
ElectConnect: Top Level Design Lars Johansson

1

ElectConnect: Top Level Design

1.0 Description

The goal of this project is to design a system which allows the UCS Election Committee
to design a ballot through the use of a straight-forward graphical user interface, similar to
a standard Microsoft program. The software will then generate the necessary HTML, php
and web scripts to administer the election online. The software will run a web server
which students can connect to and submit their votes. At the conclusion of the election
the system will end voting and will prepare a summary of the votes to be reviewed and
analyzed by UCS.

2.0 High-Level Components

2.1 High-Level Component Diagram

Notes about the high-level component diagram

In this diagram the dark arrows indicate dependencies. In these cases, if component A
has an arrow pointing to component B it is known that A will call methods on B and will
depend on its functionality. The dashed arrows are meant to indicate that the
HTMLWriter and the WebServer will both use .html and .php file which are written to
disk. Finally, note that the CIS component is not included in the levelization. It is left

ElectConnect: Top Level Design Lars Johansson

2

out because this represents an external dependency on the CIS login system. It is
important to recognize this dependency in the top-level design, however it is assumed
that this component is already fully implemented and working and thus will not affect the
internal levelization of the project.

2.2 High-Level Component Description

As detailed in the specifications document, this project can be broken down in to three
main modules: ballot design, election administration, and data analysis. The following
discussion of the top-level components will address each module in turn.

2.2.1 Ballot Design Components

MainGUI

The MainGUI component is not discussed in the specification document and is not
strictly a part of the Ballot Design module. It is a top level graphical user interface which
allows the user to select what “mode” they want to operate in when they first run
ElectConnect. It is modeled on CD burning applications like Nero and EasyCD Creator
which, when first run, prompt the user with a screen asking them to choose whether they
would like to create a data disk, a music CD, a CD from an image, etc. Based on the
users selection, the program spawns a GUI unique to the task they are performing. Here
the main GUI would operate similarly. The user will select whether she would like to
create a ballot, administer an election or review election data. Based on their selection,
the MainGUI will instantiate a BallotGUI, a WebGUI or a VisGUI. Since it was not
presented in the specifications document, a screenshot of the MainGUI is provided here.

ElectConnect: Top Level Design Lars Johansson

3

BallotGUI

The BallotGUI is the main graphical user interface for the ballot creation phase of the
process and is similar in style and concept to the Microsoft PowerPoint interface. There is
a standard system of Windows menus along the top of the screen. The File menu provides
the user with functions to save and load files as well as to print and other standard
functions. Similarly the Edit menu allows the user to make alterations to previously
created slides. The Ballot menu will have options tailored toward the type of ballot they
are designing, allowing them to add questions, add candidates and other election specific
functions. Below the textual File menu will be a row of icons providing quick, easy
access to common operations which are also available through the drop down menu
systems.

The main section of the screen is divided in to two parts. On the left is a chain of
thumbnails of the existing ballot questions. In the right hand frame are the specific
parameters of the ballot question the user is currently designing. The user can select
questions in the left hand frame and they will be brought in to focus in the right hand
frame for editing.

The BallotGUI will call methods on the BallotDataControl component for two purposes,
(1) to instruct the logic to update based on user input and (2) to query the logical
component for information in order to keep the display up to date. An example of the
first interaction would be the user clicking on the “Insert” menu and then choosing “New
Ballot Question”. This action would cause the GUI to call the
addBallotQuestion(.) method on the BallotControlData class thus adding a new
question with the user specified parameters to the election ballot. On the other hand, if
the user wanted to edit an existing ballot question and clicked on the thumbnail of an
existing question in the left hand pane of the BallotGUI, the GUI would call a method
like getBallotQuestion(.)which returns ballot data to be displayed in the main
portion of the screen. BallotGUI will interface entirely with the BallotDataControl.

