Lest

Top-Level Design Document

Redha Elminyawi <relminya>
CS190: Software System Design
2/24/2005

High-Level Component Diagram

Web GUI 4

=

o

3=

av]

N

=l B

<

= El=

O M S

95 —

d Kb MapVi
‘

DBAL £ E
PR 2
|72} +~ el
> 2 =

<
- =

<)

1lof 6 BikeQuest Top-Level Design <relminya> 2.24.05



Component Diagram Explained
Map Database (DBA) Level One

Data—store and interfaces to it. It's information effects the

Mapping and Search algorithms. Receives user rating information. After
GIS data is parsed into our proprietary format it will drive the Map
Algorithm. DBA is also responsible for user tables, and a pool of
stored routes that can very quickly be searched.

Map Visualization Level Two

Takes raw points from mapping algorithm, in combination with our

map database, returns a picture of the route desired, with text
description. Which type of visualization is a detailed design question.

Map Algorithm Level Three

Takes in search terms from UI, and searches the database for the

correct route. Then sends the relevant information to MapVis. This will
likely be some sort of A* search.

Ranking Level Three
Takes in user ratings data, and persists it to the database.

Secondly, it has a loose connection to the Map Algorithm, in that it
could effect route data if we change our Map data based on user
feedback. Loosely coupled to Search algorithm, in that the search
algorithm depends on the data persisted by UF. This is almost a user
interface essentially. Since we are ranking route sections separately,
this has become a user interface issue, and combining the UI and
Ranking roles seems prudent.

Route Search Level Three

Will return search results to UI based on information input by

the user. Also will receive information from BikeQuest database, and
personalization package. Search rank algorithm will change based on
personalization.

Personalization Level Three

This package receives and sends information from the front end.

This information is detailed in the features section. It also sends
some information to the search package, to alter search based on user.
Since the myRoutes feature will be implemented, it will persist data to
the map DB, in user tables.

Web Ul Level Four

View for whole software, takes in all info from users and sends
commands to process data to Mapping and Search algorithms. It receives
data mainly from MapVis and Search. This will be written in PHP or a
mix of HTML and CGI scripting.

2 of 6 BikeQuest Top-Level Design <relminya> 2.24.05



External Dependencies

BikeQuest depends on user input. We will have to recruit a base of
usersS to help test, and put ranking info into the system.

BikeQuest will have to have a System administrator. Physical road
changes will necessitate changing GPS database information. The search
algorithm will also need to be changed if it is gamed by users. Since
creating an administration interface may seriously put the team in the
hole time—-wise, the administrator will need to know a lot about the
system (through the documentation) and also about C++ and SQL. An
excellent candidate for this would be Mark Dietrich.

Students will have to learn GPS format RIGIS and convert it into our
own database, which may be tedious and time consuming. Besides

obtaining this data (GPS), dependencies include finding web
server space, database, code repository and bug

tracking software. These four items are readily found within the
CS department.

3of 6 BikeQuest Top-Level Design <relminya> 2.24.05



Task Breakdown/Group Organization

Group Manager (1) This is what Brooks terms the Surgeon’ s role

in Mythical Man Month. During the course of the project the Group
Manager will ensure that each component is on schedule, organize
meetings, and monitor the overall process of creating BikeQuest. It is
the Group Manager's responsibility to clear all road blocks the
developers face, to maximize productivity.

Recommendations: dkarr, vywu

Architect (1) I am proposing splitting Brooks' Copilot role into
two. The first, the CS190 Architect, will be have the final say on
design changes to the logic components in BikeQuest. These logic
components include DB, Search and Map Algorithms, Personalization and
Ranking (PR). Architect will also help the DBA and Algorithms coder.

Recommendations: dspinosa, wcabral

UI Architect (1) The second copilot, the CS190 UI Architect, will

be have the final say on design changes to the interface components in
BikeQuest. The responsibilities will include user issues from ensuring
the format results are printed out on is bike friendly to helping users
test. The UI Architect will sign off all design changes to the web GUI,
and Map Visualization components. As with the Architect, the UI
Architect will aid in coding.

Recommendations: dspinosa, htse, relminya

Development Team (3)
DBA / Tools The database programmer will also take on the

Brooks' Toolsmith role. In addition to creating readily usable
interfaces to the database, this role includes setting up all tools
such as a web server, database software, code repository, and bug
reporting software. This role will prospectively be done early, so this
coder may be recruited in helping the Algorithms coder.

