INTRODUCTION

Inspiring leaders look at the world in & funny way. The company build-
ing could be burning to the ground, and instead of panicking about the
last jobs, the inspiring leader takes one look at the flames and breaks out
the hot dogs and marshmallows, When evervbody around them is pessi-
mistic, such leaders inspire confidence even though there may be every
reason to be pessimistic. They e an optimistic bunch, tending to inter-
pret events in a positive light. With that perspective, inspiring leaders
tend to view failures not as faflures but merely as learning experiences
that will help them surmount the next obstacles that come along. And
because inspiring leaders tend not to experience a sense of failure,
thev're willing to trv the outlandizh ideas that can lead to major break-
throughs. If an outlandish idea flops, the inspiring leader doesn’t see the
episode az a failure but merely as more information. Such leaderzhip has
little ko do with experience. It's a combination of strong desire, an un-
usual way of leoking at the world and its opportunities, and such a clear
vizion and the ability to communicate that vizion that others are in-
spired to work with the leader to make thal vision come true.

Despite the belief that such leaders are born and not made, it is
Possible bo learn to be an inspiring leader. [t izn't easy, though. Usually
the person must change many of his or her fundamental beliefs and atti-
tudes in order to view the world in that peculiar way, You might say that
it calls for a personality makeover—an idea that most peaple would
think impossible and that many woeuld find repugnant. T think that's
why it's rare for people to become inspiring leaders parbway through
their lives, People don't wsually change their perzonalities to thak extent.

THE ResT OF Us

Fortunately, most software project leads aren’t starting new companies
or venturing off into uncharted territery, The fypical lead is usuaally em-
barking on the development of version £.21 of an application or working

DEBUGEING THE DEVELOPMENT PROCESS

on some other project that has a fairly straightforward future cvervbady
is in basic agreement about. The typical software lead doesn’t need to be
a radically inspiring leader capable of getting team members to do out-
landish things. The typical aoftware lead simply needs to be effecfive,
which is quite learnable and doesn’t require anything like a personality
transformation. It just requires learning the habits and strategies that
have been found to work in bringing quality products to market on
schedule—and without working 80-hour weeks.

All effective leads understand that for a project to be successful,
every single member of the team must be in on the strategies that will ba
used o ship a quality product on schedule. You don't have to be the lead
in order to make good use of the techniques and strategies [describe.
This ook is for every team member, not just the lead. Unless every team
member knows what it takes to get a quality product out the door with-
out working 80-hour weeks, it won't happen.

WriTiNG SoLID CODE

Aot of steps are invalved in the development team’s effort to bring a
software product to mark-&{—ever}-'!hing from designing the code to
working with the marketing team. In every one of the steps in the devel-
apment process, peaple make mistakes. There's nothing new in that ob-
servation, Ive called this book Debugeing the Devclopment Process bo get
programmers ko think of the development process as they would a cod-
ing algorithm: it's something that can contain bugs that will cause
wasted and misguided effort, and it's something that can be optimized
to function better.

In Writing Salid Code, the companion book to this one, [focused on
what I Believe is the most serlous “bug” in the development process: that
there are far too many programming bugs, Writing Solid Code described the
technigques and strategies programmers can use to detect existing bugs at
the earliest possible moment and how programmers can prevent those
bugs in the first place,

In Digbaiggang the Development Process, 1 focus on the techniques and
strategics that programmers can wse to get quality products out the door
with a minimum of wasted effort, In the first three chapters, I talk about a
number of basic concepts and strategies that a team showld act on i they

INTRODUCTION

want to release products without working twelve hours a day, zeven
days a week. The final five chapters build on the earlier chapters, focus-
ing aingly on overblown corporate processes, the ins and outs of sched-
uling, programmer training, attitudes, and long hours.

Writing solid Code and Debugging the Development Process ave com-
panion books, You'll find that the ideas in the two books interact with
one another to a certain extent. When ideas in the two books overlap,
vou'll Find that Writing Selid Code tends to be more focused on the code
itzelf. In one instance 1 excerpt part of a section from Writing Solid Code
i thiz book because 1 think that the point it makes iz even more critical
to the smooth running of a project than it is to writing bug-free code.

DEVELOPMENT AT MICROSOFT—A SMNAPSHOT

Most of the examples in thiz book are deawn feom my experience at
Microsoft. A brief description of how responsibilities are divided among
leads and a sketch of how a typical project proceeds at Microsoft might
put thosea examples in context for you,

A Microsoft project typically has at least three different types of
leads working directly on the development of the product:

* Project Lead. The project lead ig ultimately responsible for the
code. He or she i also respongible for developing and moni-
taring the schedule, keeping the project on track, training the
programmers, conducting program reviews for upper man-
agement, and so on, The project lead is usually one of the
most expericnoed programmers on the team and will often
write code, but only az a secondary activity.

