
Election Connection  Top-Level Design        Pawel Wrotek  
 
1. Overview  
(from Lars Johansson’s specification document) 
The goal of this project is to design a system which allows the UCS Election Committee 
to design a ballot through the use of a straight-forward graphical user interface, similar to 
a standard Microsoft program. The software will then generate the necessary HTML, 
php and web scripts to administer the election online. The software would run a web 
server which students would connect to and submit their votes. At the conclusion of the 
election the system will end voting and will prepare a summary of the votes to be 
reviewed and analyzed by UCS. 
 
2. System Model Diagram 

 
3. System Model Description 
Ballot Creation GUI 
This is the GUI that the user is presented with when creating the ballot.  It allows him to 
add/edit/remove questions, specify the format of the election, load/save the ballot, etc.  
According to the specifications, the interface should be similar to Microsoft PowerPoint. 
 
HTML Generator 
This generates the HTML code and any necessary scripts for the election website, once 
the user specifies that he wants to create the site from the GUI.  It outputs the Site Data 
that can then be used by the Server. 
 
 
 

Site      
Data 

Server Security 
Handler 

Vote(r) 
Database 

Election Administration 

Ballot 
Creation GUI 

HTML 
Generator 

Ballot 
Processor 

Ballot Creation 

Vote    
Data 

Data 
Visualizer GUI  

Data Analysis 



Ballot Processor 
This is responsible for handling the data flow between the GUI and the HTML Generator.  
Whenever the user makes a change using the GUI, the GUI calls a method in the Ballot 
Processor, passing the updated data.  When the HTML Generator wants to create the Site 
Data, it calls the Battle Processor, requesting the latest ballot data. 
 
Server 
This takes the Site Data produced by the HTML Generator and makes the election 
website accessible online.  It collects the votes from the site, and passes them to the Vote 
Database. 
 
Vote(r) Database 
This receives and manages information about the votes that were cast and the users who 
have already voted.  It also holds information about all the eligible voters (their user 
names and passwords) which is used by the Security Handler.  This information can be 
input/modified by an administrator before each election. 
 
Security Handler 
When users first attempt to log in to vote, this module verifies their user names and 
passwords, and makes sure that they haven’t already voted.  If everything checks out, the 
user is given access to the voting site. 
 
Data Visualizer GUI 
This module works with the Vote Data taken from the Vote(r) Database.  The election 
administrators use the GUI to display information about the outcome of the election in 
chart/graph format. 
 
4. External Dependencies 
- More information from UCS about what they want from the GUIs, or the project in 

general. 
- A good user interface library (qt?). 
- Security requires the use of CIS NetIDs.  In the system presented above, these IDs and 

passwords would have to be acquired and fed into the Voter Database.  This could be a 
huge stumbling block, since these probably aren’t released even to the UCS election 
committee.  Alternatively, we could rely on the CIS login system to handle most of the 
security (we would still need to keep track of whether the particular voter has already 
voted), but this would affect how useful our application is to the world outside of 
Brown. 

- A computer to run the server, and web space for the voting site (though this should be 
handled by UCS or whoever runs an election using our program). 

 
 
 
 
 



5. Task Breakdown/Group Organization 
Project Manager/Ballot Processor - ljohanss 
This person is responsible for making sure that all parts of the project are on track.  Also, 
he is our connection with UCS and must make sure that the specifics of the project 
(especially GUI and website functionality and layout) correspond with what UCS wants.  
This person is also responsible for the Ballot Processor module – the smallest (quite 
possibly trivial) part of the project. 
 
Tester - xb 
This person is responsible for creating scripts to rigorously test the individual 
components, as well as the combined product.  He should be well versed in what is 
expected from each component, what kind of input it might receive, and what kind of 
output it should produce.  While everyone needs to test their own code to find major 
bugs, the tester should design tests that also look for subtler errors and problems that 
occur after integration.  The tester is also responsible for writing the documentation. 
 
Ballot Creation GUI – miblack 
This person should work closely with the person responsible for the Data Visualizer GUI 
to make sure that there is some sort of coherence between the two GUIs. 
 
Data Visualizer GUI – pwrotek 
This person should work with the person responsible for the Ballot Creation GUI (see 
above). 
 
HTML Generator - akossey 
 
Server - cjhill 
 
Security Handler/Vote(r) Database - desilver 
If it turns out that we must let CIS handle most of our security needs, than the Security 
Handler will be reduced to simply checking whether a user has voted before.  The Voter 
Database component is closely related to the Security Handler, and should not be a 
significant amount of work. 
 
6. Schedule 
3/4 Initial group meetings; discuss/choose top-level design 
3/11 Overall project design in; top-level design frozen 
3/16 Interface proposals 
3/21 Project manager decides final list of features together with UCS representative 
3/25 Interfaces finalized; begin coding; Tester begins creating test suites for individual 

components 
4/4 Project manager and Tester revises design, makes final revisions, decide general 

integration/testing plan 
4/8 Detailed designs due 
4/18 Initial integration; testing suites for individual components finalize, made 

available to coders; Tester begins writing documentation  



4/29 Full integration; functionality freeze; in-class demo; from now on lots of 
testing/debugging, NO NEW FEATURES added 

5/16 Final demos; final documentation, code, testing reports 
 
7. Assumptions 
The specification document mentions the need for security, but nothing is said about how 
this will be handled by the system.  I assumed that the system will have some way of 
handling it (the Security Handler module) and that we will not simply rely on CIS. 
 
 
 