Recommendations: crschmid, htse, relminya, vywu

Ul /PR Will work closely with the UI Architect to ensure

that the web GUI, map visualization, and personalization and ranking
components reach completion.
Recommendations: aavila, crschmid, dkarr, htse, relminya,

Algorithms Will work to complete the most important

BikeQuest code. This will include the search and map algorithms.
Recommendations: dkarr, dspinosa, wcabral
Technical Test (1): This person will write test scripts for all

checked in code, report the bugs, and in some cases fix them. This
includes all code separately, and a final integration test.
Recommendations: aavila, htse, relminya

Documentation / User Test (1): This person will maintain all

documentation for the project. In addition to this, they will
coordinate external users to test the program and report the bugs from
these test sessions.

Recommendations: aavila, dkarr, vywu

40f6 BikeQuest Top-Level Design <relminya> 2.24.05



Schedule
Friday March 4: Suggested Roles

Hand in three preferences for roles within BikeQuest software

engineering team.
Friday March 11*: Final Design Documents

Revised top level design document which includes finalized

specifications and requirements, testing strategy, schedules, roles,
and high level component diagrams. I propose that this document also
include E-R diagrams for the database. Toolsmith should begin setting
up aforementioned tools. Group Manager and Architect should begin
investigating GPS data source.
Wednesday March 16®: Interface Proposals

Each component should hand in .H files that correspond to the
design. Tools should be set up, and the GPS data source should be
nailed down, allowing the toolsmith to start working on conversion into
our database, based on agreed upon design.
Monday March 215 Interface Comments

Each component should hand in comments on interface proposals
that their component is dependent on.
Friday March 25%: Finalized Interfaces

Interfaces are changed based on comments and finalized.
Discussion begins on low level design.
Friday April 8%: Detailed Designs

Design of each component is due. Any design change proposals
hereafter will be met with an extremely concerning eye (namely both
Architects). This begins the intensive coding session, lasting until

the 18"™. Each component is responsible for testing code before checking
it in, reducing the amount of bugs that could get by the technical

tester during this period.

Monday April 18%: Initial Integration

All modules should be complete at this time, and ready to
integrate. Technical tester will first run tests on full system, and
when deemed ready, the user tester will bring

Friday April 29*2: Full Integration / In Class Demos

Integration, integration tests, and user tests should be nearly
done here. Minor bugs should be all that exist in the in—class demo
product.
Wednesday May 4%: Public Demos

Show nearly finished product to the world.

Friday May 16%: Final Demos & Hand-Ins

All bugs are gone, and all documentation is done at this stage.
BikeQuest will have all proposed requirements (from Final Design
document) done.

50f 6 BikeQuest Top-Level Design <relminya> 2.24.05



Spec Clarifications

My specifications document is at

http://www.cs.brown.edu/courses/cs190/2005/asgns/2-11/relminya.pdf .

There are three major clarifications needed to the preceding document.

1) How to rank roads

When the initial idea of ranking a route as a whole fell under
scrutiny it proved to be a useless idea. Suppose a route is made up
of 20 intersection to intersection segments. If there is heavy
traffic on only one segment, then ranking the whole route as a 1
for traffic will negatively affect 19 possibly non—congested road
sections. Rankings will have to be done segment by segment, and a
clever user interface concept will have to be created to make
ranking road segments easy, and thus make ranking something a user
would desire to do.

2) Personal database

When I proposed the initial user click through, one of my reviewers
pointed out that if a user wanted to return to rank a route once he
biked it, he would have to enter fake ranking numbers and then add
it to the BikeQuest—wide pool of routes. A compromise between this
is to allow personal space for a few routes, which a user may
return to, rank the route, and then add it to the database.

3) Advanced search page

6 of 6

The advanced search page that I propose will simply add the
following search quantifiers to the basic search page: Traffic,
Scenery, Road Condition, Hazard Conditions, and Gradation. Each of
these will allow the user to further qualify their search terms on
a 1-5 scale. For example, if a user enters a 5 for scenery, the
only routes that will be returned will be routes whose sections
average a score of 5 in scenery.

BikeQuest Top-Level Design <relminya> 2.24.05