BallotDataControl

BallotDataControl is responsible for the logical representation of the election ballot. Its
primary method for accomplishing this task is the maintenance of the BallotData and the
CandidiateData structures. BallotDataControl will be driven by user inputs through the
BallotGUI and will determine whether or not the inputs are valid and, if they are, how to
handle them. It is through this component that higher level user requests are turned in to
a lower level representation of the ballot.

BallotControlData also contains an instance of the HTMLWriter. It would be possible
for the HTMLWriter to be contained by the BallotGUI, however while this design would
decrease the overall levelization of the top-level design this reduction would be in name
only, would not actually lead to greatly reduced dependencies, and would be less
consistent with the ideas for logical containment. In the case of the HTMLWriter,

ElectConnect: Top Level Design Lars Johansson

4

BallotDataControl acts as an intermediary when the user clicks “Generate HTML” by
passing along the generate(.) method call to the HTMLWriter.

BallotData

BallotData is a data structure which logically represents the questions on the ballot. The
implementation of this structure is outside the scope of this document and should be
handled by the engineer implementing this portion of the project. However, it is
important to note that the design should be able to handle many types of questions (i.e.
choose one of the following candidates, rank the following candidates, etc.) and should
be extensible so that more question types can be added with minimal difficulty at a later
date. Each item in the BallotData must represent a question type, the associated
candidates, and whatever additional parameters the specific question type requires.

CandidateData

CandidateDate is very similar to BallotData. It is a data structure for storing information
about the candidates eligible in the election. This information will be used to provide
candidate biographies, pictures and personal statements on the election website.

HTMLWriter

The HTMLWriter is responsible for generating html and php for administering the
election website based on the information stored in BallotData and CandidateData.
When the user directs the software to generate code for the election website, BallotData
and CandidateData is passed to the HTMLWriter by the BallotDataControl. The
HTMLWriter then iterates through the information held in each data structure and writes
html and php to files.

2.2.2 Election Administration Components

WebGUI

The WebGUI is a graphical user interface used by the election administrator to monitor
the status of the web server as the election is progressing. It may provide minimal
functionality like the ability to end the election early or to change the time at which the
election is scheduled to end, though this is not required. It must, at the least, provide a
message regarding the server’s status and its current load. The intent is to provide
confirmation that the server is running smoothly as the election is taking place. Again,
because the WebGUI was not presented in the specifications document, a proposed
design is below.

ElectConnect: Top Level Design Lars Johansson

5

WebServer

The WebServer is the server users will connect to in order to view the election web page
and to submit their ballots. It will host the site generated by the HTMLWriter. Server
side scripting will also be provided via the php output by the HTMLWriter. The second
function of the WebServer beyond serving the webpage is to take the data a user has
submitted and to feed it in to the vote database where it will be stored until the election is
over. The critical concern for the WebServer is its stability. Currently the goal is to
support a total of 3000 submitted ballots along with the possibility of 200 simultaneous
connections. However, these numbers may be revised upwards after additional
conversations with UCS and CIS. The idea is to make these goals as aggressive as
possible as the validity and the integrity of the election process depends in large part on
the stability of the server. In addition to stability, security is a major issue in the
administration of an online election. The WebServer will interact with a second
component, ServerSecurity, to both verify user login information and to ensure that each
user may only submit a single ballot.

ServerSecurity

ServerSecurity has two functions. First, it will interface with the CIS login system to
provide a secure, well established and convenient method for recognizing users. Second,
it will ensure that each user is only allowed to submit a single ballot.

ElectConnect: Top Level Design Lars Johansson

6

VoteDB

The VoteDB is a database for storing aggregate voter responses to each question on the
ballot. It will store raw data, unassociated with the user logins. For each question on the
ballot, the database will store the number of votes that each response received.
Information will be fed in to the database by the WebServer.

CIS

This object appears on the high-level design diagram to serve as a reminder of the
dependency on the CIS login system as well as to help illustrate the role of the
ServerSecurity component. It is fully implemented and maintained by CIS and we can
assume it to have a well defined interface.

