUList;

57 interface Guard;

58 interface GuardClass;

59 typedef sequence<Guard> GuardUList;

60 interface Transition;

61 interface TransitionClass;

62 typedef sequence<Transition> TransitionUList;

63 typedef sequence<Transition> TransitionSet;

64 interface ClassifierInState;

65 interface ClassifierInStateClass;

66 typedef sequence<ClassifierInState> ClassifierInStateUList;

67 typedef sequence<ClassifierInState> ClassifierInStateSet;

68 interface Partition;

69 interface PartitionClass;

70 typedef sequence<Partition> PartitionUList;

71 typedef sequence<Partition> PartitionSet;

72 interface State;

73 interface StateClass;

74 typedef sequence<State> StateUList;

75 typedef sequence<State> StateSet;

76

77 interface EventClass : ::UmlCore::ModelElementClass {

78 readonly attribute EventUList all_of_kind_event;

79 };

80

81 interface Event : EventClass, ::UmlCore::ModelElement {

82 UmlStateMachines::StateSet state ()

83 raises (Reflective::NotSet, Reflective::SemanticError);

84 void add_state (in UmlStateMachines::StateSet new_value)

85 raises (Reflective::StructuralError, Reflective::SemanticError);

86 void remove_state ()

87 raises (Reflective::SemanticError);

88 UmlStateMachines::TransitionSet transition ()

89 raises (Reflective::NotSet, Reflective::SemanticError);

90 void add_transition (in UmlStateMachines::TransitionSet new_value)

91 raises (Reflective::StructuralError, Reflective::SemanticError);

92 void remove_transition ()

93 raises (Reflective::SemanticError);

94 };

OMG-UML V1.1 IDL Modules March 1998 5-137

5

95

96 interface CallEventClass : EventClass {

97 readonly attribute CallEventUList all_of_kind_call_event;

98 readonly attribute CallEventUList all_of_type_call_event;

99 CallEvent create_call_event (in ::UmlCore::Name name)

100 raises (Reflective::SemanticError);

101 };

102

103 interface CallEvent : CallEventClass, Event {

104 ::UmlCore::Operation operation ()

105 raises (Reflective::SemanticError);

106 void set_operation (in ::UmlCore::Operation new_value)

107 raises (Reflective::SemanticError);

108 };

109

110 interface ChangeEventClass : EventClass {

111 readonly attribute ChangeEventUList all_of_kind_change_event;

112 readonly attribute ChangeEventUList all_of_type_change_event;

113 ChangeEvent create_change_event (

114 in ::UmlCore::Name name,

115 in ::UmlCore::BooleanExpression change_expression)

116 raises (Reflective::SemanticError);

117 };

118

119 interface ChangeEvent : ChangeEventClass, Event {

120 ::UmlCore::BooleanExpression change_expression ()

121 raises (Reflective::SemanticError);

122 void set_change_expression (in ::UmlCore::BooleanExpression new_value)

123 raises (Reflective::SemanticError);

124 };

125

126 interface SignalEventClass : EventClass {

127 readonly attribute SignalEventUList all_of_kind_signal_event;

128 readonly attribute SignalEventUList all_of_type_signal_event;

129 SignalEvent create_signal_event (in ::UmlCore::Name name)

130 raises (Reflective::SemanticError);

131 };

132

133 interface SignalEvent : SignalEventClass, Event {

134 ::UmlCommonBehavior::Signal signal ()

135 raises (Reflective::SemanticError);

5-138 OMG-UML V1.2 May 1998

5

136 void set_signal (in ::UmlCommonBehavior::Signal new_value)

137 raises (Reflective::SemanticError);

138 };

139

140 interface TimeEventClass : EventClass {

141 readonly attribute TimeEventUList all_of_kind_time_event;

142 readonly attribute TimeEventUList all_of_type_time_event;

143 TimeEvent create_time_event (in ::UmlCore::Name name,

144 in ::UmlCore::TimeExpression duration)

145 raises (Reflective::SemanticError);

146 };

147

148 interface TimeEvent : TimeEventClass, Event {

149 ::UmlCore::TimeExpression duration ()

150 raises (Reflective::SemanticError);

151 void set_duration (in ::UmlCore::TimeExpression new_value)

152 raises (Reflective::SemanticError);

153 };

154

155 interface StateVertexClass : ::UmlCore::ModelElementClass {

156 readonly attribute StateVertexUList all_of_kind_state_vertex;

157 };

158

159 interface StateVertex : StateVertexClass, ::UmlCore::ModelElement {

160 CompositeState parent ()

161 raises (Reflective::NotSet, Reflective::SemanticError);

162 void set_parent (in CompositeState new_value)

163 raises (Reflective::SemanticError);

164 void unset_parent ()

165 raises (Reflective::SemanticError);

166 TransitionSet outgoing ()

167 raises (Reflective::NotSet, Reflective::SemanticError);

168 void add_outgoing (in TransitionSet new_value)

169 raises (Reflective::StructuralError, Reflective::SemanticError);

170 void remove_outgoing ()

171 raises (Reflective::SemanticError);

172 TransitionSet incoming ()

173 raises (Reflective::NotSet, Reflective::SemanticError);

174 void add_incoming (in TransitionSet new_value)

175 raises (Reflective::StructuralError, Reflective::SemanticError);

176 void remove_incoming ()

OMG-UML V1.1 IDL Modules March 1998 5-139

5

177 raises (Reflective::SemanticError);

178 };

179

180 interface GuardClass : ::UmlCore::ModelElementClass {

181 readonly attribute GuardUList all_of_kind_guard;

182 readonly attribute GuardUList all_of_type_guard;

183 Guard create_guard (in ::UmlCore::Name name,

184 in ::UmlCore::BooleanExpression expression)

185 raises (Reflective::SemanticError);

186 };

187

188 interface Guard : GuardClass, ::UmlCore::ModelElement {

189 ::UmlCore::BooleanExpression expression ()

190 raises (Reflective::SemanticError);

191 void set_expression (in ::UmlCore::BooleanExpression new_value)

192 raises (Reflective::SemanticError);

193 UmlStateMachines::Transition transition ()

194 raises (Reflective::SemanticError);

195 void set_transition (in UmlStateMachines::Transition new_value)

196 raises (Reflective::SemanticError);

197 };

198

199 interface TransitionClass : ::UmlCore::ModelElementClass {

200 readonly attribute TransitionUList all_of_kind_transition;

201 readonly attribute TransitionUList all_of_type_transition;

202 Transition create_transition (in ::UmlCore::Name name)

203 raises (Reflective::SemanticError);

204 };

205

206 interface Transition : TransitionClass, ::UmlCore::ModelElement {

207 UmlStateMachines::Guard guard ()

208 raises (Reflective::NotSet, Reflective::SemanticError);

209 void set_guard (in UmlStateMachines::Guard new_value)

210 raises (Reflective::SemanticError);

211 void add_guard_before (in UmlStateMachines::Guard new_value,

212 in UmlStateMachines::Guard before)

213 raises (Reflective::StructuralError,

214 Reflective::NotFound,

215 Reflective::SemanticError);

216 void unset_guard ()

217 raises (Reflective::SemanticError);

5-140 OMG-UML V1.2 May 1998

5

218 ::UmlCommonBehavior::ActionSequence effect ()

219 raises (Reflective::NotSet, Reflective::SemanticError);

220 void set_effect (in ::UmlCommonBehavior::ActionSequence new_value)

221 raises (Reflective::SemanticError);

222 void unset_effect ()

223 raises (Reflective::SemanticError);

224 UmlStateMachines::State state ()

225 raises (Reflective::NotSet, Reflective::SemanticError);

226 void set_state (in UmlStateMachines::State new_value)

227 raises (Reflective::SemanticError);

228 void unset_state ()

229 raises (Reflective::SemanticError);

230 Event trigger ()

231 raises (Reflective::NotSet, Reflective::SemanticError);

232 void set_trigger (in Event new_value)

233 raises (Reflective::SemanticError);

234 void unset_trigger ()

235 raises (Reflective::SemanticError);

236 UmlStateMachines::StateMachine state_machine ()

237 raises (Reflective::NotSet, Reflective::SemanticError);

238 void set_state_machine (in UmlStateMachines::StateMachine new_value)

239 raises (Reflective::SemanticError);

240 void unset_state_machine ()

241 raises (Reflective::SemanticError);

242 StateVertex source ()

243 raises (Reflective::SemanticError);

244 void set_source (in StateVertex new_value)

245 raises (Reflective::SemanticError);

246 StateVertex target ()

247 raises (Reflective::SemanticError);

248 void set_target (in StateVertex new_value)

249 raises (Reflective::SemanticError);

250 };

251

252 interface PseudostateClass : StateVertexClass {

253 readonly attribute PseudostateUList all_of_kind_pseudostate;

254 readonly attribute PseudostateUList all_of_type_pseudostate;

255 Pseudostate create_pseudostate (in ::UmlCore::Name name,

256 in ::UmlCore::PseudostateKind kind)

257 raises (Reflective::SemanticError);

258 };

OMG-UML V1.1 IDL Modules March 1998 5-141

5

259

260 interface Pseudostate : PseudostateClass, StateVertex {

261 ::UmlCore::PseudostateKind kind ()

262 raises (Reflective::SemanticError);

263 void set_kind (in ::UmlCore::PseudostateKind new_value)

264 raises (Reflective::SemanticError);

265 };

266

267 interface StateClass : StateVertexClass {

268 readonly attribute StateUList all_of_kind_state;

269 readonly attribute StateUList all_of_type_state;

270 State create_state (in ::UmlCore::Name name)

271 raises (Reflective::SemanticError);

272 };

273

274 interface State : StateClass, StateVertex {

275 ::UmlCommonBehavior::ActionSequence entry ()

276 raises (Reflective::NotSet, Reflective::SemanticError);

277 void set_entry (in ::UmlCommonBehavior::ActionSequence new_value)

278 raises (Reflective::SemanticError);

279 void unset_entry ()

280 raises (Reflective::SemanticError);

281 ::UmlCommonBehavior::ActionSequence exit ()

282 raises (Reflective::NotSet, Reflective::SemanticError);

283 void set_exit (in ::UmlCommonBehavior::ActionSequence new_value)

284 raises (Reflective::SemanticError);

285 void unset_exit ()

286 raises (Reflective::SemanticError);

287 UmlStateMachines::ClassifierInStateSet classifier_in_state ()

288 raises (Reflective::NotSet, Reflective::SemanticError);

289 void add_classifier_in_state (

290 in UmlStateMachines::ClassifierInStateSet new_value)

291 raises (Reflective::StructuralError, Reflective::SemanticError);

292 void remove_classifier_in_state ()

293 raises (Reflective::SemanticError);

294 UmlStateMachines::StateMachine state_machine ()

295 raises (Reflective::NotSet, Reflective::SemanticError);

296 void set_state_machine (in UmlStateMachines::StateMachine new_value)

297 raises (Reflective::SemanticError);

298 void unset_state_machine ()

299 raises (Reflective::SemanticError);

5-142 OMG-UML V1.2 May 1998

5

300 EventSet deferred_event ()

301 raises (Reflective::NotSet, Reflective::SemanticError);

302 void add_deferred_event (in EventSet new_value)

303 raises (Reflective::StructuralError, Reflective::SemanticError);

304 void remove_deferred_event ()

305 raises (Reflective::SemanticError);

306 TransitionSet internal_transition ()

307 raises (Reflective::NotSet, Reflective::SemanticError);

308 void add_internal_transition (in TransitionSet new_value)

309 raises (Reflective::StructuralError, Reflective::SemanticError);

310 void remove_internal_transition ()

311 raises (Reflective::SemanticError);

312 };

313

314 interface CompositeStateClass : StateClass {

315 readonly attribute CompositeStateUList all_of_kind_composite_state;

316 readonly attribute CompositeStateUList all_of_type_composite_state;

317 CompositeState create_composite_state (in ::UmlCore::Name name,

318 in boolean is_concurent)

319 raises (Reflective::SemanticError);

320 };

321

322 interface CompositeState : CompositeStateClass, State {

323 boolean is_concurent ()

324 raises (Reflective::SemanticError);

325 void set_is_concurent (in boolean new_value)

326 raises (Reflective::SemanticError);

327 StateVertexSet substate ()

328 raises (Reflective::SemanticError);

329 void add_substate (in StateVertexSet new_value)

330 raises (Reflective::StructuralError, Reflective::SemanticError);

331 void remove_substate ()

332 raises (Reflective::SemanticError);

333 };

334

335 interface PartitionClass : ::UmlCore::ModelElementClass {

336 readonly attribute PartitionUList all_of_kind_partition;

337 readonly attribute PartitionUList all_of_type_partition;

338 Partition create_partition (in ::UmlCore::Name name)

339 raises (Reflective::SemanticError);

340 };

OMG-UML V1.1 IDL Modules March 1998 5-143

5

341

342 interface Partition : PartitionClass, ::UmlCore::ModelElement {

343 UmlStateMachines::ActivityModel activity_model ()

344 raises (Reflective::SemanticError);

345 void set_activity_model (in UmlStateMachines::ActivityModel new_value)

346 raises (Reflective::SemanticError);

347 ::UmlCore::ModelElementSet contents ()

348 raises (Reflective::NotSet, Reflective::SemanticError);

349 void add_contents (in ::UmlCore::ModelElementSet new_value)

350 raises (Reflective::StructuralError, Reflective::SemanticError);

351 void remove_contents ()

352 raises (Reflective::SemanticError);

353 };

354

355 interface ClassifierInStateClass : ::UmlCore::ClassifierClass {

356 readonly attribute ClassifierInStateUList
all_of_kind_classifier_in_state;

357 readonly attribute ClassifierInStateUList
all_of_type_classifier_in_state;

358 ClassifierInState create_classifier_in_state (in ::UmlCore::Name name,

359 in boolean is_root,

360 in boolean is_leaf,

361 in boolean is_abstract)

362 raises (Reflective::SemanticError);

363 };

364

365 interface ClassifierInState : ClassifierInStateClass, ::UmlCore::Classifier
{

366 State in_state ()

367 raises (Reflective::SemanticError);

368 void set_in_state (in State new_value)

369 raises (Reflective::SemanticError);

370 UmlStateMachines::ObjectFlowStateSet object_flow_state ()

371 raises (Reflective::NotSet, Reflective::SemanticError);

372 void add_object_flow_state (

373 in UmlStateMachines::ObjectFlowStateSet new_value)

374 raises (Reflective::StructuralError, Reflective::SemanticError);

375 void remove_object_flow_state ()

376 raises (Reflective::SemanticError);

377 ::UmlCore::Classifier type ()

378 raises (Reflective::SemanticError);

5-144 OMG-UML V1.2 May 1998

5

379 void set_type (in ::UmlCore::Classifier new_value)

380 raises (Reflective::SemanticError);

381 };

382

383 interface StateMachineClass : ::UmlCore::ModelElementClass {

384 readonly attribute StateMachineUList all_of_kind_state_machine;

385 readonly attribute StateMachineUList all_of_type_state_machine;

386 StateMachine create_state_machine (in ::UmlCore::Name name)

387 raises (Reflective::SemanticError);

388 };

389

390 interface StateMachine : StateMachineClass, ::UmlCore::ModelElement {

391 State top ()

392 raises (Reflective::SemanticError);

393 void set_top (in State new_value)

394 raises (Reflective::SemanticError);

395 TransitionSet transitions ()

396 raises (Reflective::NotSet, Reflective::SemanticError);

397 void add_transitions (in TransitionSet new_value)

398 raises (Reflective::StructuralError, Reflective::SemanticError);

399 void remove_transitions ()

400 raises (Reflective::SemanticError);

401 UmlStateMachines::SubmachineStateSet submachine_state ()

402 raises (Reflective::NotSet, Reflective::SemanticError);

403 void add_submachine_state (

404 in UmlStateMachines::SubmachineStateSet new_value)

405 raises (Reflective::StructuralError, Reflective::SemanticError);

406 void remove_submachine_state ()

407 raises (Reflective::SemanticError);

408 ::UmlCore::ModelElement uml_context ()

409 raises (Reflective::NotSet, Reflective::SemanticError);

410 void set_uml_context (in ::UmlCore::ModelElement new_value)

411 raises (Reflective::SemanticError);

412 void unset_uml_context ()

413 raises (Reflective::SemanticError);

414 };

415

416 interface ActivityModelClass : StateMachineClass {

417 readonly attribute ActivityModelUList all_of_kind_activity_model;

418 readonly attribute ActivityModelUList all_of_type_activity_model;

419 ActivityModel create_activity_model (in ::UmlCore::Name name)

OMG-UML V1.1 IDL Modules March 1998 5-145

5

420 raises (Reflective::SemanticError);