* Technical Lead. The technical lead is the programmer on the
team who knows the product’s code better than anyone else.
The technical lead is responsible for the internal integrity of
the product, seeing that all new features are designed with
the existing code in mind. He or she is also usnally respon-
sible for ensuring that all technical documents for the project
are kept up-to-date: file format documents, internal design
documents, and so on. Like the project lead, the technical lead
i usually one of the most experienced programmers on the

pProqoct

DEBUGGING THE DEVELOFMENT PROCESS

Program Manager. The program manager is responsible for
coordinating product development with marketing, docu-
mentation, testing, and product support. In short, the pro-
gram manager’s job is to see that the preduct—everything
that goes into the box—gets done, and that it gels done at the
level of quality expected by the company. The program man-
ager usually works with the product support team to coordi-
nate external beta releases of the product and works with end
users to see how the product might be improved. Frogram
managers are often programmers themselves, but they limit
their programming to using the product’'s maceo language (if
one exists) to weite “wizards” and other usefal end user mac-
ros. Maore than anyone else, the program manager is respon-
sible for the “vision” of what the product should be.

The name “program manager”™ can be misleading be-
cauze it implies that the program manager is superior in rank
to the project lead, the test lead, the documentation lead, and
the marketing lead. In fact, the program manager is at the
same level as the other leads. A more appropriate name for
the program manager would be “product lead"” since the pro-
gram manager is responsible for ensuring that all the parts of
the praduct—not just the code—get done on schedule and at
an acceptable level of quality.

O @ typical project, the program manager (or managers if the
project is large encugh) works up front with the marketing, develop-
ment, and product support teams to come up with a list of improve-
ments for the product. After the list of features has been created, the
program manager writes the product specification, which describes in
detail how each feature will appear to the user—providing, for instance,
a drawing of a new dialog box with a description of how it will worlk, or
the name of a new macro function with a description of its arguments.
As soon as the product spec has been drafted, itis passed out bo all of the
teams involved with the product for a thorough review. Once the final
spiec has been nailed down, the teams go to work.

The program manager meanwhile uses mock-ups of features 1o
conduct usability studies to be sure that all of the new features are as
intuitively casy to wse as everybody originally thought they would be. T

INTRODICTION

a feabure turns cut to be awkward to use, the program manager pro-
poses changes to the spec. The program manager also waorks on sample
documents for Eha pn}duft dizks and on those ond geer maeros [men-
tioned earlier. As features are completed, he or she reviews each to
ensure that it meets all the quality standards for shipping the product—
im particular, that the feature is snappy enough on low-end machines,

Develepment continues and eventually reaches a point known as
“visual Freeze,” meaning that all features that wall affect the display
have been completed, Onee the code reaches the visual freese point, the
user manuals are finalized with screen shots of the program, Conse-
quently, from that point on, developers hiave to be careful not to affect
the display in any way so that the screen shots in the manuals won't dif-
fer from what the user sees in the program. The programmers, of course,
would prefer that the screen shots be taken only after all the code i= fin-
ished, but the manuals need a long lead time and have to be sent to the
printer well before the code will be finalized. In some cases, in order to
reach visual freeze on all the features in time for the manuals to be ready
at the releaze date, the programmers will only partially implement the
features—for instance, displaying a nonfunctional dialog good for
screen shots but not much else. The programmers come back to the fea-
turas and fully implement them later.

Omee all of the features have been completed —the “code complete”
stage—Lthe programmers put their efforl into fixing all outstanding bugs
in the bug-list and making any necessary performance improvemeants.
When the code 12 finally ready to be shipped, the project lead or the tech-
mical lead creates the “golden master disks.” The program manager
sends the golden masters off to manufacturing for duplication, and the
software gets stuffed into the boxes with the manuals, the registration
cards, and other goodies, A little bit of shrink-wreap, and the prodact is
reacly for an end user,

Iwe left out a lot of details, but this brief overview should be
encugh to enable vou to put the occasional example in this book that
might otherwise be too Microsoft-specific into context,

I should also mention that e-mail is the lifeblood of Microsoft, All
internal business is conducted over comail, and, at least in development
circles, vou have to have a really good reason to inberrupt someone with
a telephone call, Most interaction ameng developers goes on over e-mail

and in the numerous hall meetings that spring up spontanegusly. This
carporate sensitivity to intecruptions accounts for Microsoft’s policy of
giving evervone a private office with a door. If vou're working and you
don't want to be interru pred, vou simply close vour door.

IT's HARDER THAN IT SOUNDS

My final concern is that this book might make it sound as if applying all
of its advice will, overnight, transform a less-than-model project. Cer-
tainly you can apply many of its technigues and strategies immediately,
and you will get quick results; but others—some of the training tech-
niques, for instance—take time to produce results. If your team is cur-
rently having trouble, you can't expect bo read this book and a week later
have your project turned around. In my expericnce, burning around a
troubled project takes bwo bo six months, with most of the improvement
coming about in those first two monthe, From that point on, the im-
provements come more slowly and are less dramatic,

xX