2.2.3 Data Analysis Components

VisGUI

The data visualization interface is a standard windows interface. It is intended for the
group administering the election. It provides a framework for them to view and interpret
the results of the election. At the very least it will have a drop down menu through which
the user can select which ballot question they wish to analyze and a second drop down
menu though which they can specify a visualization method (i.e. bar graph, pie chart,
etc.). This interface will also offer options to view ballot questions which rank candidates
as if they are instant run off questions. In addition the interface will allow the user the
option of exporting the data to a spreadsheet.

It depends on VisDataControl to access the election result data. Based on the user’s
selections the VisGUI will request data from VisDataControl which it will then display in
the appropriate format. If the users decides to export the vote data to a spreadsheet this
message will be relayed to the VisDataControl which will export the data through the
ExcelIO component.

VisDataControl

The VisDataControl component interacts primarily with the VoteDB to query for vote
data which it then interprets manipulates and reformulates if necessary. VisDataControl
is driven by user inputs to the VisGUI which are used to determine how VisDataControl
should manipulate data. If, for example, the user is interpreting a question as an instant
run-off question, she may choose to reallocate the votes of voters who choose the least
popular candidate as their first choice. In this case VisDataControl will handle the
redistribution and will return the updated data to the VisGUI for display.

ExcelIO

ElectConnect: Top Level Design Lars Johansson

7

ExcelIO implements the critical task of writing the vote data to an excel formatted file.
At the very least this functionality must be implemented in case the visualizer does not
allow the user to perform all the required data manipulation. It will be important to have
a working version of this portion of the data analysis module before dedicating
significant time and resources to the VisGUI. ExcelIO will interface with the
VisDataControl which can read vote information from the VoteDB and feed it to ExcelIO
to be written out to the disk.

2.3 External Dependencies

2.3.1 Logins

At this point the major external dependencies are relatively clear. The first is the
necessary use of the CIS NetID or AuthID login system. This will require working
closely with CIS and may place some limitations on the functionality or the potential
design options of our system. It will be important to understand how their system works
before completing a detailed design of the WebServer and ServerSecurity components.

2.3.2 Server Hardware

A second external dependence is the required server hardware. While any windows
based machine should be able to run the software to design the election and to view and
interpret its data, however a more powerful (and stable) machine will be necessary in
order to host the election website itself. We will have to give careful consideration to this
issue as it will affect how we choose to approach the server software.

3.0 Group Organization

3.1 Project Manager

The Project Manager is effectively the group leader. As the leader, the Project Manager
is responsible for maintaining the conceptual integrity of the software design and has the
final word on design, interface and GUI decisions. However, it is critical that the Project
Manager be comfortable and able to receive input and feedback from all members of the
group. From an administrative perspective the Project Manager is responsible for
maintaining a work schedule, enforcing deadlines and remaining informed of the general
progress of the project. The Project Manager will also facilitate communication among
group members and will be the arbiter of disputes should any arise. The Project Manager
must also be available to advise on specific questions relating to code and to do research
on questions put forward by the engineers.

Potential Project Managers:

o Xander Boutelle
o Lars Johansson

ElectConnect: Top Level Design Lars Johansson

8

3.2 Ballot GUI Engineer

The Ballot GUI Engineer is responsible for the design and implementation of the Ballot
Design GUI consistent with the requirements and goals laid out in the final project
specifications. It is expected that this will be the most robust of the three user interfaces
and thus a single programmer is being set aside for its implementation. This also means,
though, that the Ballot GUI Engineer should have time to fully test their component at the
pre and partial integration phases. Thus, the tester will have limited responsibilities when
it comes to designing and trying test cases with respect to the Ballot GUI. The Ballot
GUI Engineer should have an interest in the design of user interfaces and should be
comfortable arranging third party user tests.