421 };

422

423 interface ActivityModel : ActivityModelClass, StateMachine {

424 PartitionSet owned_partition ()

425 raises (Reflective::NotSet, Reflective::SemanticError);

426 void add_owned_partition (in PartitionSet new_value)

427 raises (Reflective::StructuralError, Reflective::SemanticError);

428 void remove_owned_partition ()

429 raises (Reflective::SemanticError);

430 };

431

432 interface SimpleStateClass : StateClass {

433 readonly attribute SimpleStateUList all_of_kind_simple_state;

434 readonly attribute SimpleStateUList all_of_type_simple_state;

435 SimpleState create_simple_state (in ::UmlCore::Name name)

436 raises (Reflective::SemanticError);

437 };

438

439 interface SimpleState : SimpleStateClass, State { };

440

441 interface ActivityStateClass : SimpleStateClass {

442 readonly attribute ActivityStateUList all_of_kind_activity_state;

443 readonly attribute ActivityStateUList all_of_type_activity_state;

444 ActivityState create_activity_state (in ::UmlCore::Name name)

445 raises (Reflective::SemanticError);

446 };

447

448 interface ActivityState : ActivityStateClass, SimpleState { };

449

450 interface ObjectFlowStateClass : SimpleStateClass {

451 readonly attribute ObjectFlowStateUList all_of_kind_object_flow_state;

452 readonly attribute ObjectFlowStateUList all_of_type_object_flow_state;

453 ObjectFlowState create_object_flow_state (in ::UmlCore::Name name)

454 raises (Reflective::SemanticError);

455 };

456

457 interface ObjectFlowState : ObjectFlowStateClass, SimpleState {

458 UmlStateMachines::ClassifierInState type_state ()

459 raises (Reflective::SemanticError);

460 void set_type_state (in UmlStateMachines::ClassifierInState new_value)

5-146 OMG-UML V1.2 May 1998

5

461 raises (Reflective::SemanticError);

462 };

463

464 interface ActionStateClass : SimpleStateClass {

465 readonly attribute ActionStateUList all_of_kind_action_state;

466 readonly attribute ActionStateUList all_of_type_action_state;

467 ActionState create_action_state (in ::UmlCore::Name name)

468 raises (Reflective::SemanticError);

469 };

470

471 interface ActionState : ActionStateClass, SimpleState { };

472

473 interface SubmachineStateClass : StateClass {

474 readonly attribute SubmachineStateUList all_of_kind_submachine_state;

475 readonly attribute SubmachineStateUList all_of_type_submachine_state;

476 SubmachineState create_submachine_state (in ::UmlCore::Name name)

477 raises (Reflective::SemanticError);

478 };

479

480 interface SubmachineState : SubmachineStateClass, State {

481 UmlStateMachines::StateMachine submachine ()

482 raises (Reflective::SemanticError);

483 void set_submachine (in UmlStateMachines::StateMachine new_value)

484 raises (Reflective::SemanticError);

485 };

486

487 struct StateOwnsEntryActionSequenceLink {

488 State entry_action_state;

489 ::UmlCommonBehavior::ActionSequence entry;

490 };

491 typedef sequence <StateOwnsEntryActionSequenceLink>

492 StateOwnsEntryActionSequenceLinkSet;

493

494 interface StateOwnsEntryActionSequence : Reflective::RefAssociation {

495 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

496 StateOwnsEntryActionSequenceLinkSet

497 all_state_owns_entry_action_sequence_links();

498 boolean exists (in State entry_action_state,

499 in ::UmlCommonBehavior::ActionSequence entry);

500 State with_entry (in ::UmlCommonBehavior::ActionSequence entry);

501 ::UmlCommonBehavior::ActionSequence with_entry_action_state (

OMG-UML V1.1 IDL Modules March 1998 5-147

5

502 in State entry_action_state);

503 void add (in State entry_action_state,

504 in ::UmlCommonBehavior::ActionSequence entry)

505 raises (Reflective::StructuralError, Reflective::SemanticError);

506 void modify_entry_action_state (

507 in State entry_action_state,

508 in ::UmlCommonBehavior::ActionSequence entry,

509 in State new_entry_action_state)

510 raises (Reflective::StructuralError,

511 Reflective::SemanticError,

512 Reflective::NotFound);

513 void modify_entry (in State entry_action_state,

514 in ::UmlCommonBehavior::ActionSequence entry,

515 in ::UmlCommonBehavior::ActionSequence new_entry)

516 raises (Reflective::StructuralError,

517 Reflective::SemanticError,

518 Reflective::NotFound);

519 void remove (in State entry_action_state,

520 in ::UmlCommonBehavior::ActionSequence entry)

521 raises (Reflective::StructuralError,

522 Reflective::SemanticError,

523 Reflective::NotFound);

524 };

525

526 struct StateOwnsExitActionSequenceLink {

527 State exit_action_state;

528 ::UmlCommonBehavior::ActionSequence exit;

529 };

530 typedef sequence <StateOwnsExitActionSequenceLink>

531 StateOwnsExitActionSequenceLinkSet;

532

533 interface StateOwnsExitActionSequence : Reflective::RefAssociation {

534 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

535 StateOwnsExitActionSequenceLinkSet

536 all_state_owns_exit_action_sequence_links();

537 boolean exists (in State exit_action_state,

538 in ::UmlCommonBehavior::ActionSequence exit);

539 State with_exit (in ::UmlCommonBehavior::ActionSequence exit);

540 ::UmlCommonBehavior::ActionSequence with_exit_action_state (

541 in State exit_action_state);

542 void add (in State exit_action_state,

5-148 OMG-UML V1.2 May 1998

5

543 in ::UmlCommonBehavior::ActionSequence exit)

544 raises (Reflective::StructuralError, Reflective::SemanticError);

545 void modify_exit_action_state (in State exit_action_state,

546 in ::UmlCommonBehavior::ActionSequence exit,

547 in State new_exit_action_state)

548 raises (Reflective::StructuralError,

549 Reflective::SemanticError,

550 Reflective::NotFound);

551 void modify_exit (in State exit_action_state,

552 in ::UmlCommonBehavior::ActionSequence exit,

553 in ::UmlCommonBehavior::ActionSequence new_exit)

554 raises (Reflective::StructuralError,

555 Reflective::SemanticError,

556 Reflective::NotFound);

557 void remove (in State exit_action_state,

558 in ::UmlCommonBehavior::ActionSequence exit)

559 raises (Reflective::StructuralError,

560 Reflective::SemanticError,

561 Reflective::NotFound);

562 };

563

564 struct TransitionOwnsGuardLink {

565 UmlStateMachines::Guard guard;

566 UmlStateMachines::Transition transition;

567 };

568 typedef sequence <TransitionOwnsGuardLink> TransitionOwnsGuardLinkSet;

569

570 interface TransitionOwnsGuard : Reflective::RefAssociation {

571 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

572 TransitionOwnsGuardLinkSet all_transition_owns_guard_links();

573 boolean exists (in UmlStateMachines::Guard guard,

574 in UmlStateMachines::Transition transition);

575 UmlStateMachines::Guard with_transition (

576 in UmlStateMachines::Transition transition);

577 UmlStateMachines::Transition with_guard (in UmlStateMachines::Guard
guard);

578 void add (in UmlStateMachines::Guard guard,

579 in UmlStateMachines::Transition transition)

580 raises (Reflective::StructuralError, Reflective::SemanticError);

581 void add_before_guard (in UmlStateMachines::Guard guard,

582 in UmlStateMachines::Transition transition,

OMG-UML V1.1 IDL Modules March 1998 5-149

5

583 in UmlStateMachines::Guard before)

584 raises (Reflective::StructuralError,

585 Reflective::SemanticError,

586 Reflective::NotFound);

587 void modify_guard (in UmlStateMachines::Guard guard,

588 in UmlStateMachines::Transition transition,

589 in UmlStateMachines::Guard new_guard)

590 raises (Reflective::StructuralError,

591 Reflective::SemanticError,

592 Reflective::NotFound);

593 void modify_transition (in UmlStateMachines::Guard guard,

594 in UmlStateMachines::Transition transition,

595 in UmlStateMachines::Transition new_transition)

596 raises (Reflective::StructuralError,

597 Reflective::SemanticError,

598 Reflective::NotFound);

599 void remove (in UmlStateMachines::Guard guard,

600 in UmlStateMachines::Transition transition)

601 raises (Reflective::StructuralError,

602 Reflective::SemanticError,

603 Reflective::NotFound);

604 };

605

606 struct SignalEventIsOccurrenceOfSignalLink {

607 ::UmlCommonBehavior::Signal signal;

608 SignalEvent occurrence;

609 };

610 typedef sequence <SignalEventIsOccurrenceOfSignalLink>

611 SignalEventIsOccurrenceOfSignalLinkSet;

612

613 interface SignalEventIsOccurrenceOfSignal : Reflective::RefAssociation {

614 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

615 SignalEventIsOccurrenceOfSignalLinkSet

616 all_signal_event_is_occurrence_of_signal_links();

617 boolean exists (in ::UmlCommonBehavior::Signal signal,

618 in SignalEvent occurrence);

619 ::UmlCommonBehavior::Signal with_occurrence (in SignalEvent occurrence);

620 SignalEventSet with_signal (in ::UmlCommonBehavior::Signal signal);

621 void add (in ::UmlCommonBehavior::Signal signal, in SignalEvent
occurrence)

622 raises (Reflective::StructuralError, Reflective::SemanticError);

5-150 OMG-UML V1.2 May 1998

5

623 void modify_signal (in ::UmlCommonBehavior::Signal signal,

624 in SignalEvent occurrence,

625 in ::UmlCommonBehavior::Signal new_signal)

626 raises (Reflective::StructuralError,

627 Reflective::SemanticError,

628 Reflective::NotFound);

629 void modify_occurrence (in ::UmlCommonBehavior::Signal signal,

630 in SignalEvent occurrence,

631 in SignalEvent new_occurrence)

632 raises (Reflective::StructuralError,

633 Reflective::SemanticError,

634 Reflective::NotFound);

635 void remove (in ::UmlCommonBehavior::Signal signal,

636 in SignalEvent occurrence)

637 raises (Reflective::StructuralError,

638 Reflective::SemanticError,

639 Reflective::NotFound);

640 };

641

642 struct ActivityModelOwnsPartitionLink {

643 UmlStateMachines::ActivityModel activity_model;

644 Partition owned_partition;

645 };

646 typedef sequence <ActivityModelOwnsPartitionLink>

647 ActivityModelOwnsPartitionLinkSet;

648

649 interface ActivityModelOwnsPartition : Reflective::RefAssociation {

650 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

651 ActivityModelOwnsPartitionLinkSet

652 all_activity_model_owns_partition_links();

653 boolean exists (in UmlStateMachines::ActivityModel activity_model,

654 in Partition owned_partition);

655 UmlStateMachines::ActivityModel with_owned_partition (

656 in Partition owned_partition);

657 PartitionSet with_activity_model (

658 in UmlStateMachines::ActivityModel activity_model);

659 void add (in UmlStateMachines::ActivityModel activity_model,

660 in Partition owned_partition)

661 raises (Reflective::StructuralError, Reflective::SemanticError);

662 void modify_activity_model (

663 in UmlStateMachines::ActivityModel activity_model,

OMG-UML V1.1 IDL Modules March 1998 5-151

5

664 in Partition owned_partition,

665 in UmlStateMachines::ActivityModel new_activity_model)

666 raises (Reflective::StructuralError,

667 Reflective::SemanticError,

668 Reflective::NotFound);

669 void modify_owned_partition (

670 in UmlStateMachines::ActivityModel activity_model,

671 in Partition owned_partition,

672 in Partition new_owned_partition)

673 raises (Reflective::StructuralError,

674 Reflective::SemanticError,

675 Reflective::NotFound);

676 void remove (in UmlStateMachines::ActivityModel activity_model,

677 in Partition owned_partition)

678 raises (Reflective::StructuralError,

679 Reflective::SemanticError,

680 Reflective::NotFound);

681 };

682

683 struct PartitionHasContextOfModelElementLink {

684 ::UmlCore::ModelElement contents;

685 Partition context_partition;

686 };

687 typedef sequence <PartitionHasContextOfModelElementLink>

688 PartitionHasContextOfModelElementLinkSet;

689

690 interface PartitionHasContextOfModelElement : Reflective::RefAssociation {

691 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

692 PartitionHasContextOfModelElementLinkSet

693 all_partition_has_context_of_model_element_links();

694 boolean exists (in ::UmlCore::ModelElement contents,

695 in Partition context_partition);

696 ::UmlCore::ModelElementSet with_context_partition (

697 in Partition context_partition);

698 PartitionSet with_contents (in ::UmlCore::ModelElement contents);

699 void add (in ::UmlCore::ModelElement contents,

700 in Partition context_partition)

701 raises (Reflective::StructuralError, Reflective::SemanticError);

702 void modify_contents (in ::UmlCore::ModelElement contents,

703 in Partition context_partition,

704 in ::UmlCore::ModelElement new_contents)

5-152 OMG-UML V1.2 May 1998

5

705 raises (Reflective::StructuralError,

706 Reflective::SemanticError,

707 Reflective::NotFound);

708 void modify_context_partition (in ::UmlCore::ModelElement contents,

709 in Partition context_partition,

710 in Partition new_context_partition)

711 raises (Reflective::StructuralError,

712 Reflective::SemanticError,

713 Reflective::NotFound);

714 void remove (in ::UmlCore::ModelElement contents,

715 in Partition context_partition)

716 raises (Reflective::StructuralError,

717 Reflective::SemanticError,

718 Reflective::NotFound);

719 };

720

721 struct ClassifierInStateIsInStateStateLink {

722 UmlStateMachines::ClassifierInState classifier_in_state;

723 State in_state;

724 };

725 typedef sequence <ClassifierInStateIsInStateStateLink>

726 ClassifierInStateIsInStateStateLinkSet;

727

728 interface ClassifierInStateIsInStateState : Reflective::RefAssociation {

729 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

730 ClassifierInStateIsInStateStateLinkSet

731 all_classifier_in_state_is_in_state_state_links();

732 boolean exists (in UmlStateMachines::ClassifierInState
classifier_in_state,

733 in State in_state);

734 UmlStateMachines::ClassifierInStateSet with_in_state (in State
in_state);

735 State with_classifier_in_state (

736 in UmlStateMachines::ClassifierInState classifier_in_state);

737 void add (in UmlStateMachines::ClassifierInState classifier_in_state,

738 in State in_state)

739 raises (Reflective::StructuralError, Reflective::SemanticError);

740 void modify_classifier_in_state (

741 in UmlStateMachines::ClassifierInState classifier_in_state,

742 in State in_state,

743 in UmlStateMachines::ClassifierInState new_classifier_in_state)

OMG-UML V1.1 IDL Modules March 1998 5-153

5

744 raises (Reflective::StructuralError,

745 Reflective::SemanticError,

746 Reflective::NotFound);

747 void modify_in_state (

748 in UmlStateMachines::ClassifierInState classifier_in_state,

749 in State in_state,

750 in State new_in_state)

751 raises (Reflective::StructuralError,

752 Reflective::SemanticError,

753 Reflective::NotFound);

754 void remove (in UmlStateMachines::ClassifierInState classifier_in_state,

755 in State in_state)

756 raises (Reflective::StructuralError,

757 Reflective::SemanticError,

758 Reflective::NotFound);

759 };

760

761 struct ObjectFlowStateRepresentsClassifierInStateLink {

762 ClassifierInState type_state;

763 UmlStateMachines::ObjectFlowState object_flow_state;

764 };

765 typedef sequence <ObjectFlowStateRepresentsClassifierInStateLink>

766 ObjectFlowStateRepresentsClassifierInStateLinkSet;

767

768 interface ObjectFlowStateRepresentsClassifierInState :

769 Reflective::RefAssociation {

770 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

771 ObjectFlowStateRepresentsClassifierInStateLinkSet

772 all_object_flow_state_represents_classifier_in_state_links();

773 boolean exists (in ClassifierInState type_state,

774 in UmlStateMachines::ObjectFlowState object_flow_state);

775 ClassifierInState with_object_flow_state (

776 in UmlStateMachines::ObjectFlowState object_flow_state);

777 UmlStateMachines::ObjectFlowStateSet with_type_state (

778 in ClassifierInState type_state);

779 void add (in ClassifierInState type_state,

780 in UmlStateMachines::ObjectFlowState object_flow_state)

781 raises (Reflective::StructuralError, Reflective::SemanticError);

782 void modify_type_state (

783 in ClassifierInState type_state,

784 in UmlStateMachines::ObjectFlowState object_flow_state,

5-154 OMG-UML V1.2 May 1998

5

785 in ClassifierInState new_type_state)

