
GeoEvents

Top-Level Design

Haley Allen
<haley>

2/24/2006

 I. Components

 A. Database
 i. Events Database

The main part of the database, the Events Database will store an
event's name, location, time period, description (or URL to such), and
URL to where the event was parsed from.

 ii.Places Database
The solution to the issue of many places being the named the same
(or similar) name. Will contain places in the Providence area, their
location, phone number, website (if possible), as well as any
nicknames or abbreviations commonly used to name them.

 B. Parser(s)
 i. Events Parser

It will access the HTML for sites we determine to have useful events
to parse, and parse them accordingly for useful information (as
specified above).

 ii.Places Parser
It will access and parse the HTML and RSS feeds from sites we
determine to have accurate, relevant information regarding locations
in Providence that may have events.

 C. GUI
This will be the actual web site on which a user can search for local
events. It will not (and cannot) be written in C++, although the language
it will be written in is yet to be determined. It will include a searching
interface (place, time, category, name, etc.), a map of possible events, a
link to the event's website (or website from which we parsed the
information), a link to directions to this location, etc. It may also include
some potential add-ons including a calendar, weather information, and
many others.

 D. Request Listener
This will serve as the C++ interface to the GUI. It will wait for requests
from the GUI and then pass them along to the Request Handler.

 E. Request Handler
The Request Handler will be in charge of taking a search request from
the request listener and figuring out what it needs to search for in the
Database(s). It will then take that information, format it, and return it to
the Request Listener which will pass it along to the GUI.

 II. External Dependencies
 A. TurnTo10.com and ProJo.com

There are many websites from which we could get information regarding
upcoming local events. Two such examples are TurnTo10.com, a TV
news site, and ProJo.com, the local newspaper site. Other such sites
include providence.citysearch.com and local.yahoo.com which may

prove easier to parse then the other two. One additional feature of
local.yahoo.com is that it provides an RSS feed of today's events
happening around Providence.

 B. Places Websites
These websites will serve as validators to the location information our
map API provides. As there are many places in Providence with the
same or similar names, these sites will provide information regarding
their potential relevance to our searches, that is, how likely they are to
host an event. For example, Dunkin Donuts and Dunkin Donuts Center
are similar in name and yet it's far more likely for there to be an event in
the latter than in the former.

 C. Map API
From this, our GUI will be able to display maps of locations and their
events, as well as provide a tagging system on said map and a search
engine. Although this external dependency is a risk, relative to the other
two (which are pretty huge risks), this seems to be one that is
managable.

 III.Task Breakdown and Group Organization
 A. Project Manager – Haley

The Project Manager will be responsible for the project. In addition, she
will keep track of the schedule and where everyone is on that schedule.
She will arrange and manage regular meetings and provide assistance
where there is trouble.

 B. Coder(s)
 i. Database – Yotsawan
 ii.Parser(s) – Andy, Toby
 iii.Request Handler – Kaveh
 iv.Request Listener – Sam
 v.GUI – Peter

The coders will be in charge of their specific components: in their design,
adherence to the interfaces, and their completion. They will also be in
charge of the component testing on their code.

 C. Architect – Sam
He will be in charge of having a good overall picture of the design, each
component, and how they all fit together. If coders need
implementation-specific feedback, he/she should see Sam.

 D. Tools Guru – Haley
She will setup and maintain the tools the group will need. If any of the
other team members have questions regarding the usage of certain
tools, she will provide assistance.

 E. Documentation Czar – Amy
She will keep track of all paperwork during the course of the semester
and will also be in charge of taking minutes at each of the meetings as
well as distributing them afterwards. She will also be in charge of
maintaining a basic web page will relevant information to the group.
Finally, she will be in charge of the README document that gets
attached to the final product for general consumption.

 F. Integration Manager – Amy
She will be in charge of the schedule for the integration of various
components in addition to actually managing these integrations. She will
also lead the integration testing.

 G. Tester – Toby
He will be in charge of testing, and delegating testing, from the user's
point of view.

 H. Cheerleader – Peter
He will be in charge of resolving conflicts and acting as a support system
for anyone who is feeling discouraged. He will be generally friendly and
approachable.

 IV.Schedule
3/10: Final design document complete. Begin interfaces.
3/24: Interfaces and updated final design document complete. Begin
coding and component testing.
4/7: Basic functionality complete, detailed designs complete. Continue
coding and component testing.
4/14: Initial codebase complete. Begin integration and integration testing.
4/19: Initial integration complete. Continue integration testing and begin
user testing.
4/28: Premlim demo ready. Continue debugging and user testing.
5/19: Final demo ready and all documentation complete. Continue user
testing.

 V. Assumptions
My main assumption was regarding Andy's component diagram, the one
from which I based my design. His diagram included most of the
components I think are necessary but connected them according to data
flow as opposed to actual calls being made. As a result, I had to make
some assumptions about which way the calls would be directed from his
(sometimes) two-way arrows. I also made the assumption that there would
need to be some C++ interface (here, the Request Listener) that listened
for search events in the GUI and then would pass them along to the
Request Handler he initially specified.

