Epilogue

A WORD ON
LLEADING

Occasionally I'll come across the idea that as the lead for a project, you
cannot and never will be a part of the team, that you will always be a
step removed, and that there is nothing you can do about it. In my expe-
rience, that isn’t true. I've been a part of dozens of teams—as both lead
and programmer—and without exception the teams that jelled were
those in which the lead was just another person on the team, one who
happened to have some nonprogramming responsibilities. There was
never the feeling that the lead was superior.

To someone who didn’t know much about American football, the
quarterback might seem to be in a superior position with respect to the
other players. After all, the quarterback calls each play, the quarterback
is the focal team member who has control of the ball, and after a victory
it’s the quarterback who usually gets carried off the field by the other
team members.

171

DEBUGGING THE DEVELOPMENT PROCESS

The quarterback might appear to be superior in rank to the other
players, but we know better. The quarterback is just another team mem-
ber who happens to have unique responsibilities. An effective project
lead is no different. He or she understands that a focal team member is
not superior to other team members:

The lead is just another team member, who, like every other team
member, has his or her own set of unique responsibilities.

Effective leads understand that team members play different roles
on the team. Some team members are responsible for the data entry part
of the project, others for the print engine, still others for foreign file con-
verters and the user interface design. Leads may implement features
along with everybody else, but in addition to that work, they have the
responsibility for setting project goals and priorities, keeping depen-
dent groups such as Testing and Marketing informed of progress, creat-
ing an environment in which the team members can work effectively,
and ensuring that team members are learning new skills as a way of
adding value to the company. A lead can do all those tasks without
adopting the attitude that he or she is superior.

If a lead has the attitude that he or she is superior, a whole array of
harmful behaviors follows. Here’s what happens in extreme cases:

¢ The lead blames the team for failures but gladly takes the
credit for successes.

¢ The lead doesn’t care about the people on the team. They're
just workers. Who cares if they work 80-hour weeks? The
lead is concerned only that the team might make him look bad
by missing a scheduled date.

¢ The lead expects team members to jump at every, command
and never question her authority. “Isaid ‘doit,” sodo it” is the
motto.

¢ Anxious not to appear inferior in any way, the lead attacks
any team member who threatens his authority or who ap-
pears to be more skilled or knowledgeable than the lead in
any area.

& Because she must always be right, the lead never admits it
when she is wrong.

172

EPILOGUE

¢ Thelead shuts down anybody who suggests improvements to
the development process or otherwise rocks the boat.

¢ Thelead acts as if he is indispensable.

Granted, not all leads who think of themselves as superior behave
so tyrannically, but even in mild cases the air of superiority still comes
through. Do team members work for the lead or with the lead? The very
langucge the lead uses reveals the underlying attitude.

A lead who views herself as a team member works better because
she spends little or no time fighting to keep the other team members in
their place—why should she? By choosing to adopt the attitude that -
she’s not superior, she relieves herself of having to attack perceived
threats to her authority. When such a lead discovers a superstar on the
team she’s just inherited, she doesn’t raise her guard and start the terri-
torial one-upmanship battle so common in people who must feel supe-
rior. Such a lead is more likely to be thankful and to work together with
the superstar for the benefit of the project.

Your own attitude as a lead can influence everything you do. If you
and a team member disagree over a performance review, how do you
react? Do you stand firm because you feel you need to be “right,” or do
you discuss the problem to see if there’s another valid interpretation of
events? If you and the team member still disagreed, would you amend
the review to describe both positions so that others who read the review
later could make their own evaluations?

Look again at the bulleted list that characterizes the behaviors of
the leads who insist on regarding themselves as superior. Would a lead
who viewed herself as just another team member exhibit those kinds of
behavior? Which type of lead would you be more willing to work with,
one who behaves in a superior way or one who treats you with more
respect? Be the kind of lead you would want to work with.

+
Leads should see themselves
as members of their teams, not
as superior to them.

el ———

173

REFERENCES

These books are explicitly referenced in the text.

Bentley, Jon. Writing Efficient Programs. Englewood Cliffs, N. J.: Prentice
Hall, 1982.

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams. New York: Dorset House, 1987.