786 raises (Reflective::StructuralError,

787 Reflective::SemanticError,

788 Reflective::NotFound);

789 void modify_object_flow_state (

790 in ClassifierInState type_state,

791 in UmlStateMachines::ObjectFlowState object_flow_state,

792 in UmlStateMachines::ObjectFlowState new_object_flow_state)

793 raises (Reflective::StructuralError,

794 Reflective::SemanticError,

795 Reflective::NotFound);

796 void remove (in ClassifierInState type_state,

797 in UmlStateMachines::ObjectFlowState object_flow_state)

798 raises (Reflective::StructuralError,

799 Reflective::SemanticError,

800 Reflective::NotFound);

801 };

802

803 struct ClassifierInStateIsOfTypeClassifierLink {

804 ::UmlCore::Classifier type;

805 UmlStateMachines::ClassifierInState classifier_in_state;

806 };

807 typedef sequence <ClassifierInStateIsOfTypeClassifierLink>

808 ClassifierInStateIsOfTypeClassifierLinkSet;

809

810 interface ClassifierInStateIsOfTypeClassifier : Reflective::RefAssociation
{

811 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

812 ClassifierInStateIsOfTypeClassifierLinkSet

813 all_classifier_in_state_is_of_type_classifier_links();

814 boolean exists (

815 in ::UmlCore::Classifier type,

816 in UmlStateMachines::ClassifierInState classifier_in_state);

817 ::UmlCore::Classifier with_classifier_in_state (

818 in UmlStateMachines::ClassifierInState classifier_in_state);

819 UmlStateMachines::ClassifierInStateSet with_type (

820 in ::UmlCore::Classifier type);

821 void add (in ::UmlCore::Classifier type,

822 in UmlStateMachines::ClassifierInState classifier_in_state)

823 raises (Reflective::StructuralError, Reflective::SemanticError);

824 void modify_type (

OMG-UML V1.1 IDL Modules March 1998 5-155

5

825 in ::UmlCore::Classifier type,

826 in UmlStateMachines::ClassifierInState classifier_in_state,

827 in ::UmlCore::Classifier new_type)

828 raises (Reflective::StructuralError,

829 Reflective::SemanticError,

830 Reflective::NotFound);

831 void modify_classifier_in_state (

832 in ::UmlCore::Classifier type,

833 in UmlStateMachines::ClassifierInState classifier_in_state,

834 in UmlStateMachines::ClassifierInState new_classifier_in_state)

835 raises (Reflective::StructuralError,

836 Reflective::SemanticError,

837 Reflective::NotFound);

838 void remove (in ::UmlCore::Classifier type,

839 in UmlStateMachines::ClassifierInState classifier_in_state)

840 raises (Reflective::StructuralError,

841 Reflective::SemanticError,

842 Reflective::NotFound);

843 };

844

845 struct StateMachineOwnsTopStateLink {

846 State top;

847 UmlStateMachines::StateMachine state_machine;

848 };

849 typedef sequence <StateMachineOwnsTopStateLink>

850 StateMachineOwnsTopStateLinkSet;

851

852 interface StateMachineOwnsTopState : Reflective::RefAssociation {

853 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

854 StateMachineOwnsTopStateLinkSet
all_state_machine_owns_top_state_links();

855 boolean exists (in State top,

856 in UmlStateMachines::StateMachine state_machine);

857 State with_state_machine (in UmlStateMachines::StateMachine
state_machine);

858 UmlStateMachines::StateMachine with_top (in State top);

859 void add (in State top, in UmlStateMachines::StateMachine state_machine)

860 raises (Reflective::StructuralError, Reflective::SemanticError);

861 void modify_top (in State top,

862 in UmlStateMachines::StateMachine state_machine,

863 in State new_top)

5-156 OMG-UML V1.2 May 1998

5

864 raises (Reflective::StructuralError,

865 Reflective::SemanticError,

866 Reflective::NotFound);

867 void modify_state_machine (

868 in State top,

869 in UmlStateMachines::StateMachine state_machine,

870 in UmlStateMachines::StateMachine new_state_machine)

871 raises (Reflective::StructuralError,

872 Reflective::SemanticError,

873 Reflective::NotFound);

874 void remove (in State top, in UmlStateMachines::StateMachine
state_machine)

875 raises (Reflective::StructuralError,

876 Reflective::SemanticError,

877 Reflective::NotFound);

878 };

879

880 struct StateDefersEventLink {

881 UmlStateMachines::State state;

882 Event deferred_event;

883 };

884 typedef sequence <StateDefersEventLink> StateDefersEventLinkSet;

885

886 interface StateDefersEvent : Reflective::RefAssociation {

887 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

888 StateDefersEventLinkSet all_state_defers_event_links();

889 boolean exists (in UmlStateMachines::State state, in Event
deferred_event);

890 UmlStateMachines::StateSet with_deferred_event (in Event
deferred_event);

891 EventSet with_state (in UmlStateMachines::State state);

892 void add (in UmlStateMachines::State state, in Event deferred_event)

893 raises (Reflective::StructuralError, Reflective::SemanticError);

894 void modify_state (in UmlStateMachines::State state,

895 in Event deferred_event,

896 in UmlStateMachines::State new_state)

897 raises (Reflective::StructuralError,

898 Reflective::SemanticError,

899 Reflective::NotFound);

900 void modify_deferred_event (in UmlStateMachines::State state,

901 in Event deferred_event,

OMG-UML V1.1 IDL Modules March 1998 5-157

5

902 in Event new_deferred_event)

903 raises (Reflective::StructuralError,

904 Reflective::SemanticError,

905 Reflective::NotFound);

906 void remove (in UmlStateMachines::State state, in Event deferred_event)

907 raises (Reflective::StructuralError,

908 Reflective::SemanticError,

909 Reflective::NotFound);

910 };

911

912 struct CallEventIsOccurrenceOfOperationLink {

913 CallEvent occurrence;

914 ::UmlCore::Operation operation;

915 };

916 typedef sequence <CallEventIsOccurrenceOfOperationLink>

917 CallEventIsOccurrenceOfOperationLinkSet;

918

919 interface CallEventIsOccurrenceOfOperation : Reflective::RefAssociation {

920 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

921 CallEventIsOccurrenceOfOperationLinkSet

922 all_call_event_is_occurrence_of_operation_links();

923 boolean exists (in CallEvent occurrence,

924 in ::UmlCore::Operation operation);

925 CallEventSet with_operation (in ::UmlCore::Operation operation);

926 ::UmlCore::Operation with_occurrence (in CallEvent occurrence);

927 void add (in CallEvent occurrence, in ::UmlCore::Operation operation)

928 raises (Reflective::StructuralError, Reflective::SemanticError);

929 void modify_occurrence (in CallEvent occurrence,

930 in ::UmlCore::Operation operation,

931 in CallEvent new_occurrence)

932 raises (Reflective::StructuralError,

933 Reflective::SemanticError,

934 Reflective::NotFound);

935 void modify_operation (in CallEvent occurrence,

936 in ::UmlCore::Operation operation,

937 in ::UmlCore::Operation new_operation)

938 raises (Reflective::StructuralError,

939 Reflective::SemanticError,

940 Reflective::NotFound);

941 void remove (in CallEvent occurrence, in ::UmlCore::Operation operation)

942 raises (Reflective::StructuralError,

5-158 OMG-UML V1.2 May 1998

5

943 Reflective::SemanticError,

944 Reflective::NotFound);

945 };

946

947 struct CompositeStateOwnsSubstateStateVertexLink {

948 CompositeState parent;

949 StateVertex substate;

950 };

951 typedef sequence <CompositeStateOwnsSubstateStateVertexLink>

952 CompositeStateOwnsSubstateStateVertexLinkSet;

953

954 interface CompositeStateOwnsSubstateStateVertex :

955 Reflective::RefAssociation {

956 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

957 CompositeStateOwnsSubstateStateVertexLinkSet

958 all_composite_state_owns_substate_state_vertex_links();

959 boolean exists (in CompositeState parent, in StateVertex substate);

960 CompositeState with_substate (in StateVertex substate);

961 StateVertexSet with_parent (in CompositeState parent);

962 void add (in CompositeState parent, in StateVertex substate)

963 raises (Reflective::StructuralError, Reflective::SemanticError);

964 void modify_parent (in CompositeState parent,

965 in StateVertex substate,

966 in CompositeState new_parent)

967 raises (Reflective::StructuralError,

968 Reflective::SemanticError,

969 Reflective::NotFound);

970 void modify_substate (in CompositeState parent,

971 in StateVertex substate,

972 in StateVertex new_substate)

973 raises (Reflective::StructuralError,

974 Reflective::SemanticError,

975 Reflective::NotFound);

976 void remove (in CompositeState parent, in StateVertex substate)

977 raises (Reflective::StructuralError,

978 Reflective::SemanticError,

979 Reflective::NotFound);

980 };

981

982 struct TransitionOwnsEffectActionSequenceLink {

983 UmlStateMachines::Transition transition;

OMG-UML V1.1 IDL Modules March 1998 5-159

5

984 ::UmlCommonBehavior::ActionSequence effect;

985 };

986 typedef sequence <TransitionOwnsEffectActionSequenceLink>

987 TransitionOwnsEffectActionSequenceLinkSet;

988

989 interface TransitionOwnsEffectActionSequence : Reflective::RefAssociation {

990 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

991 TransitionOwnsEffectActionSequenceLinkSet

992 all_transition_owns_effect_action_sequence_links();

993 boolean exists (in UmlStateMachines::Transition transition,

994 in ::UmlCommonBehavior::ActionSequence effect);

995 UmlStateMachines::Transition with_effect (

996 in ::UmlCommonBehavior::ActionSequence effect);

997 ::UmlCommonBehavior::ActionSequence with_transition (

998 in UmlStateMachines::Transition transition);

999 void add (in UmlStateMachines::Transition transition,

1000 in ::UmlCommonBehavior::ActionSequence effect)

1001 raises (Reflective::StructuralError, Reflective::SemanticError);

1002 void modify_transition (in UmlStateMachines::Transition transition,

1003 in ::UmlCommonBehavior::ActionSequence effect,

1004 in UmlStateMachines::Transition new_transition)

1005 raises (Reflective::StructuralError,

1006 Reflective::SemanticError,

1007 Reflective::NotFound);

1008 void modify_effect (in UmlStateMachines::Transition transition,

1009 in ::UmlCommonBehavior::ActionSequence effect,

1010 in ::UmlCommonBehavior::ActionSequence new_effect)

1011 raises (Reflective::StructuralError,

1012 Reflective::SemanticError,

1013 Reflective::NotFound);

1014 void remove (in UmlStateMachines::Transition transition,

1015 in ::UmlCommonBehavior::ActionSequence effect)

1016 raises (Reflective::StructuralError,

1017 Reflective::SemanticError,

1018 Reflective::NotFound);

1019 };

1020

1021 struct StateOwnsInternalTransitionLink {

1022 UmlStateMachines::State state;

1023 Transition internal_transition;

1024 };

5-160 OMG-UML V1.2 May 1998

5

1025 typedef sequence <StateOwnsInternalTransitionLink>

1026 StateOwnsInternalTransitionLinkSet;

1027

1028 interface StateOwnsInternalTransition : Reflective::RefAssociation {

1029 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1030 StateOwnsInternalTransitionLinkSet

1031 all_state_owns_internal_transition_links();

1032 boolean exists (in UmlStateMachines::State state,

1033 in Transition internal_transition);

1034 UmlStateMachines::State with_internal_transition (

1035 in Transition internal_transition);

1036 TransitionSet with_state (in UmlStateMachines::State state);

1037 void add (in UmlStateMachines::State state,

1038 in Transition internal_transition)

1039 raises (Reflective::StructuralError, Reflective::SemanticError);

1040 void modify_state (in UmlStateMachines::State state,

1041 in Transition internal_transition,

1042 in UmlStateMachines::State new_state)

1043 raises (Reflective::StructuralError,

1044 Reflective::SemanticError,

1045 Reflective::NotFound);

1046 void modify_internal_transition (in UmlStateMachines::State state,

1047 in Transition internal_transition,

1048 in Transition new_internal_transition)

1049 raises (Reflective::StructuralError,

1050 Reflective::SemanticError,

1051 Reflective::NotFound);

1052 void remove (in UmlStateMachines::State state,

1053 in Transition internal_transition)

1054 raises (Reflective::StructuralError,

1055 Reflective::SemanticError,

1056 Reflective::NotFound);

1057 };

1058

1059 struct TransitionIsTriggeredByEventLink {

1060 UmlStateMachines::Transition transition;

1061 Event trigger;

1062 };

1063 typedef sequence <TransitionIsTriggeredByEventLink>

1064 TransitionIsTriggeredByEventLinkSet;

1065

OMG-UML V1.1 IDL Modules March 1998 5-161

5

1066 interface TransitionIsTriggeredByEvent : Reflective::RefAssociation {

1067 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1068 TransitionIsTriggeredByEventLinkSet

1069 all_transition_is_triggered_by_event_links();

1070 boolean exists (in UmlStateMachines::Transition transition,

1071 in Event trigger);

1072 UmlStateMachines::TransitionSet with_trigger (in Event trigger);

1073 Event with_transition (in UmlStateMachines::Transition transition);

1074 void add (in UmlStateMachines::Transition transition, in Event trigger)

1075 raises (Reflective::StructuralError, Reflective::SemanticError);

1076 void modify_transition (in UmlStateMachines::Transition transition,

1077 in Event trigger,

1078 in UmlStateMachines::Transition new_transition)

1079 raises (Reflective::StructuralError,

1080 Reflective::SemanticError,

1081 Reflective::NotFound);

1082 void modify_trigger (in UmlStateMachines::Transition transition,

1083 in Event trigger,

1084 in Event new_trigger)

1085 raises (Reflective::StructuralError,

1086 Reflective::SemanticError,

1087 Reflective::NotFound);

1088 void remove (in UmlStateMachines::Transition transition, in Event
trigger)

1089 raises (Reflective::StructuralError,

1090 Reflective::SemanticError,

1091 Reflective::NotFound);

1092 };

1093

1094 struct StateMachineOwnsTransitionLink {

1095 UmlStateMachines::StateMachine state_machine;

1096 Transition transitions;

1097 };

1098 typedef sequence <StateMachineOwnsTransitionLink>

1099 StateMachineOwnsTransitionLinkSet;

1100

1101 interface StateMachineOwnsTransition : Reflective::RefAssociation {

1102 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1103 StateMachineOwnsTransitionLinkSet

1104 all_state_machine_owns_transition_links();

1105 boolean exists (in UmlStateMachines::StateMachine state_machine,

5-162 OMG-UML V1.2 May 1998

5

1106 in Transition transitions);

1107 UmlStateMachines::StateMachine with_transitions (

1108 in Transition transitions);

1109 TransitionSet with_state_machine (

1110 in UmlStateMachines::StateMachine state_machine);

1111 void add (in UmlStateMachines::StateMachine state_machine,

1112 in Transition transitions)

1113 raises (Reflective::StructuralError, Reflective::SemanticError);

1114 void modify_state_machine (

1115 in UmlStateMachines::StateMachine state_machine,

1116 in Transition transitions,

1117 in UmlStateMachines::StateMachine new_state_machine)

1118 raises (Reflective::StructuralError,

1119 Reflective::SemanticError,

1120 Reflective::NotFound);

1121 void modify_transitions (in UmlStateMachines::StateMachine
state_machine,

1122 in Transition transitions,

1123 in Transition new_transitions)

1124 raises (Reflective::StructuralError,

1125 Reflective::SemanticError,

1126 Reflective::NotFound);

1127 void remove (in UmlStateMachines::StateMachine state_machine,

1128 in Transition transitions)

1129 raises (Reflective::StructuralError,

1130 Reflective::SemanticError,

1131 Reflective::NotFound);

1132 };

1133

1134 struct TransitionHasSourceStateVertexLink {

1135 Transition outgoing;

1136 StateVertex source;

1137 };

1138 typedef sequence <TransitionHasSourceStateVertexLink>

1139 TransitionHasSourceStateVertexLinkSet;

1140

1141 interface TransitionHasSourceStateVertex : Reflective::RefAssociation {

1142 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1143 TransitionHasSourceStateVertexLinkSet

1144 all_transition_has_source_state_vertex_links();

1145 boolean exists (in Transition outgoing, in StateVertex source);

OMG-UML V1.1 IDL Modules March 1998 5-163

5

1146 TransitionSet with_source (in StateVertex source);

1147 StateVertex with_outgoing (in Transition outgoing);

1148 void add (in Transition outgoing, in StateVertex source)

1149 raises (Reflective::StructuralError, Reflective::SemanticError);

