
CS 190 Revised Project Specifications Proposal
Amy Simpson (asimpson)

March 6, 2006
GeoEvents

1. Title: GeoEvents

2. Description

GeoEvents is designed for Rhode Islanders looking for something to do.
Often people want to go out and do something but lack the motivation, time,
or energy to put in the effort to actually find that something. Newspaper
listings lack the ability to adapt to any of the specific needs of the user and can
be hard to use. GeoEvents will be able to mesh the current events listings
from the newspaper (the Providence Journal since it is Rhode Island based)
with the Google Maps API to provide a much more interactive and intuitive
way to look for interesting activities. One current example of a similar project
can be found at http://api.local.yahoo.com/eb/demo/. GeoEvents will go
beyond, however, and provide additional useful features (specified in section 3
below).

3. Feature Set/Priorities (Rated 1-6: 1 being the highest priority)
 (The priority rating is a result of responses to questions from possible users
and an attempt to mirror similar existing interfaces in order to increase the
intuitiveness of the project’s use)

a. Google Maps API with flags marking the location of local events that
qualify for the filter parameters provided. [1]

i. This will be a frame on the page containing a Google Map of
the area. When GeoEvents is first opened up, the default map
should be of Providence and all filter types of events should be
included on the map. All events are marked by a flags which
can be clicked for details (more details in section c below.)

b. Be able to enter in a ‘base’ address (the address the user will be starting
from, for example their home address or the address of their office if
they are leaving from work [2]

c. Clicking on an event:
i. an event’s flag should expand to show the brief details of the

event in a concise, readable, and consistent manner.
1. Display the event location [2]
2. Display the event time [2]
3. Display the price of the event [2]
4. Show the distance from specified base address (if there is

one, other wise this field should not be included in the
flag information) [3]

d. An interface for choosing the search dates [2]

dhl
Note
Sections 1, 2, 3, 6, 7 are requirements. The rest are specifications.

dhl
Note
Good motivation and description of the problem and proposed solution

dhl
Note
Good to see 6 priority levels.

Good level of detail.

I suspect that some diagrams of what a UI might look like could make these features easier to understand.

e. Ability to filter event type (e.g. choose only Theatre & Museum) [2]
f. Be able to get directions to a specific event [3]
g. Display below the map window a list of the filtered events [1]

Optional Features (Priority four and over)
(a) Have an interface that will learn from past usage of specific users

and be able to ‘suggest’ events [6].
(i) Using past inputs (searches and events the directions were

found for) from the user, GeoEvents would be able to find and
‘suggest’ similar types of events that the user might enjoy

(b) Be able to select more than one date at a time [4]

 The first priority (priority one) is having a map that shows and lists the events
around Rhode Island. This is absolutely essential. For this project to have
real usefulness, all items in priority two should be implemented. This includes
event details including time, location, and price. The third set of priorities are
extremely useful and what would make this project more useful than what is
currently available since it would integrate the direction creating capabilities of
Google Maps into the project, but is not essential to the overall functionality
of the project. Beyond that, other items are helpful and added bonuses, but
not what truly define the project.

dhl
Note
Nice summary of how to assign priorities later, if necessary.

4. System Model Diagram

This is the HTTP server that users will connect to via their web browser. This server
will host the GUI code that generates HTML pages in response to user requests. The
database(s) might also be stored on the same machine.

The GUI is responsible for formulating responses to user requests. This means that
the GUI not only has to be able to take the input and decipher some meaning from
it, but it also has to decide what to query for from the database(s) based on that
meaning and then it has to use Google Maps to display the info it gets from the
database(s). The GUI is basically the glue of the whole project ties all the separate
pieces together.

The Weather Parser Manager is in control of deciding when to gather new
information about weather. When the time comes, the manager uses one or more
parsers to collect weather data and update the Weather Database.

Weather Manager

GUI

Web Server

GUI
(Peter)

2

Web Server
(Kaveh/Sam)

3

weather.com
(Haley)

1
weather DB
(Yotsawan)

1
Google Maps

(Peter)

1
Events DB
(Yotsawan)

1
Events Parser

(Andy)

1

Weather Manager
(Kaveh)

2

Genie
(Haley)

1

Events Manager
(Kaveh)

2

dhl
Note
Levelized diagram helpful to show absence of cyclic dependencies.

Clear indications of the apps that fill in DB's vs. the app that serves up the info.

How do the managers get run? Is there something else above them (or is it included within?)

This diagram shows calling dependencies, but not enough about the kinds of data flowing around.

The Weather.com Parser, when called upon, parses the weather.com website,
collecting data about local weather.

The Weather Database stores information about weather for about the next two
weeks

The Events Parser Manager is in control of deciding when to gather new
information about events. When the time comes, the manager uses one or more
parsers to collect events data and update the Events Database.