Gerber, Michael E. The E-Myth: Why Most Small Businesses Don’t Work
and What To Do About It. New York: Harper Business, 1986.

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming
Style. 2d ed. New York: McGraw-Hill, 1978.

Koenig, Andrew. C Traps and Pitfalls. Reading, Mass.: Addison-Wesley,
1989.

Maguire, Steve. Writing Solid Code. Redmond, Wash.: Microsoft Press,
1993. -

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press,
1993.

McCormack, Mark H. What They Don't Teach You at Harvard Business’
School. New York: Bantam Books, 1984.

Weinberg, Gerald M. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold, 1971.

These educators are mentioned in the preface:

Anthony Robbins

Robbins Research International, Inc.
9191 Towne Centre Drive, Suite 600
San Diego, CA 92122

Phone: (800) 445-8183

FAX: (619) 535-0861

175

DEBUGGING THE DEVELOPMENT PROCESS

Michael E. Gerber

Gerber Business Development Corporation
1135 N. McDowell Blvd.

Petaluma, CA 94954

Phone: (707) 778-2900

176

INDEX

A

annual reviews, 120-22
applications. See also Microsoft Excel
priorities for, 18-19
and shared code, 141-43
arbitrary deadlines, 99
assignment bugs, 126-27
attack plans
including in postmortem reports,
78-81
need for detail, 79-80
questions that elicit, 33
attitudes
about bugs, 125-29
about lead, 171-73
leveraging, 14449
negative, changing, 131-35
resistant, 129-31
toward users, 136—-40
toward working long hours, 155-61,
168-70

B

backward compatibility, 14
bad coffee (example), 24-26
Bentley, Jon, 117, 119
bonuses, basis for, 161
books, recommended, 117
bugs

attitudes toward, 125-29

177

bugs, continued
fixing early, 128
goal of bug-free code, 125-29
as negative feedback loop, 27, 39
and quality definition, 28
questions to ask, 31-32
researching problems, 50
when to fix, 26-29

C

C code, rewriting in C++, 68-69
C compiler, 59-62, 1024
“can’titude,” 131-35
clipboard, Microsoft Excel, 67-68
code
bug-free, 125-29
» goto statements in, 35-37
line counts, 40-41
master, 127-28
multi-platform, 133-35
portability, 17, 18, 19
priorities for, 17-19
reformatting source files, 68—69
reusable, 141-43
shared, 141-43
variations among programmers, 108
Code Complete, 36, 117
coding wars, 108
coffee quality (example), 24-26
compatibility, backward, 14

DEBUGGING THE DEVELOPMENT PROCESS

compilers
cross development project, 59-62,
102-4
and linker quality, 140-41
turning on warnings, 126, 127
“cool” features, 65-67
cross development system
becomes product, 145-47
and FORTRAN compiler, 59-62
subprojects in development, 102—4
cross-pollination theory, 115
crutches, systems as, 30
C Traps and Pitfalls, 50, 117

D

deadlines. See also schedules; ship dates
arbitrary, 99
near-term, 98-101
and subprojects, 98-104, 105
debug code, adding, 129, 130-31
debugging
attitudes toward, 125-29
questions to ask, 31-32
research during, 50
when to do, 26-29
decision making
and meetings, 85, 86
and priorities, 20, 130, 131
and snap decisions, 20
delegation, 4-5
DeMarco, Tom, 108
dependency issues
controlling, 15
and saying No, 54-55
and status meetings, 8
design meetings, 83—-84
desk accessories, adding, 65-67

178

development process at Microsoft,
Xvii-xx

development teams. See programmers;
project leads

dialog manager project, 48-51, 114, 153

Dijkstra, Edsger, 36

E

editing vs. writing, 23-24
The Elements of Programming Style, 117
e-mail
answering, 5
at Microsoft, xx
as problem, 2, 3, 30, 163, 164
for status reporting, 10
when to read, 30, 165, 166
The E-Myth, 117
end-cut pot roast rule, 75
end users
attitude toward, 136-40
considering, 139-40
Excel. See Microsoft Excel

F

features. See products
feature teams, 11
feedback loops, 37-41
figure skating, 107-8
fixing bugs
attitudes toward, 125-29
questions to ask, 31-32
research while, 50
when to do, 26-29
flextime, 163
focus
importance of, 2—4