1150 void modify_outgoing (in Transition outgoing,

1151 in StateVertex source,

1152 in Transition new_outgoing)

1153 raises (Reflective::StructuralError,

1154 Reflective::SemanticError,

1155 Reflective::NotFound);

1156 void modify_source (in Transition outgoing,

1157 in StateVertex source,

1158 in StateVertex new_source)

1159 raises (Reflective::StructuralError,

1160 Reflective::SemanticError,

1161 Reflective::NotFound);

1162 void remove (in Transition outgoing, in StateVertex source)

1163 raises (Reflective::StructuralError,

1164 Reflective::SemanticError,

1165 Reflective::NotFound);

1166 };

1167

1168 struct TransitionHasTargetStateVertexLink {

1169 Transition incoming;

1170 StateVertex target;

1171 };

1172 typedef sequence <TransitionHasTargetStateVertexLink>

1173 TransitionHasTargetStateVertexLinkSet;

1174

1175 interface TransitionHasTargetStateVertex : Reflective::RefAssociation {

1176 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1177 TransitionHasTargetStateVertexLinkSet

1178 all_transition_has_target_state_vertex_links();

1179 boolean exists (in Transition incoming, in StateVertex target);

1180 TransitionSet with_target (in StateVertex target);

1181 StateVertex with_incoming (in Transition incoming);

1182 void add (in Transition incoming, in StateVertex target)

1183 raises (Reflective::StructuralError, Reflective::SemanticError);

1184 void modify_incoming (in Transition incoming,

1185 in StateVertex target,

1186 in Transition new_incoming)

5-164 OMG-UML V1.2 May 1998

5

1187 raises (Reflective::StructuralError,

1188 Reflective::SemanticError,

1189 Reflective::NotFound);

1190 void modify_target (in Transition incoming,

1191 in StateVertex target,

1192 in StateVertex new_target)

1193 raises (Reflective::StructuralError,

1194 Reflective::SemanticError,

1195 Reflective::NotFound);

1196 void remove (in Transition incoming, in StateVertex target)

1197 raises (Reflective::StructuralError,

1198 Reflective::SemanticError,

1199 Reflective::NotFound);

1200 };

1201

1202 struct SubmachineStateContainsStateMachineLink {

1203 StateMachine submachine;

1204 UmlStateMachines::SubmachineState submachine_state;

1205 };

1206 typedef sequence <SubmachineStateContainsStateMachineLink>

1207 SubmachineStateContainsStateMachineLinkSet;

1208

1209 interface SubmachineStateContainsStateMachine :
Reflective::RefAssociation {

1210 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1211 SubmachineStateContainsStateMachineLinkSet

1212 all_submachine_state_contains_state_machine_links();

1213 boolean exists (in StateMachine submachine,

1214 in UmlStateMachines::SubmachineState submachine_state);

1215 StateMachine with_submachine_state (

1216 in UmlStateMachines::SubmachineState submachine_state);

1217 UmlStateMachines::SubmachineStateSet with_submachine (

1218 in StateMachine submachine);

1219 void add (in StateMachine submachine,

1220 in UmlStateMachines::SubmachineState submachine_state)

1221 raises (Reflective::StructuralError, Reflective::SemanticError);

1222 void modify_submachine (

1223 in StateMachine submachine,

1224 in UmlStateMachines::SubmachineState submachine_state,

1225 in StateMachine new_submachine)

1226 raises (Reflective::StructuralError,

OMG-UML V1.1 IDL Modules March 1998 5-165

5

1227 Reflective::SemanticError,

1228 Reflective::NotFound);

1229 void modify_submachine_state (

1230 in StateMachine submachine,

1231 in UmlStateMachines::SubmachineState submachine_state,

1232 in UmlStateMachines::SubmachineState new_submachine_state)

1233 raises (Reflective::StructuralError,

1234 Reflective::SemanticError,

1235 Reflective::NotFound);

1236 void remove (in StateMachine submachine,

1237 in UmlStateMachines::SubmachineState submachine_state)

1238 raises (Reflective::StructuralError,

1239 Reflective::SemanticError,

1240 Reflective::NotFound);

1241 };

1242

1243 struct StateMachineExhibitsBehaviorOfModelElementLink {

1244 ::UmlCore::ModelElement uml_context;

1245 StateMachine behavior;

1246 };

1247 typedef sequence <StateMachineExhibitsBehaviorOfModelElementLink>

1248 StateMachineExhibitsBehaviorOfModelElementLinkSet;

1249

1250 interface StateMachineExhibitsBehaviorOfModelElement :

1251 Reflective::RefAssociation {

1252 readonly attribute UmlStateMachinesPackage enclosing_package_ref;

1253 StateMachineExhibitsBehaviorOfModelElementLinkSet

1254 all_state_machine_exhibits_behavior_of_model_element_links();

1255 boolean exists (in ::UmlCore::ModelElement uml_context,

1256 in StateMachine behavior);

1257 ::UmlCore::ModelElement with_behavior (in StateMachine behavior);

1258 StateMachineSet with_uml_context (in ::UmlCore::ModelElement
uml_context);

1259 void add (in ::UmlCore::ModelElement uml_context, in StateMachine
behavior)

1260 raises (Reflective::StructuralError, Reflective::SemanticError);

1261 void modify_uml_context (in ::UmlCore::ModelElement uml_context,

1262 in StateMachine behavior,

1263 in ::UmlCore::ModelElement new_uml_context)

1264 raises (Reflective::StructuralError,

1265 Reflective::SemanticError,

5-166 OMG-UML V1.2 May 1998

5

1266 Reflective::NotFound);

1267 void modify_behavior (in ::UmlCore::ModelElement uml_context,

1268 in StateMachine behavior,

1269 in StateMachine new_behavior)

1270 raises (Reflective::StructuralError,

1271 Reflective::SemanticError,

1272 Reflective::NotFound);

1273 void remove (in ::UmlCore::ModelElement uml_context,

1274 in StateMachine behavior)

1275 raises (Reflective::StructuralError,

1276 Reflective::SemanticError,

1277 Reflective::NotFound);

1278 };

1279

1280 interface UmlStateMachinesPackageFactory {

1281 UmlStateMachinesPackage create_uml_state_machines_package ()

1282 raises (Reflective::SemanticError);

1283 };

1284

1285 interface UmlStateMachinesPackage : Reflective::RefPackage {

1286 readonly attribute EventClass event_class_ref;

1287 readonly attribute CallEventClass call_event_class_ref;

1288 readonly attribute ChangeEventClass change_event_class_ref;

1289 readonly attribute SignalEventClass signal_event_class_ref;

1290 readonly attribute TimeEventClass time_event_class_ref;

1291 readonly attribute StateVertexClass state_vertex_class_ref;

1292 readonly attribute GuardClass guard_class_ref;

1293 readonly attribute TransitionClass transition_class_ref;

1294 readonly attribute PseudostateClass pseudostate_class_ref;

1295 readonly attribute StateClass state_class_ref;

1296 readonly attribute CompositeStateClass composite_state_class_ref;

1297 readonly attribute PartitionClass partition_class_ref;

1298 readonly attribute ClassifierInStateClass
classifier_in_state_class_ref;

1299 readonly attribute StateMachineClass state_machine_class_ref;

1300 readonly attribute ActivityModelClass activity_model_class_ref;

1301 readonly attribute SimpleStateClass simple_state_class_ref;

1302 readonly attribute ActivityStateClass activity_state_class_ref;

1303 readonly attribute ObjectFlowStateClass object_flow_state_class_ref;

1304 readonly attribute ActionStateClass action_state_class_ref;

1305 readonly attribute SubmachineStateClass submachine_state_class_ref;

OMG-UML V1.1 IDL Modules March 1998 5-167

5

1306

1307 readonly attribute StateOwnsEntryActionSequence

1308 state_owns_entry_action_sequence_ref;

1309 readonly attribute StateOwnsExitActionSequence

1310 state_owns_exit_action_sequence_ref;

1311 readonly attribute TransitionOwnsGuard transition_owns_guard_ref;

1312 readonly attribute SignalEventIsOccurrenceOfSignal

1313 signal_event_is_occurrence_of_signal_ref;

1314 readonly attribute ActivityModelOwnsPartition

1315 activity_model_owns_partition_ref;

1316 readonly attribute PartitionHasContextOfModelElement

1317 partition_has_context_of_model_element_ref;

1318 readonly attribute ClassifierInStateIsInStateState

1319 classifier_in_state_is_in_state_state_ref;

1320 readonly attribute ObjectFlowStateRepresentsClassifierInState

1321 object_flow_state_represents_classifier_in_state_ref;

1322 readonly attribute ClassifierInStateIsOfTypeClassifier

1323 classifier_in_state_is_of_type_classifier_ref;

1324 readonly attribute StateMachineOwnsTopState

1325 state_machine_owns_top_state_ref;

1326 readonly attribute StateDefersEvent state_defers_event_ref;

1327 readonly attribute CallEventIsOccurrenceOfOperation

1328 call_event_is_occurrence_of_operation_ref;

1329 readonly attribute CompositeStateOwnsSubstateStateVertex

1330 composite_state_owns_substate_state_vertex_ref;

1331 readonly attribute TransitionOwnsEffectActionSequence

1332 transition_owns_effect_action_sequence_ref;

1333 readonly attribute StateOwnsInternalTransition

1334 state_owns_internal_transition_ref;

1335 readonly attribute TransitionIsTriggeredByEvent

1336 transition_is_triggered_by_event_ref;

1337 readonly attribute StateMachineOwnsTransition

1338 state_machine_owns_transition_ref;

1339 readonly attribute TransitionHasSourceStateVertex

1340 transition_has_source_state_vertex_ref;

1341 readonly attribute TransitionHasTargetStateVertex

1342 transition_has_target_state_vertex_ref;

1343 readonly attribute SubmachineStateContainsStateMachine

1344 submachine_state_contains_state_machine_ref;

1345 readonly attribute StateMachineExhibitsBehaviorOfModelElement

1346 state_machine_exhibits_behavior_of_model_element_ref;

5-168 OMG-UML V1.2 May 1998

5

1347 };

1348 };

5.4.7 UMLUseCases
1 #include "UmlCommonBehavior.idl"

2

3 module UmlUseCases {

4 interface UmlUseCasesPackage;

5 interface ExtensionPoint;

6 interface ExtensionPointClass;

7 typedef sequence<ExtensionPoint> ExtensionPointUList;

8 typedef sequence<ExtensionPoint> ExtensionPointSet;

9 interface UseCase;

10 interface UseCaseClass;

11 typedef sequence<UseCase> UseCaseUList;

12 interface Actor;

13 interface ActorClass;

14 typedef sequence<Actor> ActorUList;

15 interface UseCaseInstance;

16 interface UseCaseInstanceClass;

17 typedef sequence<UseCaseInstance> UseCaseInstanceUList;

18

19 interface ActorClass : ::UmlCore::ClassifierClass {

20 readonly attribute ActorUList all_of_kind_actor;

21 readonly attribute ActorUList all_of_type_actor;

22 Actor create_actor (in ::UmlCore::Name name,

23 in boolean is_root,

24 in boolean is_leaf,

25 in boolean is_abstract)

26 raises (Reflective::SemanticError);

27 };

28

29 interface Actor : ActorClass, ::UmlCore::Classifier { };

30

31 interface UseCaseClass : ::UmlCore::ClassifierClass {

32 readonly attribute UseCaseUList all_of_kind_use_case;

33 readonly attribute UseCaseUList all_of_type_use_case;

34 UseCase create_use_case (in ::UmlCore::Name name,

35 in boolean is_root,

36 in boolean is_leaf,

OMG-UML V1.1 IDL Modules March 1998 5-169

5

37 in boolean is_abstract)

38 raises (Reflective::SemanticError);

39 };

40

41 interface UseCase : UseCaseClass, ::UmlCore::Classifier {

42 UmlUseCases::ExtensionPointSet extension_point ()

43 raises (Reflective::NotSet, Reflective::SemanticError);

44 void add_extension_point (in UmlUseCases::ExtensionPointSet new_value)

45 raises (Reflective::StructuralError, Reflective::SemanticError);

46 void remove_extension_point ()

47 raises (Reflective::SemanticError);

48 };

49

50 interface UseCaseInstanceClass : ::UmlCommonBehavior::UmlInstanceClass {

51 readonly attribute UseCaseInstanceUList all_of_kind_use_case_instance;

52 readonly attribute UseCaseInstanceUList all_of_type_use_case_instance;

53 UseCaseInstance create_use_case_instance (in ::UmlCore::Name name)

54 raises (Reflective::SemanticError);

55 };

56

57 interface UseCaseInstance : UseCaseInstanceClass,

58 ::UmlCommonBehavior::UmlInstance { };

59

60 interface ExtensionPointClass : ::UmlCore::ModelElementClass {

61 readonly attribute ExtensionPointUList all_of_kind_extension_point;

62 readonly attribute ExtensionPointUList all_of_type_extension_point;

63 ExtensionPoint create_extension_point (in ::UmlCore::Name name,

64 in ::UmlCore::Expression body)

65 raises (Reflective::SemanticError);

66 };

67

68 interface ExtensionPoint : ExtensionPointClass, ::UmlCore::ModelElement {

69 ::UmlCore::Expression body ()

70 raises (Reflective::SemanticError);

71 void set_body (in ::UmlCore::Expression new_value)

72 raises (Reflective::SemanticError);

73 UmlUseCases::UseCase use_case ()

74 raises (Reflective::NotSet, Reflective::SemanticError);

75 void set_use_case (in UmlUseCases::UseCase new_value)

76 raises (Reflective::SemanticError);

77 void unset_use_case ()

5-170 OMG-UML V1.2 May 1998

5

78 raises (Reflective::SemanticError);

79 };

80

81 struct UseCaseOwnsExtensionPointLink {

82 UmlUseCases::UseCase use_case;

83 UmlUseCases::ExtensionPoint extension_point;

84 };

85 typedef sequence <UseCaseOwnsExtensionPointLink>

86 UseCaseOwnsExtensionPointLinkSet;

87

88 interface UseCaseOwnsExtensionPoint : Reflective::RefAssociation {

89 readonly attribute UmlUseCasesPackage enclosing_package_ref;

90 UseCaseOwnsExtensionPointLinkSet
all_use_case_owns_extension_point_links();

91 boolean exists (in UmlUseCases::UseCase use_case,

92 in UmlUseCases::ExtensionPoint extension_point);

93 UmlUseCases::UseCase with_extension_point (

94 in UmlUseCases::ExtensionPoint extension_point);

95 UmlUseCases::ExtensionPointSet with_use_case (

96 in UmlUseCases::UseCase use_case);

97 void add (in UmlUseCases::UseCase use_case,

98 in UmlUseCases::ExtensionPoint extension_point)

99 raises (Reflective::StructuralError, Reflective::SemanticError);

100 void modify_use_case (in UmlUseCases::UseCase use_case,

101 in UmlUseCases::ExtensionPoint extension_point,

102 in UmlUseCases::UseCase new_use_case)

103 raises (Reflective::StructuralError,

104 Reflective::SemanticError,

105 Reflective::NotFound);

106 void modify_extension_point (

107 in UmlUseCases::UseCase use_case,

108 in UmlUseCases::ExtensionPoint extension_point,

109 in UmlUseCases::ExtensionPoint new_extension_point)

110 raises (Reflective::StructuralError,

111 Reflective::SemanticError,

112 Reflective::NotFound);

113 void remove (in UmlUseCases::UseCase use_case,

114 in UmlUseCases::ExtensionPoint extension_point)

115 raises (Reflective::StructuralError,

116 Reflective::SemanticError,

117 Reflective::NotFound);

OMG-UML V1.1 IDL Modules March 1998 5-171

5

118 };

119

120 interface UmlUseCasesPackageFactory {

121 UmlUseCasesPackage create_uml_use_cases_package ()

122 raises (Reflective::SemanticError);

123 };

124

125 interface UmlUseCasesPackage : Reflective::RefPackage {

126 readonly attribute ActorClass actor_class_ref;

127 readonly attribute UseCaseClass use_case_class_ref;

128 readonly attribute UseCaseInstanceClass use_case_instance_class_ref;

129 readonly attribute ExtensionPointClass extension_point_class_ref;

130

131 readonly attribute UseCaseOwnsExtensionPoint

132 use_case_owns_extension_point_ref;

133 };

134 };

5-172 OMG-UML V1.2 May 1998

5

 OMG-UML V1.1 March 1998 A-1

UML Standard Elements A

This appendix describes the predefined standard elements for UML. The standard
elements are organized into categories (stereotypes, tagged values, and constraints) and
are alphabetically ordered.