The Projo.com parser, when called upon, parses the projo.com website, collecting
data about local events.

The TurnTo10.com parser, when called upon, parses the turnto10.com website,
collecting data about local events.

The Events Database stores the most important information, the actual events.
Locations should already be resolved and latitude/longitude coordinates already
computed and stored in the database.

The Location Resolution Genie is the component that takes a “location” and returns
both an address and a pair of latitude/longitude coordinates corresponding to that
address. The first version of this should be trivial. Any location that is passed in that
isn’t just an address that can be geocoded should just return null which will cause the
Events Parser Manager to drop the event instead of add it to the database. Once this
simple functionality is in place, if there are sufficient resources to do something
cleverer, then a new strategy may be devised to replace this first one.

Genie

Events Database

TurnTo10.com parser

Projo.com parser

Weather Database

weather.com parser

Events Parser Manager

dhl
Note
my favorite component name :-)

5. GUI Diagram

 Address:
 City:
 State:
 Zip Code:

 Theatre
 Music
 Arts & Museums
 Etc…

Event #1
Time and Place
Cost

Event #2
Time and Place
Cost

Event #3
Time and Place
Cost

4

3
2

5

 Date:
6

1

dhl
Note
Very clear indication of what the UI will look like -- nice.

The GUI is organized so that the most noticeable item is the map itself.
Easily accessible on the right are the options for changing and filtering the
events. They are in a standard clean format so that they do not distract from
the map. Below this main part of the GUI, the list of events is displayed.

The items in the map, corresponding to the green number tag, are:

1. Title: The page title.
2. Map: This is the map that will display the event locations with markers. Users

can pan around the map and zoom in or out. Clicking on a tag will provide
the user with more complete information about the event including time,
location, cost, and distance (see details in the features section above)

3. Address Frame: This area is where the user inputs the address to center
around and base directions from. After entering the address data, the user
can click “set address” set this option.

4. Filter Frame: This box contains all the filter options for event types.
5. Date Frame: Allows the user to select a date to look at events for.
6. Results Frame: All events and their corresponding details are displayed here.

6. Usage Requirements

a. Since this product would be of public interest it would need to be reliable
under a heavy usage (500).

b. Any longer of a response time than 5-10 seconds would be inadequate
since multiple searches or refinements of searches (different types of
events, the zoom factor on the map) could be made in short succession.

c. Depending on connection speed, loading should take less than 30 seconds
or a minute

d. GeoEvents must be consistent.
i. If a user searches around a base address and certain type filters and

finds an event they like, if they come back an hour later to get
directions, they should easily be able to find it with the same search
parameters.

ii. Essentially, searches with the same parameters should return the
same results.

7. Non-Functional Requirements
a. Testing

i. Besides testing to ensure that the project responds in the
specified amount of time, it is essential that it continues to do
so as the user usage increases.

ii. Data displayed must match events included in the database
1. This should be tested under a high load for reliability
2. Compare located events to actual HTML sources; ensure

that addresses don't get confused and that all events
claimed by parser really exist.

dhl
Note
Quantitative requirements will be very helpful for testing.

Consistent responses is an interesting requirement.

dhl
Note
7a is more specifications level than requirements.

3. Compare located events to actual HTML sources; ensure
that addresses don't get confused and that all events
claimed by parser really exist.

4. Compare located events to actual HTML sources; ensure
that addresses don't get confused and that all events
claimed by parser really exist.

b. GeoEvents must be accessible from any computer through the web
c. Must be written and ready to demo by the end of April 2006
d. Must have thorough documentation on the use of the program and

possible extensions for the future that were not implemented in this
version

e. Ease of Use
i. This project should be usable for anyone capable of surfing the

internet.
8. Divisibility

a. This project should end up being sufficiently divisible for the projected
size group for this year’s class. Different elements include

i. Overall GUI
ii. Google Maps API interaction

iii. Parsing of the Providence Journal’s Events Page information and
other events listings

iv. Filtering and searching of the event information once parsed
9. Specific Challenges/Issues for the Project

a. External Dependencies
i. It is unclear at the moment how well organized the Providence

Journal’s Events information is (it is not expected to be highly so).
The largest difficulty could lie in deciphering this language so that it
is in a useful enough of a format to use.

ii. Neither the Google Maps API nor the Yahoo Maps API
interfaces with their directions creating capability.

iii. Google forces the use of an external geocoder (switches an address
to longitude/latitude that can be used in the API). Yahoo has an
internal geocoder.

dhl
Note
Ah, summer break -- time is a good requirement to consider.

Good descriptive "ease-of-use" requirement.

dhl
Note
Good external dependencies to bring out. They are usually the riskiest parts of a specification/design. Good research into issues like the need for an external geocoder.