Also, the Ballot GUI Engineer will design and code the MainGUI, which should not pose
a significant additional challenge.

Potential Ballot GUI Engineers:

o Michael Black
o Lars Johansson
o Xander Boutelle

3.3 Ballot Logic Engineer

The Ballot Logic Engineer is responsible for developing the low-level design and
ultimately for implementing the BallotDataControl, BallotData, CandidateData and
HTMLWriter components as described above. The Ballot Logic Engineer should be
comfortable with data structures and with interacting with a user interface. Like the
Ballot GUI Engineer, the Ballot Logic Engineer will also be expected to undertake almost
all of the testing of their portion of the project. The Ballot Logic may not be the same
volume of code as the other engineers are expected to produce, thus the Ballot Logic
Engineer should have more time available to test their component both in the pre and post
integration phases.

Potential Ballot Logic Engineers:

o Dan Silverman
o Alex Kossey

ElectConnect: Top Level Design Lars Johansson

9

3.4 Server Engineer

The Server Engineer is responsible for the design and implementation of three
components: the WebServer, the VoteDB and ServerSecurity. These components
comprise the election administration module. The server engineer should have existing
knowledge of web server programming as well as knowledge of or an interest in database
programming. The Server Engineer will also have to spend time learning about the CIS
login system and should be prepared for this. Because the programming here is expected
to be complicated not only in terms of lines of code but also in terms of the diversity of
areas the programmer will need to understand, the Server Engineer can expect the help of
Project Support especially in the testing phases of their work.

Potential Server Engineers:

o Pawel Wrotek
o Lars Johansson

3.5 Visualization GUI Engineer

The role of the Visualization GUI Engineer is very similar to the role of the Ballot GUI
Engineer. He is responsible for the design and implementation of the User Interface for
data analysis and visualization. The data visualization module is the most flexible in
terms of size and scope, so the Visualization GUI Engineer will be expected to work
closely with the Visualization Logic Engineer, especially during the design phase, to fully
detail and prioritize the requirements for this portion of the software. Also, the
Visualization GUI Engineer should have an interest in developing creative and clear
methods for displaying and interpreting data. The Visualization GUI Engineer will also
be primarily responsible for the testing of this component, though help may be provided
by Project Support.

The WebGUI will also be the responsibility of the Visualization GUI Engineer. This
may seem unusual at first, however it makes sense that a team member with experience
programming user interfaces should be assigned to the WebGUI. This is especially true
because the WebGUI will be fairly small both in terms of features and lines of code.
Thus, it would be far more efficient to have the Visualization GUI Engineer, who is
already learning how to code a GUI, implement this as well than to require the Server
Engineer to learn how to create a GUI on top of server and database code.

Potential Visualization GUI Engineers:

o Michael Black
o Catherine Hill
o Xander Boutelle

3.6 Visualization Logic Engineer

The Visualization Logic Engineer will work closely with the Visualization GUI Engineer
to prioritize the features they will implement in terms of data visualization. She will be

ElectConnect: Top Level Design Lars Johansson

10

responsible for designing and implementing the VisualizationDataControl and the
ExcelIO components. The Visualization Logic Engineer should be proficient and have
an interest in data manipulation and organization. They should also be knowledgeable
about file I/O and have an interest in learning the specifics of Microsoft Excel file
structure.

Potential Visualization Logic Engineers:

o Catherine Hill
o Dan Silverman
o Alex Kossey

3.7 Project Support

Project Support will be responsible for a variety of tasks. The three main functions
Project Support will perform are (1) tool development and maintenance, (2) testing and
(3) preparation of system documentation. Tool development and maintenance will most
likely be a front heavy responsibility. It will include, among other things, setting up a
logical directory structure, installing and configuring CVS, writing Makefiles and writing
useful scripts. As a tester, Project Support will independently test individual portions of
code and will assist especially in partial and post integration testing. This will provide a
useful “reality check” for the other programmers since it is often best to have an outsider
test your code because they do not necessarily understand how you intend the software to
be used. Finally, documentation is an important part of this project since UCS will need
to understand how to use the software and must be able to quickly and efficiently pass
this knowledge along to future members. Thus, Project Support will be responsible for
writing tutorials and help documents to accompany the software as a finished product.