 A.1 Stereotypes

The following stereotypes are predefined in the UML. Any stereotype that applies to a
specific class in the metamodel also applies to any subclasses of that class.

Name Applies to Description

«becomes» Dependency Becomes is a stereotyped dependency whose
source and target represent the same instance
at different points in time, but each with
potentially different values, state instance,
and roles. A becomes dependency from A to
B means that that instance A becomes B with
possibly new values, state instance, and roles
at a different moment in time/space.

«call» Dependency Call is a stereotyped dependency whose
source is an operation and whose target is an
operation. A call dependency specifies that
the source invokes the target operation. A
call dependency may connect a source
operation to any target operation that is
within scope including, but not limited to,
operations of the enclosing classifier and
operations of other visible classifiers.

A-2 OMG-UML V1.1 March 1998

A

Name Applies to Description

«copy» Dependency Copy is a stereotyped dependency whose
source and target are different instances, but
each with the same values, state instance, and
roles (but a distinct identity). A copy
dependency from A to B means that B is an
exact copy of A. Future changes in A are not
necessarily reflected in B.

«create» BehavioralFeature Create is a stereotyped behavioral feature
denoting that the designated feature creates
an instance of the classifier to which the
feature is attached.

Event Create is a stereotyped event denoting that
the instance enclosing the state machine to
which the event type applies is created.
Create may only be applied to an initial
transition at the topmost level of this state
machine, and in fact, this is the only kind of
trigger that may be applied to an initial
transition.

«destroy» BehavioralFeature Delete is a stereotyped behavioral feature
denoting that the designated feature destroys
an instance of the classifier to which the
feature is attached.

Event Delete is a stereotyped event denoting that
the instance enclosing the state machine to
which the event type applies is destroyed.

«deletion» Refinement Deletion is a stereotyped refinement having
no clients and no sub-refinements.

«derived» Dependency Derived is a stereotyped dependency whose
source and target are both elements, usually
but not necessarily of the same type. A
derived dependency specifies that the source
is derived from the target, meaning that the
source is not manifest, but rather is implicitly
derived from the target.

«document» Component Document is a stereotyped component
representing a document.

«enumeration» DataType Enumeration is a stereotyped data type,
whose details specify a domain consisting of
a set of identifiers that are the possible values
of an instance of the data type.

«executable» Component Executable is a stereotyped component
denoting a program that may be run on a
Node.

OMG-UML V1.1 Stereotypes March 1998 A-3

A

«extends» Generalization Extends is a stereotyped generalization
between use cases. It specifies that the
contents of the extending use case may be
added to the related use case. It not only
specifies where the contents should be added
(extensionPoint), but also if it only should be
added if a specified condition
(BooleanExpression). When an instance of
the related use case reaches the extension
point and the condition is fulfilled, the
instance continues according to a sequence
that is the result of extending the original
sequence with the extending sequence at this
point. It is required that the ordering of the
parts of the extending use case must be
fulfilled if its parts are inserted at different
places.

«facade» Package Facade is a stereotyped package containing
nothing but references to model elements
owned by another package. It is used to
provide a ‘public view’ of some of the
contents of a package. A Façade does not
contain any model elements of its own.

«file» Component File is a stereotyped component representing
a document containing source code or data.

«framework» Package Framework is a stereotyped package
consisting mainly of patterns.

«friend» Dependency Friend is a stereotyped usage dependency
whose source is a model element, such as an
operation, class, or package, (or operation)
and whose target is a different package model
element, such as a class or package (or
operation). A friend relationship grants the
source access to the target regardless of the
declared visibility. It extends the visibility of
the supplier so that the client can see into the
supplier.

«import» Dependency Import is a stereotyped dependency between
two packages, denoting that the public
contents of the target package are added to
the namespace of the source package.

Name Applies to Description

A-4 OMG-UML V1.1 March 1998

A

«implementation
Class»

Class Implementation class is a stereotyped class
that is not a type and that represents the
implementation of a class in some
programming language. An instance may
have zero or one implementation classes.
This is in contrast to plain general classes,
wherein an instance may statically have
multiple classes at one time and may gain or
lose classes over time and an object (a
subtype of instance) may dynamically have
multiple classes.

«inherits» Generalization Inherits is a stereotyped generalization
denoting that instances of the subtype are not
substitutable for instance of the supertype.

«instance» Dependency Instance is a stereotyped dependency whose
source is an instance and whose target is a
classifier. An instance dependency from I to
C means that I is an instance of C.

«invariant» Constraint Invariant is a stereotyped constraint that must
be attached to a set of classifiers or
relationships, and denotes that the conditions
of the constraint must hold for the classifiers
or relationships and their instances.

«library» Component Library is a stereotyped component
representing a static or dynamic library.

«metaclass» Dependency Metaclass is a stereotyped dependency whose
source and target are both classifiers and
denoting that the target is the metaclass of the
source.

Classifer Metaclass is a stereotyped classifier denoting
that the class is a metaclass of some other
class.

«postcondition» Constraint Postcondition is a stereotyped constraint that
must be attached to an operation, and denotes
that the conditions of the constraint must
hold after the invocation of the operation.

«powertype» Classifier Powertype is a stereotyped classifier denoting
that the classifier is a metatype, whose
instances are subtypes of another type.

Dependency Powertype is a stereotyped dependency
whose source is a set of generalizations and
whose target is a classifier specifying that the
target is the powertype of the source.

Name Applies to Description

OMG-UML V1.1 Stereotypes March 1998 A-5

A

«precondition» Constraint Precondition is a stereotyped constraint that
must be attached to an operation, and denotes
that the conditions of the constraint must
hold for the invocation of the operation.

«private» Generalization Private is a stereotyped generalization that
specifies private inheritance. It hides the
inherited features of a class and renders it
non-substitutable for declarations of its
ancestors.

«process» Classifier Process is a stereotyped classifier that is also
an active class, representing a heavy-weight
flow of control.

«requirement» Comment Requirement is a stereotyped comment that
states a responsibility or obligation.

«send» Dependency Send is a stereotyped dependency whose
source is an operation and whose target is a
signal, specifying that the source sends the
target signal.

«stereotype» Classifier Stereotype is a stereotyped classifier,
denoting that the classifier serves as a
stereotype. This stereotype permits modelers
to model stereotype hierarchies.

«stub» Package Stub is a stereotyped package representing a
package that is incomplete transferred;
specifically, a stub provides the public parts
of the package, but nothing more.

«subclass» Generalization Subclass is a stereotyped generalization
denoting that instances of the subtype are not
substitutable for instance of the supertype.

«subtraction» Refinement Subtraction is a stereotyped refinement
having no clients and no sub-refinements.

«subtype» Generalization Subtype is a stereotyped generalization that
offers no different properties or behavior than
basic generalization. This stereotype exists as
the opposite of subclass, so that subtyping
versus subclassing can be marked explicitly.

Name Applies to Description

A-6 OMG-UML V1.1 March 1998

A

«system» Package System is a stereotyped package that
represents a collection of models of the same
modeled system. The models contained in the
System all describe the modeled system from
different viewpoints, the viewpoints not
necessarily disjoint. The System makes up a
comprehensive specification of the modeled
system, it is the top-most construct in the
specification. A System also contains all
relationships and constraints between model
elements contained in different models.
These model elements add no semantic
information to the connected model elements,
since each model shows a complete view of
the modeled system. Thus, these model
elements do not express information on the
modeled system as such, but rather on the
models (e.g.,they may be used for
requirements tracking).

A modeled system may be realized by a set
of subordinate modeled systems, each
described by its own set of models collected
in a separate System. A System can only be
contained in a System.

«table» Component Table is a stereotyped component
representing a data base table.

«thread» Classifier Thread is a stereotyped classifier that is also
an active class, representing a light-weight
flow of control.

«topLevelPackage» Package TopLevelPackage is a stereotyped package
denoting the top-most package in a model,
representing all the non-environmental parts
of the model. A TopLevelPackage is at the
top of the containment hierarchy in a model.

«type» Class Type is a stereotype of Class, meaning that
the class is used for specification of a domain
of instances (objects) together with the
operations applicable to the objects. A type
may not contain any methods, but it may
have attributes and associations.

Name Applies to Description

OMG-UML V1.1 Tagged Values March 1998 A-7

A

 A.2 Tagged Values

The following tagged values are predefined in the UML. Any tagged value that applies
to a specific class in the metamodel also applies to any subclasses of that class.

«useCaseModel» Model UseCaseModel is a model that describes a
system’s functional requirements in terms of
a set of use cases and their interactions with
actors. It is required that a UseCaseModel
only contains use cases and actors and their
relationships: extends and uses between use
cases, associations between use cases and
actors, and generalizations between actors.

«uses» Generalization Uses is a stereotyped generalization between
use cases. It specifies that the contents of the
related use case is included (or used) in the
description of the other use case. It is
typically used for extracting shared behavior.
It requires that the ordering of the parts of the
used use case must be fulfilled if its parts are
used at different places. Uses may only be
defined between use cases.

«utility» Classifier Utility is a stereotyped classifier representing
a classifier that has no instances, but rather
denotes a named collection of non-member
attributes and operations, all of which are
class-scoped.

Name Applies to Description

documentation Element Documentation is a comment, description, or
explanation of the element to which it is
attached.

location Classifier Location denotes that the classifier is a part
of the given component.

Component Location denotes that the component resides
on given node.

persistence Attribute Persistence denotes the permanence of the
state of the attribute, marking it as transitory
(its state is destroyed when the instance is
destroyed) or persistent (its state is not
destroyed when the instance is destroyed).

Classifier Persistence denotes the permanence of the
state of the classifier, marking it as transitory
(its state is destroyed when the instance is
destroyed) or persistent (its state is not
destroyed when the instance is destroyed).

Name Applies to Description

A-8 OMG-UML V1.1 March 1998

A

 A.3 Constraints

The following constraints are predefined in the UML.

Instance Persistence denotes the permanence of the
state of the instanced, marking it as transitory
(its state is destroyed when the instance is
destroyed) or persistent (its state is not
destroyed when the instance is destroyed).

responsibility Classifier Responsibility is a contract by or an
obligation of the classifier.

semantics Classifier Semantics is the specification of the meaning
of the classifier.

Operation Semantics is the specification of the meaning
of the operation.

Name Applies to Description

association LinkEnd Association is a constraint applied to a link-end,
specifying that the corresponding instance is
visible via association.

broadcast Request Broadcast is a constraint applied to a request sent
to multiple instances, specifying that it is sent
simultaneously to all target instances, in an
undefined unspecified order.

complete Generalization Complete is a constraint applied to a set of
generalizations, specifying that all subtypes have
been specified (although some may be elided) and
that additional subtypes are not permitted.

disjoint Generalization Disjoint is a constraint applied to a set of
generalizations, specifying that instance may have
no more than one of the given subtypes as a type
of the instance. This is the default semantics of
generalization.

global LinkEnd Global is a constraint applied to a link-end,
specifying that the corresponding instance is
visible because it is in a global scope relative to
the link.

implicit Association Implicit is a constraint applied to an association,
specifying that the association is not manifest, but
rather is only conceptual.

incomplete Generalization Incomplete is a constraint applied to a set of
generalizations, specifying that not all subtypes
have been specified (even if some are elided) and
that additional subtypes are permitted. This is the
default semantics of generalizations.

Name Applies to Description

OMG-UML V1.1 Constraints March 1998 A-9

A

local LinkEnd Local is a constraint applied to a link-end,
specifying that the corresponding instance is
visible because it is in a local scope relative to the
link.

or Association Or is a constraint applied to a set of associations,
specifying that over that set, only one is manifest
for each associated instance. Or is an exclusive
(not inclusive) constraint.

overlapping Generalization Overlapping is a constraint applied to a set of
generalizations, specifying that instances may
have more than one of the given subtypes as a
type of the instance.

parameter LinkEnd Parameter is a constraint applied to a link-end,
specifying that the corresponding instance is
visible because it is a parameter relative to the
link.

self LinkEnd Self is a constraint applied to a link-end,
specifying that the corresponding instance is
visible because it is the dispatcher of a request.

vote Request Vote is a constraint applied to a request,
specifying that the return value is selected by a
majority vote of all the return values returned
from multiple instances.

Name Applies to Description

A-10 OMG-UML V1.1 March 1998

A

 OMG-UML V1.1 March 1998 B-1

Object Constraint Language B

 B.4 Overview

This sppendix introduces and defines the Object Constraint Language (OCL), a formal
language to express side-effect-free constraints. Users of the Unified Modeling
Language and other languages can use OCL to specify constraints and other
expressions attached to their models.

OCL was used in the UML Semantics chapter to specify the well-formedness rules of
the UML metamodel. Each well-formedness rule in the static semantics chapters in the
UML Semantics section contains an OCL expression, which is an invariant for the
involved class. The grammar for OCL is specified at the end of this chapter. A parser
generated from this grammar has correctly parsed all the constraints in the UML
Semantics section, a process which improved the correctness of the specifications for
OCL and UML.

B.1.1 Why OCL?

In object-oriented modeling a graphical model, like a class model, is not enough for a
precise and unambiguous specification. There is a need to describe additional
constraints about the objects in the model. Such constraints are often described in
natural language. Practice has shown that this will always result in ambiguities. In
order to write unambiguous constraints, so-called formal languages have been
developed. The disadvantage of traditional formal languages is that they are usable to
persons with a string mathematical background, but difficult for the average business
or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to
read and write. It has been developed as a business modeling language within the IBM
Insurance division, and has its roots in the Syntropy method.

B-2 OMG-UML V1.1 March 1998

B

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be
without side effect. It cannot change anything in the model. This means that the state
of the system will never change because of an OCL expression, even though an OCL
expression can be used to specify a state change (e.g., in a post-condition). All values
for all objects, including all links, will not change. Whenever an OCL expression is
evaluated, it simply delivers a value.

OCL is not a programming language; therefore, it is not possible to write program
logic or flow control in OCL. You cannot invoke processes or activate non-query
operations within OCL. Because OCL is a modeling language in the first place, not
everything in it is promised to be directly executable.

OCL is a typed language, so each OCL expression has a type. In a correct OCL
expression, all types used must be type conformant. For example, you cannot compare
an Integer with a String. Types within OCL can be any kind of Classifier within UML.

As a modeling language, all implementation issues are out of scope and cannot be
expressed in OCL. Each OCL expression is conceptually atomic. The state of the
objects in the system cannot change during evaluation.

B.1.2 Where to Use OCL

OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• To specify constraints on operations:

operation = expression

Where operation is the name of the operation and expression the constraint.
Because operations may have parameters, the constraint may also have one or more
parameters, as in one of the following:

operation(a, b) = expression

 operation(a : Type1, b : Type2) = expression

The parameters of the operation, in this example a and b, can be used in the
expression at the right-hand side of the equals sign. Operations can also be
described by a recursive expression. It is the modeler’s task to make sure that the
recursion is well defined. An operation constraint can also be read as a definition of
the operation, where the right-hand side of the equals sign determines the value that
the operation will return.

Within the UML Semantics chapter, OCL is used in the well-formedness rules as
invariants on the meta-classes in the abstract syntax. In several places, it is also used to
define ‘additional’ operations which are used in the well-formedness rules.

OMG-UML V1.1 Introduction March 1998 B-3

B

 B.5 Introduction

B.2.3 Legend

Text written in the courier typeface as shown below is an OCL expression.

’This is an OCL expression’

The underlined word before an OCL expression determines the context for the
expression.

TypeName

’this is an OCL expression in the context of TypeName’

Keywords of OCL are written in boldface within the OCL expression in this document.
The boldface has no formal meaning, but is used to make the expressions more
readable in this document. OCL expressions are written using only ASCII characters.

Words in Italics within the main text of the paragraphs refer to parts of OCL
expressions.

B.2.4 Example Class Diagram

The diagram below is used in the examples in this document.

B-4 OMG-UML V1.1 March 1998

B

Figure 2-1 Class Diagram Example

 B.6 Connection with the UML Metamodel

B.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an
OCL expression, the name self is used to refer to the contextual instance.

B.3.2 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped with
«invariant». When the Invariant is associated with a Classifier, this is called the type in
this document. The expression then is an invariant of the type and must be true for all
instances of that type at any time. If the context is Company, then self refers to an
instance of Company.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : enum{ male, female}

income (Date) : Integer

Job

title : String
startDate : Date
salary : Integer

Marriage

place : STring
date : Date

managedCompanies

0..*manager

employer

0..*

Company

name : String
numberOfEmployees : Integer

stockPrice()
employee

0..*

wife

0..1

husband 0..1

Bank

0..*

0..*0..*

0..1

0..1

accountNumber : Integer

0..1

accountNumber : Integer

0..1

customer

OMG-UML V1.1 Connection with the UML Metamodel March 1998 B-5

B

In the expression:

self.numberOfEmployees

self is an instance of type Company. We can see the self as the object from where we
start the expression.

In this document, the type of the contextual instance of an OCL expression, which is
part of an Invariant, is written with the name of the type underlined as follows:

Company

self.numberOfEmployees

In most cases, self can be left out because the context is clear, as in the above
examples.

As an alternative for self, a different name can be defined playing the part of self:

c : Company

c.numberOfEmployees

This is identical to the previous example using self.

B.3.3 Pre and Postconditions

The OCL expression can be part of a Precondition or Postcondition, which are
Constraints stereotyped with respectively «precondition» and «postcondition», the
Precondition or Postcondition on Operation or Method. In this case, the expression is a
pre- or postcondition on the Operation or Method. The contextual instance self then is
of the type which owns the operation as a feature. The notation used in this document
is to underline the type and operation declaration, and to put labels ‘pre:’ and ‘post:’
before Preconditions and Postconditions

Typename::operationName(parameter1 : Type1, ...): ReturnType

pre : parameter1 > …

post: result = ...

The name self can be used in the expression referring to the object on which the
operation was called. The name result is the name of the returned object, if there is
any. The names of the parameters (parameter1,) can also be used in the OCL
expression. In the example diagram, we can write:

Person::income(d : Date) : Integer

post: result = ...some function of self and parameter1 ...

B.3.4 Guards

The OCL expression can be part of a Guard. In this case, self refers to the enclosing
Classifier. No examples of guards are given in this document.

B-6 OMG-UML V1.1 March 1998

B

B.3.5 General Expressions

Any OCL expression can be used as the value for an attribute of the UML class
Expression or one of its subtypes. In this case, the semantics section describes the
meaning of the expression.

 B.7 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all
time. These predefined value types are independent of any object model and part of the
definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types
used in the examples in this document, with corresponding examples of their values,
are shown in Table 2-1.

OCL defines a number of operations on the predefined types. Table 2-2 gives some
examples of the operations on the predefined types. See “Predefined OCL Types” on
page B-23 for a complete list of all operations.

The complete list of operations provided for each type is described at the end of this
chapter. Collection, Set, Bag and Sequence are basic types as well. Their specifics will
be described in the upcoming sections.

B.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of
types/classes, their features and associations, and their generalizations. All
types/classes from the UML model are types in OCL that is attached to the model.

Table 2-1 Basic Values and Types

type values

Boolean true, false

Integer 1, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String ’To be or not to be...’

Table 2-2 Operations on Predefined Types

type operations

Integer *, +, -, /, abs

Real *, +, -, /, floor

Boolean and, or, xor, not, implies, if-
then-else

String toUpper, concat

OMG-UML V1.1 Basic Values and Types March 1998 B-7

B

B.4.2 Enumeration Types

As shown in the example diagram, new enumeration types can be defined in a model
by using:

enum{ value1, value2, value3 }

The values of the enumeration (value1, ...) can be used within expressions.

As there might be a name conflict with attribute names being equal to enumeration
values, the usage of an enumeration value is expressed syntactically with an additional
symbol in front of the value:

#value1

The type of an enumeration attribute is Enumeration, with restrictions on the values for
the attribute.

B.4.3 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy.
This hierarchy determines conformance of the different types to each other. You
cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL
expression in which the types don’t conform is an invalid expression. It contains a type
conformance error. A type type1 conforms to a type type2 when an instance of type1
can be substituted at each place where an instance of type2 is expected. The type
conformance rules for types in the class diagrams are simple.

• Each type conforms to its supertype.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to
type3, then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above.
The type conformance rules for the value types are listed in Table 2-3.

The conformance relation between the collection types only holds if they are
collections of element types that conform to each other. See “Collection Type
Hierarchy and Type Conformance Rules” on page B-17 for the complete conformance
rules for collections.

Table 2-3 Type Conformance Rules for Value Types

Type Conforms to/Is subtype of

Set Collection

Sequence Collection

Bag Collection

Integer Real

B-8 OMG-UML V1.1 March 1998

B

Table 2-4 provides examples of valid and invalid expressions.

B.4.4 Re-typing or Casing

In some circumstances, it is desirable to use a property of an object that is defined on
a subtype of the current known type of the object. Because the property is not defined
on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-
typed using the operation oclAsType(OclType). This operation results in the same
object, but the known type is the argument OclType. When there is an object object of
type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtype; therefore, in the example, Type2
must be a subtype of Type1.

If the actual type of the object is not equal to the type to which it is re-typed, the
expression is undefined (see “Undefined Values” on page B-9).

B.4.5 Precedence Rules

The precedence order for the operations in OCL is:

• dot and arrow operations have highest precedence

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’ and ‘=’

Parenthesis ‘(’ and ‘)’ can be used to change precedence.

Table 2-4 Valid and Invalid Expression Examples

OCL expression valid? error

1 + 2 * 34 yes

1 + ’motorcycle’ no type Integer does not conform to type
String

23 * false no type Integer does not conform to Boolean

12 + 13.5 yes

OMG-UML V1.1 Objects and Properties March 1998 B-9

B

B.4.6 Comment

Comments in OCL are written after two dashes. Everything after the two dashes up to
and including the end of line is comment. For example:

-- this is a comment

B.4.7 Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or more
of the queries in the expression are undefined. If this is the case, then the complete
expression will be undefined.

There are two exceptions to this for the boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above
rules are valid whether or not the value of the other sub-expression is known.

 B.8 Objects and Properties

OCL expressions can refer to types, classes, interfaces, associations (acting as types)
and datatypes. Also all attributes, association-ends, methods, and operations without
side-effects that are defined on these types, etc. can be used. In a class model, an
operation or method is defined to be side-effect-free if the isQuery attribute of the
operations is true. For the purpose of this document, we will refer to attributes,
association-ends, and side-effect-free methods and operations as being properties. A
property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

B.5.1 Properties

The value of a property on an object that is defined in a class diagram is specified by
a dot followed by the name of the property.

AType

self.property

If self is a reference to an object, then self.property is the value of the property
property on self.

B-10 OMG-UML V1.1 March 1998

B

B.5.2 Properties: Attributes

For example, the age of a Person is written as:

Person

self.age

The value of this expression is the value of the age attribute on the Person self. The
type of this expression is the type of the attribute age, which is the basic type Integer.

With of attributes, and the operations defined on the basic value types, we can express
calculations etc. over the class model. For example, a business rule might be "the age
of a Person is always greater or equal to zero." This can be stated as the invariant:

Person

self.age >= 0

B.5.3 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has
an income expressed as a function of the date. This operation would be accessed as
follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint
that is stereotyped as «postcondition». The object that is returned by the operation can
be referred to by result. It takes the following form:

Person::income (d: Date) : Integer

post: result = - - some function of d and other properties of
person

The right-hand-side of this definition may refer to the operation being defined (i.e., the
definition may be recursive) as long as the recursion is well defined. The type of result
is the return type of the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an
empty argument list are used:

Company

self.stockPrice()

B.5.4 Properties: Association Ends and Navigation

Starting from a specific object, we can navigate an association on the class diagram to
refer to other objects and their properties. To do so, we navigate the association by
using the opposite association-end:

object.rolename

OMG-UML V1.1 Objects and Properties March 1998 B-11

B

The value of this expression is the set of objects on the other side of the rolename
association. If the multiplicity of the association-end has a maximum of one ("0..1" or
"1"), then the value of this expression is an object. In the example class diagram, when
we start in the context of a Company (i.e., self is an instance of Company), we can
write:

Company

self.manager -- is of type Person

self.employee -- is of type Set(Person)

The evaluation of the first expression will result in an object of type Person, because
the multiplicity of the association is one. The evaluation of the second expression will
result in a Set of Persons. By default, navigation will result in a Set. When the
association on the Class Diagram is adorned with {ordered}, the navigation results in a
Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a
large number of predefined operations on them. A property of the collection itself is
accessed by using an arrow ‘->’ followed by the name of the property. The following
example is in the context of a person:

Person

self.employer->size

This applies the size property on the Set self.employer, which results in the number of
employers of the Person self.

Person

self.employer->isEmpty

This applies the isEmpty property on the Set self.employer. This evaluates to true if the
set of employers is empty and false otherwise.

Missing Rolenames

Whenever a rolename is missing at one of the ends of an association, the name of the
type at the association end, starting with a lowercase character, is used as the rolename.
If this results in an ambiguity, the rolename is mandatory. This is the case with
unnamed rolenames in reflexive associations. If the rolename is ambiguous, then it
cannot be used in OCL.

Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type
Person. Such a single object can be used as a Set as well. It then behaves as if it is a
Set containing the single object. The usage as a set is done through the arrow followed
by a property of Set. This is shown in the following example:

Company

self.manager->size -- ‘self.manager’ is used as Set, because the

-- arrow

B-12 OMG-UML V1.1 March 1998

B

-- is used to access the ‘size’ property on

 Set

-- This expresin result in 1

self.manager->foo -- self.manager’ is used as Set, because the

-- arrow is used to access the ‘foo’ property

-- on Set.This expression is incorrect,

-- since ‘foo’ is not a defined property of

-- Set.

self.manager.age -- ‘self.manager’ is used as Person, because

-- the dot is used to access the ‘age’

-- property of Person

In the case of an optional (0..1 multiplicity) association, this is especially useful to
check whether there is an object or not when navigating the association. In the example
we can write:

Company

self.wife->notEmpty implies self.wife.sex = female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule
is that an OCL expression always evaluates to a specific object of a specific type.
Upon this result, one can always apply another property. Therefore, each OCL
expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class
diagram:

[1] Married people are of age >= 18

 self.wife->notEmpty implies self.wife.age >= 18 and

 self.husband->notEmpty implies self.husband.age >= 18

[2] a company has at most 50 employees

 self.employee->size <= 50

[3] A marriage is between a female (wife) and male (husband)

 self.wife.sex = #female and

 self.husband.sex = #male

[4] A person cannot both have a wife and a husband

not ((self.wife->size = 1) and (self.husband->size = 1))

OMG-UML V1.1 Objects and Properties March 1998 B-13

B

B.5.5 Navigation to Association Types

To specify navigation to association classes (Job and Marriage in the example), OCL
uses a dot and the name of the association class starting with a lowercase character:

Person

self.job

This evaluates to a Set of all the jobs a person has with the companies that are his/her
employer. In the case of an association class, there is no explicit rolename in the class
diagram. The name job used in this navigation is the name of the association class
starting with a lowercase character, similar to the way described in the section
"Missing Rolenames" above.

B.5.6 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the
association. This is done using the dot-notation and the role-names at the association-
ends.

Job

self.employer

self.employee

Navigation from an association class to one of the objects on the association will
always deliver exactly one object. This is a result of the definition of AssociationClass.
Therefore, the result of this navigation is exactly one object, although it can be used as
a Set using the arrow (->).

B.5.7 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the
other end of the association. To navigate them, we can add the values for the qualifiers
to the navigation. This is done using square brackets, following the role-name. It is
permissible to leave out the qualifier values, in which case the result will be all objects
at the other end of the association.

Bank

self.customer -- results in a Set(Person) containing

 -- all customers of the Bank

self.customer[8764423] -- results in one Person, having account

 -- number 8764423

If there is more than one qualifier attribute, the values are separated by commas. It is
not permissible to partially specify the qualifier attribute values.

B-14 OMG-UML V1.1 March 1998

B

B.5.8 Using Pathnames for Packages and Properties

Within UML, different types are organized in packages. OCL provides a way of
explicitly referring to types in other packages by using a package-pathname prefix. The
syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within
packages:

Packagename1::Packagename2::Typename

Whenever properties are redefined within a type, the property of the supertypes can be
accessed using the same path syntax. Whenever we have a class B as a subtype of class
A, and a property p1 of both A and B, we can write:

B

self.A::p1 -- accesses the p1 property defined in A

self.B::p1 -- accesses the p1 property defined in B

Figure 2-2 shows an example where such a pathname is needed.

Figure 2-2 Pathname Example

In this model fragment there is an ambiguity with the OCL expression on Dependency:

Dependency

 self.source

This can either mean normal association navigation, which is inherited from
ModelElement, or it might also mean navigation through the dotted line as an
association class. Both possible navigations use the same role-name, so this is always
ambiguous. Using the pathname we can distinguish between them with:

Dependency

self.Dependency::source

self.ModelElement::source

....

Dependency

target

source
*

*

ModelElement

Note
value: Uninterpreted

OMG-UML V1.1 Objects and Properties March 1998 B-15

B

B.5.9 Predefined Features on All Objects

There are several features that apply to all objects, and are predefined in OCL. These
are:

oclType : OclType

oclIsTypeOf(t : OclType) : boolean

oclIsKindOf(t : OclType) : boolean

The feature oclType results in the type of an object. For example, the expression

Person

self.oclType

results in Person. The type of this is OclType, a predefined type within the OCL
language.

Note – not Person, which is the type of self.

The operation isTypeOf results in true if the type of self and t are the same. For
example:

Person

self.oclIsTypeOf(Person) -- is true

self.oclIsTypeOf(Company) -- is false

The above feature deals with the direct type of an object. The oclIsKindOf feature
determines whether t is either the direct type or one of the supertypes of an object.

B.5.10 Features on Types Themselves

All properties discussed until now in OCL are properties on instances of classes. The
types are either predefined in OCL or defined in the class model. In OCL, it is also
possible to use features defined on the types/classes themselves. These are, for
example, the class-scoped features defined in the class model. Furthermore, several
features are predefined on each type.

The most important predefined feature on each type is allInstances, which results in
the Set of all instances of the type. If we want to make sure that all instances of Person
have unique names, we can write:

Person.allInstances->forAll(p1, p2 | p1 <> p2 implies p1.name <>
p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person).

B.5.11 Collections

Navigation will most often result in a collection; therefore, the collection types play an
important role in OCL expressions.

B-16 OMG-UML V1.1 March 1998

B

The type Collection is predefined in OCL. The Collection type defines a large number
of predefined operations to enable the OCL expression author (the modeler) to
manipulate collections. Consistent with the definition of OCL as an expression
language, collection operations never change collections; isQuery is always true. They
may result in a collection, but rather than changing the original collection they project
the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the
mathematical set. It does not contain duplicate elements. A Bag is like a set, which
may contain duplicates (i.e., the same element may be in a bag twice or more). A
Sequence is like a Bag in which the elements are ordered. Both Bags and Sets have no
order defined on them. Sets, Sequences, and Bags can be specified by a literal in OCL.
Curly brackets surround the elements of the collection, elements in the collection are
written within, separated by commas. The type of the collection is written before the
curly brackets:

Set { 1 , 2 , 5 , 88 }

Set { ’apple’ , ’orange’, ’strawberry’ }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }

Sequence { ’ape’, ’nut’ }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate
literal to create them. The elements inside the curly brackets can be replaced by an
interval specification, which consists of two expressions of type Integer, Int-expr1 and
Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-
expr1 and Int-expr2, including the values of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.

Collections can be specified by a literal, as described above. The only other way to get
a collection is by navigation. To be more precise, the only way to get a Set, Sequence,
or Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

 Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Bag {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 Company

OMG-UML V1.1 Objects and Properties March 1998 B-17

B

 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

B.5.12 Collections of Collections

Within OCL, all Collections of Collections are flattened automatically; therefore, the
following two expressions have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

B.5.13 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in “Type Conformance” on page B-7, the
following rules hold for all types, including the collection types:

• Every type Collection (X) is a subtype of OclAny. The types Set (X), Bag (X) and
Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to
Type3, then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around.
They are both subtypes of Collection(Bicycle) at the same level in the hierarchy.

B.5.14 Previous Values in Postconditions

As stated in “Pre and Postconditions” on page B-5, OCL can be used to specify pre-
and post-conditions on Operations and Methods in UML. In a postcondition, the
expression can refer to two sets of values for each property of an object:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

B-18 OMG-UML V1.1 March 1998

B

The value of a property in a postcondition is the value upon completion of the
operation. To refer to the value of a property at the start of the operation, one has to
postfix the property-name with the commercial at sign ‘@’ followed by the keyword
‘pre’:

Person::birthdayHappens()

 post: age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the
operation. The property age@pre refers to the value of the property age of the Person
that executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

Company::hireEmployee(p : Person)

 post: employees = employees@pre->including(p) and

 stockprice() = stockprice@pre() + 10

The above operation can also be specified by a post and pre condition together:

Company::hireEmployee(p : Person)

 pre : not employee->includes(p)

 post: employees->includes(p) and

 stockprice() = stockprice@pre() + 10

When the pre-value of a property is takes and this evaluates to an object, all further
properties that are accessed of this object are the new values (upon completion of the
operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x

 -- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x

 -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition. Asking for a current property of an object that has been destroyed
during execution of the operation results in Undefined. Also, referring to the previous
value of an object that has been created during execution of the operation results in
Undefined.