The goal is that Project Support will remain busy over the course of the project as tool
development will take place mostly at the beginning of the project, testing will be most
helpful in the middle as the system engineers are still dedicating most of their time to
writing new code and documentation will be prepared mostly at the end of the process
when the attainable feature set is largely known.

Potential Project Support:

o Pawel Wrotek
o Xander Boutelle
o Lars Johansson

ElectConnect: Top Level Design Lars Johansson

11

4.0 Schedule

March
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

 1 2 3 4 5

6 7 8 9 10 11
Final Design
Doc.
Complete

12

13 14 15 16
Initial
Interface
Design

17 18 19

20 21 22 23 24 25
Final
Interfaces
Complete

26

27
Spring
Break

28
Spring
Break

29
Spring
Break

30
Spring
Break

31
Spring
Break

April

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
 1

Spring
Break

2
Spring
Break

3 4

5 6
Detailed
Component
Designs

7 8 9

10 11 12 13 14 15 16
GUI/Logic
Integrations

17
Early user
GUI tests

18 19 20 21 22 23
System-
wide
Integration

24
Begin Post -
Integration
testing

25 26 27 28 29 30

ElectConnect: Top Level Design Lars Johansson

12

May

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1
Feature
Freeze

2 3 4
SunLab
Demo

5
Begin final
testing and
debugging

6 7

8 9 10 11 12 13
Docs.
Complete

14

15 16
Final
Handin

17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

5.0 Updates

5.1 Assumptions

GUI Interaction

The specifications document detailed the difference between the three GUI’s
ElectConnect requires. However, it was not explicit about how they will interact, what
binds them together, or how the user will navigate between the GUI’s. This document
clarifies those points by adding and discussing the MainGUI which occupies a place
above the three second tier user interfaces.

Server Security

Server security and authentication were topics not covered in great detail in the
specifications document. Hopefully by including the ServerSecurity component here the
issue has been disambiguated or at the very least is now more clearly presented as one of
the challenges of this project.

ElectConnect: Top Level Design Lars Johansson

13

Component Interaction

The specifications document gave, I think, relevant explanations of how each of the high-
level parts of ElectConnect are supposed to work, at least in this implementation.
However, the interactions, dependencies and data flow among the various parts may still
have been unclear. The goal then in this design document was to nail down how data
flows between high-level components, where the dependencies lie and how the high-level
system components interact with each other.

5.2 Updated Requirements

5.2.1 Highest

o provide an interface similar to standard Windows applications for designing the
ballot on a question by question basis (PowerPoint as a model)

o generate HTML, scripts, etc. necessary to run a web-based election
o election website is clean and uncluttered with a well defined flow for the user to

follow
o output election results data in excel ready format
o secure login system to ensure privacy and that each user votes only once

5.2.2 High

o host a site dedicated to administering the election
o the system must be able to support between 2,500 and 5,500 votes cast and a

minimum of 200 simultaneous users
o support multiple election (referendum, survey) formats
o provide flexibility for different types of ballot questions (eg. vote for one of the

following, rank the following candidates, etc.)
o use a database of users to provide different ballots to different logins based on

class year

5.2.3 Medium

o provide a feature rich interface for analyzing and interpreting election results
o allow for a section of the election website containing candidate biographies and

personal statements
o support for instant run-off voting
o web interface viewable through IE, Netscape and Firefox

5.2.4 Low

o support multiple election styles beyond majority wins and instant run-off

5.2.5 Lowest

o provide an interface through which the group designing the election can modify
the appearance of the web ballot itself