 B.9 Collection Operations

OCL defines many operations on the collection types. These operations are specifically
meant to enable a flexible and powerful way of projecting new collections from
existing ones. The different constructs are described in the following sections.

OMG-UML V1.1 Collection Operations March 1998 B-19

B

B.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations delivers a collection, while
we are interested only in a special subset of the collection. OCL has special constructs
to specify a selection from a specific collection. These are the select and reject
operations. The select specifies a subset of a collection. A select is an operation on a
collection and is specified using the arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements
of the collection we want to select. There are three different forms, of which the
simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the
boolean-expression evaluates to true. To find the result of this expression, for each
element in collection the expression boolean-expression is evaluated. If this evaluates
to true, the element is included in the result collection, otherwise not. As an example,
the next OCL expression specifies all the employees older than 50 years:

Company

self.employee->select(age > 50)

The self.employee is of type Set(Person). The select takes each person from
self.employee and evaluates age > 50 for this person. If this results in true, then the
person is in the result Set.

As shown in the previous example, the context for the expression in the select
argument is the element of the collection on which the select is invoked. Thus the age
property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you
can only refer to properties of them. To enable to refer to the persons themselves, there
is a more general syntax for the select expression:

Collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the
collection and the boolean-expression-with-v is evaluated for each v. The v is a
reference to the object from the collection and can be used to refer to the objects
themselves from the collection. The two examples below are identical:

Company

self.employee->select(age > 50)

Company

self.employee->select(p | p.age > 50)

The result of the complete select is the collection of persons p for which the p.age >
50 evaluates to True. This amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be
given. The select now is written as:

Collection->select(v : Type | boolean-expression-with-v)

B-20 OMG-UML V1.1 March 1998

B

The meaning of this is that the objects in collection must be of type Type. The next
example is identical to the previous examples:

Company

self.employee.select(p : Person | p.age > 50)

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)

collection->select(v | boolean-expression-with-v)

collection->select(boolean-expression)

The Reject operation is identical to the select operation, but with reject we get the
subset of all the elements of the collection for which the expression evaluates to False.
The reject syntax is identical to the select syntax:

Collection->reject(v : Type | boolean-expression-with-v)

Collection->reject(v | boolean-expression-with-v)

Collection->reject(boolean-expression)

As an example, specify all the employees who are not married:

Company

self.employee->reject(isMarried)

The reject operation is available in OCL for convenience, because each reject can be
restated as a select with the negated expression. Therefore, the following two
expressions are identical:

Collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

B.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a
sub-collection of the original collection. When we want to specify a collection which is
derived from some other collection, but which contains different objects from the
original collection (i.e., it is not a sub-collection), we can use a collect operation. The
collect operation uses the same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a
company. This can be written as one of:

Company

self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)

OMG-UML V1.1 Collection Operations March 1998 B-21

B

An important issue here is that the resulting collection is not a Set, but a Bag. When
more than one employee has the same value for birthDate, this value will be an
element of the resulting Bag more than once. The Bag resulting from the collect
operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The
following expression results in the Set of different birthDates from all employees of a
Company:

Company

self.employee->collect(birthDate)->asSet

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand
notation for the collect that makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a Collection of Objects, then it will
automatically be interpreted as a collect over the members of the Collection with the
specified property.

For any propertyname that is defined as a property on the objects in a collection, the
following two expressions are identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname(par1, par2, …)

collection->collect(propertyname(par1, par2, …)

B.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation
in OCL allows specifying a Boolean expression, which must hold for all objects in a
collection:

collection->forAll(v : Type | boolean-expression-with-v)

collection->forAll(v | boolean-expression-with-v)

collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-
expression-with-v is true for all elements of collection. If the boolean-expression-with-
v is false for one or more v in collection, then the complete expression evaluates to
false. For example, in the context of a company:

Company

self.employee->forAll(forename = 'Jack')

B-22 OMG-UML V1.1 March 1998

B

self.employee->forAll(p | p.forename = ’Jack’)

self.employee->forAll(Person p | p.forename = ’Jack’)

These expressions evaluate to true if the forename feature of each employee is equal to
‘Jack.’

The forAll operation has an extended variant in which more then one iterator is used.
Both iterators will iterate over the complete collection. Effectively this is a forAll on
the Cartesian product of the collection with itself.

Company

self.employee->forAll(e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

self.employee->forAll(Person e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is
semantically equivalent to:

Company

 self.employee->forAll(e1 | self.employee->forAll (e2 |

 e1 <> e2 implies e1.forename <> e2.forename)))

B.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for
which a constraint holds. The exists operation in OCL allows you to specify a boolean
expression which must hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)

collection->exists(boolean-expression)

This forAll operation results in a Boolean. The result is true if the boolean-expression-
with-v is true for at least one element of collection. If the boolean-expression-with-v is
false for all v in collection, then the complete expression evaluates to false. For
example, in the context of a company:

Company

self.employee->exists(forename = ’Jack’)

self.employee->exists(p | p.forename = ’Jack’)

self.employee->exists(p : Person | p.forename = ’Jack’)

These expressions evaluate to true if the forename feature of at least one employee is
equal to ‘Jack.’

B.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations
reject, select, forAll, exists, collect, elect can all be described in terms of iterate.

OMG-UML V1.1 Predefined OCL Types March 1998 B-23

B

An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |

expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable
acc is the accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-
elem-and-acc is evaluated for each elem. After each evaluation of expression-with-
elem-and-acc, its value is assigned to acc. In this way, the value of acc is built up
during the iteration of the collection. The collect operation described in terms of iterate
will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)

{

 acc = value;

 for(Enumeration e = collection.elements() ; e.hasMoreElements();
){

 elem = e.nextElement();

 acc = <expression-with-elem-and-acc>

 }

}

 B.10 Predefined OCL Types

This section contains all standard types defined within OCL, including all the features
defined on those types. Its signature and a description of its semantics define each
feature. Within the description, the name ‘result’ is used to refer to the value that
results from evaluating the feature. In several places, post conditions are used to
describe properties of the result. When there is more than one postcondition, all
postconditions must be true.

B.7.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented
with OclExpression, OclType, and OclAny.

B-24 OMG-UML V1.1 March 1998

B

OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type
is an instance of the OCL type called OclType. Access to this type allows the modeler
access to the meta-level of the model. This can be useful for advanced modelers.

Features of OclType, the instance of OclType is called type.

OclAny

Within the OCL context, the type OclAny is the supertype of all types in the model.
Features on OclAny are available on each object in all OCL expressions.

All classes in a UML model inherit all features defined on OclAny. To avoid name
conflicts between features in the model and the features inherited from OclAny, all
names on the features of OclAny start with ‘ocl.’ Although theoretically there may still
be name conflicts, they can be avoided. One can also use the pathname construct to
explicitly refer to the OclAny properties.

type.name : String

The name of type.

type.attributes : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the
model.

type.operations : Set(String)

The set of names of the operations of type, as they are defined in the model.

type.supertypes : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes->includesAll(result)

type.allSupertypes : Set(OclType)

The transitive closure of the set of all supertypes of type.

type.allInstances : Set(type)

The set of all instances of type and all its subtypes.

OMG-UML V1.1 Predefined OCL Types March 1998 B-25

B

Features of OclAny, the instance of OclAny is called object.

OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the
expression is OclExpression. This type and its features are used to define the semantics
of features that take an expression as one of their parameters: select, collect, forAll,
etc.

An OclExpression includes the optional iterator variable and type and the optional
accumulator variable and type.

Features of OclExpression, the instance of OclExpression is called expression.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object from object2.
post: result = not (object = object2)

object.oclType : OclType

The type of the object.

object.oclIsKindOf(type : OclType) : Boolean

True if type is a supertype (transitive) of the type of object.
post: result = type.allSuperTypes-
>includes(object.oclType) or
 type = object->oclType

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to the type of object.
post: result = (object.oclType = type)

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object
post: result.oclIsKindOf(type)

expression.evaluationType : OclType

The type of the object that results from evaluating expression.

B-26 OMG-UML V1.1 March 1998

B

Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a
subclass of Real, so for each parameter of type Real, you can use an integer as the
actual parameter.

Features of Real, the instance of Real is called r.

r = (r2 : Real) : Boolean

True if r is equal to r2.

r + (r1 : Real) : Real

The value of the addition of r and r1.

r - (r1 : Real) : Real

The value of the subtraction of r1 from r.

r * (r1 : Real) : Real

The value of the multiplication of r and r1.

r * (r1 : Real) : Real

The value of r divided by r1.

r.abs : Real

The absolute value of r.
post: if r < 0 then result = - r else result = r endif

r.floor : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.max(r2 : Real) : Real

The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.

OMG-UML V1.1 Predefined OCL Types March 1998 B-27

B

Integer

The OCL type Integer represents the mathematical concept of integer.

Features of Integer, the instance of Integer is called i.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i is equal to i2.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i + (r1 : Real) : Real

The value of the addition of i and r1.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

i - (r1 : Real) : Real

The value of the subtraction of r1 from i.

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i * (r1 : Real) : Real

The value of the multiplication of i and r1.

i / (i2 : Integer) : Real

The value of i divided by i2.

B-28 OMG-UML V1.1 March 1998

B

String

The OCL type String represents ASCII strings.

Features of String, the instance of String is called string.

i / (r1 : Real) : Real

The value of i divided by r1.

i.abs : Integer

The absolute value of i.
post: if i < 0 then result = - i else result = i endif

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
post: result * i2 <= i
post: result * (i2 + 1) > i

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size : Integer

The number of characters in string.

string.concat(string2 : String) : String

The concatenation of string and string2.
post: result.size = string.size + string2.size
post: result.substring(1, string.size) = string
post: result.substring(string.size + 1, string2.size) =
string2

OMG-UML V1.1 Predefined OCL Types March 1998 B-29

B

Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

string.toUpper : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size = string.size

string.toLower : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including
character number upper.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

B-30 OMG-UML V1.1 March 1998

B

Enumeration

The OCL type Enumeration represents the enumerations defined in an UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

B.7.2 Collection-Related Typed

The following sections define the features on collections (i.e., these features are
available on Set, Bag, and Sequence). As defined in this section, each collection type
is actually a template with one parameter. ‘T’ denotes the parameter. A real collection
type is created by substituting a type for the T. So Set (Integer) and Bag (Person) are
collection types.

Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of
an object in a collection is called an element. If an object occurs twice in a collection,
there are two elements. This section defines the operations on Collections that have
identical semantics for all collection subtypes. Some operations may be defined with
the subtype as well, which means that there is an additional postcondition or a more
specialized return value.

The definition of several common operations is different for each subtype. These
operations are not mentioned in this section.

Features of Collection, the instance of Collection is called collection.

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif :
expression1.evaluationType

If b is true, the result is the value of evaluating expression1; otherwise, result is the
value of evaluating expression2.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)

collection->size : Integer

The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc
+ 1)

OMG-UML V1.1 Predefined OCL Types March 1998 B-31

B

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->isEmpty : Boolean

Is collection the empty collection?
post: result = (collection->size = 0)

collection->notEmpty : Boolean

Is collection not the empty collection?
post: result = (collection->size <> 0)

collection->sum : T

The addition of all elements in collection. Elements must be of a type supporting
addition (Integer and Real)

post: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.

post: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection; otherwise, result
is false.

post: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)

collection->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the collection. See “Iterate Operation” on page B-22 for a complete
description. This is the basic collection operation with which the other collection
operations can be described.

B-32 OMG-UML V1.1 March 1998

B

Set

The Set is the mathematical set. It contains elements without duplicates. Features of
Set, the instance of Set is called set.

set->union(set2 : Set(T)) : Set(T)

The union of set and set2.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) or set2->includes(elem)

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 set->count(elem) + bag->count(elem))

set = (set2 : Set) : Boolean

Evaluates to true if set and set2 contain the same elements.

post: result = T.allInstances->forAll(elem |
 set->includes(elem) = set2->includes(elem))

set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2 (i.e, the set of all elements that are in both set and
set2).

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and set2->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag.
post: result = set->intersection(bag->asSet)

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and not set2-
 >includes(elem))

OMG-UML V1.1 Predefined OCL Types March 1998 B-33

B

set->including(object : T) : Set(T)

The set containing all elements of set plus object.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) or (elem = object))

set->excluding(object : T) : Set(T)

The set containing all elements of set without object.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) and not(elem = object))

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or set2, but not in both.

post: T.allInstances->forAll(elem |
 result->includes(elem) =
 set->includes(elem) xor set2->includes(elem))

set->select(expr : OclExpression) : Set(expr.type)

The subset of set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)

set->reject(expr : OclExpression) : Set(expr.type)

The subset of set for which expr is false.
post: result = set->select(not expr)

set->collect(expression : OclExpression) :
Bag(expression.oclType)

The Bag of elements which results from applying expr to every member of set.

post: result = set->iterate(elem; acc : Bag(T) = Bag{} |
 acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set.
post: result <= 1

set->asSequence : Sequence(T)

A Sequence that contains all the elements from set, in random order.

post: T.allInstances->forAll(elem |
 result->count(elem) = set->count(elem))

B-34 OMG-UML V1.1 March 1998

B

Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of
a bag many times. There is no ordering defined on the elements in a bag. Features of
Bag, the instance of Bag is called bag.

set->asBag : Bag(T)

The Bag that contains all the elements from set.

post: T.allInstances->forAll(elem |
 result->count(elem) = set->count(elem))

bag = (bag2 : Bag) : Boolean

True if bag and bag2 contain the same elements, the same number of times.

post: result = T.allInstances->forAll(elem |
 bag->count(elem) = bag2->count(elem))

bag->union(bag2 : Bag) : Bag(T)

The union of bag and bag2.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem) + bag2->count(elem))

bag->union(set : Set) : Bag(T)

The union of bag and set.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag) : Bag(T)

The intersection of bag and bag2.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set) : Set(T)

The intersection of bag and set.

post: T.allInstances->forAll(elem |
 result->count(elem) =
 bag->count(elem).min(set->count(elem)))

OMG-UML V1.1 Predefined OCL Types March 1998 B-35

B

bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object.

post: T.allInstances->forAll(elem |
 if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object.

post: T.allInstances->forAll(elem |
 if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->select(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is true.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag->reject(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is false.
post: result = bag->select(not expr)

bag->collect(expression: OclExpression) :
Bag(expression.oclType)

The Bag of elements which results from applying expression to every member of bag.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 acc->including(expr))

bag->count(object : T) : Integer

The number of occurrences of object in bag.

bag->asSequence : Sequence(T)

A Sequence that contains all the elements from bag, in random order.

post: T.allInstances->forAll(elem |
 bag->count(elem) = result->count(elem))

B-36 OMG-UML V1.1 March 1998

B

Sequence

A sequence is a collection where the elements are ordered. An element may be part of
a sequence more than once. Features of Sequence(T), the instance of Sequence is
called sequence.

bag->asSet : Set(T)

The Set containing all the elements from bag, with duplicates removed.

post: T.allInstances(elem |
 bag->includes(elem) = result->includes(elem))

sequence->count(object : T) : Integer

The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.

post: result = Sequence{1..sequence->size}->forAll(index :
Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size = sequence2->size

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in
sequence2.

post: result->size = sequence->size + sequence2->size
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size}->forAll(index : Integer |
 sequence2->at(index) =
 result->at(index + sequence->size)))

sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.

post: result->size = sequence->size + 1
post: result->at(result->size) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of all elements in sequence, followed by object.

post: result->size = sequence->size + 1
post: result->at(1) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

OMG-UML V1.1 Predefined OCL Types March 1998 B-37

B

sequence->subSequence(lower : Integer, upper : Integer) :
Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element
number upper.

post: if sequence->size < upper then
 result = Undefined
else
 result->size = upper - lower + 1 and
 Sequence{lower..upper}->forAll(index |
 result->at(index - lower + 1) =
 sequence->at(lower + index - 1))
endif

sequence->at(i : Integer) : T

The i-th element of sequence.
post: i <= 0 or sequence->size < i implies result =
Undefined

sequence->first : T

The first element in sequence.
post: result = sequence->at(1)

sequence->last : T

The last element in sequence.
post: result = sequence->at(sequence->size)

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last
element.
post: result = sequence.append(object)

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size = sequence->size - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true.

post: result = sequence->iterate(elem; acc : Sequence(T) =
Sequence{} |
 if expr then acc->including(elem) else acc endif)

B-38 OMG-UML V1.1 March 1998

B

 B.11 Grammar for OCL

This section describes the grammar for OCL expressions. An executable LL(1) version
of this grammar is available on the OCL web site. (See
http://www.software.ibm.com/ad/ocl).

The grammar description uses the EBNF syntax, where "|" means a choice, "?"
optionality, and "*" means zero or more times. In the description of the name,
typeName, and string, the syntax for lexical tokens from the JavaCC parser generator is
used. (See http://www.suntest.com/JavaCC.)

expression := logicalExpression

ifExpression := "if" expression

 "then" expression

 "else" expression

 "endif"

logicalExpression := relationalExpression

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false.
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression) :

Sequence(expression.oclType)

The Sequence of elements which results from applying expression to every member of
sequence.

sequence->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the sequence. Iteration will be done from element at position 1 up until
the element at the last position following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates.

post: T.allInstances->forAll(elem |
 result->count(elem) = sequence->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed.

post: T.allInstances->forAll(elem |
 result->includes(elem) = sequence->includes(elem))

OMG-UML V1.1 Grammar for OCL March 1998 B-39

B

 (logicalOperator
 relationalExpression)*

relationalExpression := additiveExpression

 (relationalOperator
 additiveExpression)?

additiveExpression := multiplicative Expression

 (addOperator
 multiplicativeExpression)*

multiplicativeExpressin := unaryExpression

 (multiplyOperator unaryExpression)*

unaryExpression := (unaryOperator postfixExpression)

 | postfixExpression

postfixExpression := primaryExpression (("." | "->")
 featureCall)*

primaryExpression := literalCollection

 | literal

 | pathName timeExpression? qualifier?

 featureCallParameters?

 | "(" expression ")"

 | ifExpression

featureCallParameters := "(" (declarator)?
 (actualParameterList)? ")"

literal := <STRING> | <number> | "#" <name>

enumerationType := "enum" "{" "#" <name> ("," "#" <name>
)* "}"

simpleTypeSpecifier := pathTypeName

 | enumerationType

literalCollection := collectionKind "{"
expressionListOrRange? "}"

expressionListOrRange := expression

 (("," expression)+

 | (".." expression)

)?

featureCall := pathName timeExpression? qualifiers?

 featureCallParameters?

qualifiers := "[" actualParameterList "]"

declarator := <name> ("," <name>)*

 (":" simpleTypeSpecifier)? "|"

pathTypeName := <typeName> ("::" <typeName>)*

pathName := (<typeName> | <name>)

 ("::" (<typeName> | <name>))*

timeExpression := "@" <name>

B-40 OMG-UML V1.1 March 1998

B

actualParameterList := expression ("," expression)*

logicalOperator := "and" | "or" | "xor" | "implies"

collectionKind := "Set" | "Bag" | "Sequence" |
 "Collection"

relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator := "+" | "-"

multiplyOperator := "*" | "/"

unaryOperator := "-" | "not"

typeName := "A"-"Z" ("a"-"z" | "0"-"9" | "A"-"Z"
 | "_")*

name := "a"-"z" ("a"-"z" | "0"-"9" | "A"-"Z"
 | "_")*

number := "0"-"9" ("0"-"9")*

string := "’" ((~["’","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","\\","’","\""]

 | ["0"-"7"] (["0"-"7"])?

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

)*

 "’"

OMG-UML V1.1 March 1998 Index-1

Index

Symbols
(Compound) Transition execution 2-126
(Strict) Inheritance 2-130

Numerics
2-d Symbols 3-6

A
Action 2-74, 2-87
Action state 3-126
action state 3-126
action, special 3-108
action-clause 3-114
Action-Object Flow Relationships 3-130
ActionSequence 2-75
ActionState 2-134, 2-137, 2-138
Activation 3-87
activation 3-87
Active object 3-99
active object 3-99
Activity Diagram 3-124
Activity Models 2-131
ActivityModel 2-133, 2-136, 2-138
ActivityState 2-134
Actor 2-99, 2-101, 2-102, 3-79
aggregation 3-56
AggregationKind 2-67
Argument 2-75
Argument list 3-103
Artifacts 1-2

development project 1-2
UML-defining Artifacts 1-2

artifacts
UML-defining 1-2

Association 2-14, 2-28, 2-42, 3-52
association class 3-53
Association End 3-55
association name 3-52
AssociationClass 2-15, 2-28, 2-43
AssociationEnd 2-15, 2-29

AssociationEndRole 2-89, 2-92
AssociationRole 2-90, 2-93
Attribute 2-17, 2-29, 3-32
AttributeLink 2-75, 2-81
Auxiliary Elements Foundation Package 2-46

B
Background Information 3-8
Bag B-34
Basic Values and Types B-6
BehavioralFeature 2-18, 2-29
bind 3-74
Binding 2-48, 2-53
Boolean 2-67, B-29
BooleanExpression 2-67
Bound Element 3-43

C
call event 3-112
CallAction 2-76, 2-82
CallEvent 2-108
changeability 3-57
ChangeableKind 2-67
ChangeEvent 2-109
Class 2-19, 2-30, 2-39
Class Diagram 3-25
Class Pathnames 3-46
Classical statecharts 2-131
Classifier 2-20, 2-31
classifier 3-26
ClassifierInState 2-135
ClassifierRole 2-90, 2-93
Collaboration 2-91, 2-93, 2-95, 3-90
collaboration 3-94
Collaboration Contents 3-94
Collaboration Diagram 3-91
collaboration diagram 3-91
Collaboration Roles 3-96
Collaborations Package 2-88

Index

Index-2 OMG-UML V1.1 March 1998

Collect Operation B-20
Collection B-30
Collection Operations B-18
Collection Type Hierarchy and Type Conformance Rules B-17
Collection-Related Typed B-30
Collections B-15
Collections of Collections B-17
Combining Properties B-12
Comment 2-49, 2-53, B-9
comment 3-18
Common Behavior Package 2-71
communicates 3-80
Completion transitions and completion events 2-120
complex transition 3-116
Complex Transitions 3-116
Component 2-49, 2-53
component 3-139
Component Diagram 3-135
component diagram 3-135
Components 3-139
Composite Object 3-51
composite state 3-107
Composite States 3-109
CompositeState 2-109, 2-115, 2-122
concurrent substate 3-110
Conflicts 2-120
Constraint 2-20, 2-33, 2-59, 2-62
constraint 3-18
Constraints A-8
context 3-92
Control flow type 3-101
Control Icons 3-132
CORBA

contributors xxx
Core Foundation Package 2-11
CreateAction 2-76
creation (of an object) 3-105
Creation destruction markers 3-105

D
Data Types Foundation Package 2-65
DataType 2-21, 2-33
DataValue 2-77, 2-82
decision 3-127
Decisions 3-127
deferred event 3-133
Deferred events 2-122, 3-133
Dependency 2-21, 2-33, 2-53, 3-74
Dependency (from Core) 2-49
deployment diagram 3-136
Deployment Diagrams 3-136
Derived Element 3-76
design pattern 3-93
destination state 3-116
DestroyAction 2-76, 2-82
destruction (of an object) 3-105
development project 1-2
discriminator 3-70
disjoint substate 3-110
do 3-108
Drawing Paths 3-7

E
Element 2-21, 2-33
Element Properties 3-20
ElementOwnership 2-21, 2-33
ElementReference 2-140, 2-142
Enabled (compound) transitions 2-125
Entering a composite state 2-123
Entering a concurrent composite state 2-123
entry action 3-108
Enumeration 2-67, B-30
Enumeration Types B-7
EnumerationLiteral 2-67
Event 2-110
event 3-111
Events 3-111
Example 3-9, 3-10

Modeling Class Behavior 2-127
State machine refinement 2-128

Exception 2-77
Exists Operation B-22
exit action 3-108
Exiting a composite state 2-123
Exiting a concurrent state 2-123
Exiting non-concurrent state 2-123
Expression 2-67, 3-11
extends (a use case) 3-80
extensibility mechanism 3-20, 3-22
Extension Mechanisms Foundation Package 2-56
extension point 3-79

F
Facility Implementation Requirements 5-9
Feature 2-22, 2-33
Features on Types Themselves B-15
final state 3-110
ForAll Operation B-21

G
General Extension Mechanisms 3-18
General Refinement 2-130
GeneralizableElement 2-22, 2-33
Generalization 2-23
generalization constraints 3-71
General-purpose Repository 5-3
Geometry 2-67
Goals 1-4
Grammar for OCL B-38
GraphicMarker 2-67
Guard 2-110, 2-115
guard-condition 3-114

H
High-level ("interrupt") transitions 2-125
history state 3-117

I
Icons 3-6
IDL Modules 5-10
Importing a Package 3-47
Industry Trends 1-3
Inheritance 2-37
initial state 3-110

Index

OMG-UML V1.1 March 1998 Index-3

Instance 2-77, 2-82
Instantiation 2-38
Integer 2-68, B-27
Interaction 2-92, 2-94, 2-97
interaction 3-96
interaction diagram 3-81
Interactions 3-96
Interface 2-24, 2-41
interface specifier 3-56
Interfaces 3-39
internal activity 3-108
internal transition 3-123
Internal Transitions 3-123
Invariants B-4
Invisible Hyperlinks and the Role of Tools 3-7
Iterate Operation B-22

K
Kinds of Interaction Diagrams 3-81

L
Label 3-10
LCA, main source, and main target 2-126
Legal state configuration 2-122
Link 2-78, 2-83, 2-86
LinkEnd 2-78, 2-84
LinkObject 2-78, 2-84
List Compartment 3-29
LocalInvocation 2-79, 2-115
Location of Components and Objects within Objects 3-141
location of object 3-141

M
Mapping 2-68, 3-9
Mapping from MOF to IDL 5-9
Mapping of Interface Model into MOF 5-7
Mapping of UML Semantics to Facility Interfaces 5-4
Message 2-92, 2-94, 3-87
message (in a sequence diagram) 3-87
message flow 3-101
Message flows 3-101
Message label 3-101
MessageDirectionKind 2-68
MessageInstance 2-79, 2-84
Message-name 3-103
Metaclass 3-45
Method 2-24
Miscellaneous 2-44
Missing Rolenames B-11
Model 2-141, 2-143
Model Access 5-3
Model Management 2-139, 3-15
Model Transfer 5-3
ModelElement 2-25, 2-53, 2-63
ModelElement (as extended) 2-60
ModelElement (from Core) 2-50
Multi-object 3-98
multiobject 3-98
Multiplicity 2-68
multiplicity 3-55
MultiplicityRange 2-68

N
Name 2-68, 3-9
Name Compartment 3-28
Namespace 2-26
navigability 3-56
Navigation from Association Classes B-13
Navigation over Associations with Multiplicity Zero or One B-11
Navigation through Qualified Associations B-13
Navigation to Association Types B-13
nested state machine 3-108
Node 2-51, 2-54
node 3-138
Nodes 3-138
Notation 3-8
Note 3-13

O
Object 2-79, 2-84, 3-48
object 3-96
Object and DataValue 2-85
Object Constraint Language B-1
Object Diagram 3-26
Object flow 3-130
object flow 3-130
Object in state 3-130
Object Lifeline 3-86
Object Management Group xxiv

address of xxiv
Object responsible for an action 3-130
object state 3-130
ObjectFlowState 2-135, 2-137, 2-138
Objects and Properties B-9
ObjectSetExpression 2-68
OCL - Legend B-3
OCL Grammar B-38
OCL Uses B-2
OclAny B-24
OclExpression B-25
OclType B-24
Operation 2-26, 3-35
OperationDirectionKind 2-68
or-association 3-53
ordering 3-55

P
Package 2-141, 2-143
Packages and Model Organization 3-15
Parameter 2-27, 2-36
ParameterDirectionKind 2-69
Parameterized Class (Template) 3-41
participates (in a use case) 3-80
Partition 2-136
Pathnames for Packages and Properties B-14
Paths 3-6
pattern 3-93
Pattern Structure 3-93
Pre and Postconditions B-5
Precedence Rules B-8
Predecessor 3-102
Predefined Features on All Objects B-15
Predefined OCL Types B-23

Index

Index-4 OMG-UML V1.1 March 1998

Presentation 2-51, 2-54
Presentation Options 3-8, 3-9, 3-57
Previous Values in Postconditions B-17
Primitive 2-69
Priorities 2-121
ProcedureExpression 2-69
Process 1-8
Programming Languages 1-7
Properties B-9

Association Ends and Navigation B-10
Attributes B-10
Operations B-10

PseudoState 2-111, 2-115, 2-136, 2-137
Pseudostate 2-123
PseudostateKind 2-69

Q
qualifier 3-56

R
Real B-26
Reception 2-79, 2-84
Refinement 2-51, 2-54
refinement 3-74
Request 2-80, 2-84
Request, Signal, Exception and Message Instance 2-86
ReturnAction 2-80
Return-value 3-103
Re-typing or Casing B-8
rolename 3-56
Run-to-completion processing 2-119

S
Scope 1-6
ScopeKind 2-69
Select and Reject Operations B-19
Selecting transitions 2-121
Self B-4
Semantics 2-55, 2-64, 2-146
semantics of state machines 2-118
Semantics Package 2-146
SendAction 2-80, 2-85
send-clause 3-114
sending message

within state diagram 3-120
Sending Messages 3-120
Sequence B-36
Sequence Diagram 3-82
Sequence expression 3-102
Set B-32
Shorthand for Collect B-21
Signal 2-81, 2-84
signal event 3-112
Signal receipt 3-132
Signal sending 3-132
SignalEvent 2-111
Signature 3-103
Simple Transitions 3-114
SimpleState 2-111
source state 3-116
Standard Elements 2-45, 2-56

State 2-111, 2-122
state

composite 3-107
State Machines Package 2-107
Statechart Diagram 3-106
StateMachine 2-112, 2-116, 2-119
States 3-107
StateVertex 2-113
Step semantics 2-120
Stereotype 2-61, 2-63
Stereotypes 3-22, A-1, B-1
String 2-69, 3-8, B-28
Strings 3-7
StructuralFeature 2-28, 2-37
Structure 2-69
stubbed transition 3-118
Style Guidelines 3-58
SubmachineState 2-113, 2-124
substate 3-109
Subsystem 2-142, 2-146, 2-148
Subtyping 2-129
swimlane 3-128
Swimlanes 3-128
synchronization bar 3-116
SynchronousKind 2-69

T
tagged value 3-20
Tagged Values A-7
TaggedValue 2-62, 2-64
Template 2-55
TerminateAction 2-81, 2-85
Time 2-69
time event 3-112
TimeEvent 2-114
TimeExpression 2-70
timing mark 3-89
timing mark (in state diagram) 3-115
Tool Sharing Options 5-3
Tools 1-7
Trace 2-52, 2-54
trace 3-74
Transformation for Association Classes 5-5
Transition 2-114, 2-117
transition 3-114
Transition execution sequence 2-126
Transition selection 2-120
transition time 3-115
Transition Times 3-89
transition to nested state 3-117
Transitions 2-125
Transitions to Nested States 3-117
Transitions vs. compound transitions 2-125
Type Conformance B-7
Type Vs. Implementation Class 3-38
Type-Instance Correspondence 3-14
Types B-6

U
UML - defined 1-1
UML and other modeling languages 1-8

Index

OMG-UML V1.1 March 1998 Index-5

UML Extension for Business Modeling 4-8
UML Extension for Objectory Process for Software Engineering 4-

2
UML features 1-9
Undefined Values B-9
Uninterpreted 2-70
UninterpretedAction 2-81
Usage 2-52, 2-54
usage dependency 3-74
Use Case 3-79
Use Case Diagram 3-77
Use Case Relationships 3-80
Use Cases Package 2-98

UseCase 2-100, 2-101, 2-103
UseCaseInstance 2-100, 2-102
uses (a use case) 3-80
Using Pathnames for Packages and Properties B-14
Utility 3-45

V
ViewElement 2-52, 2-54, 2-55
visibility 3-33, 3-57
VisibilityKind 2-70

W
Well-Formedness Rules 2-53, 2-62, 2-142

Index

Index-6 OMG-UML V1.1 March 1998

	Preface
	Table of Contents
	UML Summary
	UML Semantics
	Background
	Foundation Packages
	Behavioral Elements
	General Mechanisms

	UML Notation Guide
	Background
	Diagram Elements
	Model Management
	General Extension Mechanisms
	Static Structure Diagrams
	Use Case Diagrams
	Sequence Diagrams
	Collaboration Diagrams
	Statechart Diagrams
	Activity Diagrams
	Implementation Diagrams

	UML Extensions
	UML Extension for Software Development Processes
	UML Extension for Business Modeling

	OA&D CORBAfacility Interface
	Appendix
	A - UML Standard Elements
	B - Object Constraint Language

	Index