INDEX

focus, continued
and need for status reports, 7-10
removing obstacles to, 4—6
follow-up work, 3, 87-88
FORTRAN compiler, 59—-62
“free” features and products, 61-62
function headers, adding, 68

G

Gates, Bill, 134
Gerber, Michael, 117
Gimpel Software, 50
goal setting
and bug-fixing, 2629
and coding priorities, 17-19
and deadlines, 99
and debug code, 130-31
and decision making, 20, 130, 131
importance of, 16
in the moment, 119-20
and need to say No, 57
personal, 116-20
specificity of, 12-15
and subprojects, 98-104
goto statements, 35-37
guidelines vs. rules, 35-37, 75

H

headers, adding, 68
housekeeping. See process work
house moving (example), 5, 46

I

improvement goals, 11620
inline directive, 19

179

K

Kernighan, Brian, 117

keyboard-driven menus
and end users, 139-40
and shared code, 141-42

Knuth, Donald, 36

Koenig, Andrew, 117

L

LAYOFF macro, 63
leads, types of, xvii—xviii. See also project
leads, program managers
leverage
creating, 144-45
use of, 145-46
libraries. See user interface library
project
linker, need for improvement, 141
Lister, Timothy, 108
little systems, 24, 25, 28, 29, 30
long hours
attitudes toward, 155-61
and personal life, 168-170
and time management, 162-67

M

Macintosh projects. See Microsoft
projects

macros, 19, 63, 64

maintainability, 68

marketing teams, requests from, 58,
63-65

master source code, 127-28

master task lists. See task lists

mastery, 1-2

DEBUGGING THE DEVELOPMENT PROCESS

McConnell, Steve, 36, 117
McCormack, Mark, 117
meetings v
and action items, 87-88
benefits vs. drawbacks, 84-85
and decision making, 85, 86
~ design, 83-84
and follow-up tasks, 87-88
good times for, 83
and negative feedback loops, 88
project review, 4-5, 86
questions to ask before calling, 82, 84
recurrent, 81-84
status, 81
worthwhile, 81-82
Microsoft Excel
clipboard paradigm, 67-68
and LAYOFF macro, 63, 64
multi-platform version, 132-35
schedule for, 91-95, 153
Windows vs. Macintosh versions,
132-35, 139-40
Microsoft projects. See also names of
products
and Applications division, 141, 145
compiler cross development, 59-62,
102-4, 146-47
dialog manager, 48-51, 114, 153
Excel for the Macintosh, 92-95,
132-35, 139-40, 142-43
and Languages division, 140-41, 145
Macintosh keyboard-driven menus,
139-40, 141-42
Macintosh print preview feature,
142-43
multi-platform, 133-35
and shared code, 141-43

180

Microsoft projects, continued
user interface library, 12-15, 51-53, 56,
65-67, 152-53 _
Windows vs. Macintosh, 132, 133-34,
139-40
Word for MS-DOS, 56
Word for Windows, 48-51
Microsoft Windows vs. Macintosh, 132,
133-34, 139-40
milestones
and personal growth goals, 116-18
scheduling by, 98-104
multi-platform code, 133-35

N-O

naming conventions, 68
near-term deadlines, 98-101
negative feedback loops

and bug-fixing, 27, 39

defined, 38

destructive, 39

and follow-up work, 88

vs. negative reinforcement, 40
No, saying, 54-56
object-oriented methodologies, 68—69
operating systems, priorities for, 18
optional compiler warnings, 126, 127
oral reports, 76

P

Pascal compiler, 60, 61, 62, 103
pay raises, basis for, 161
PC-Lint, 50

Peopleware, 108

INDEX

personal growth goals

aligning with project milestones,

116-18
documenting in annual reviews,
120-22

setting in the moment, 119-20
personal life, 153, 168-69, 170
personal schedules, 162-67
planning, 12-15. See also attack plans
Plauger, P.J., 117
portability, as coding priority, 17, 18, 19
positive feedback loops, 38, 40-41
postmortem reports

acting on, 80-81

attack plans in, 78-81

importance of, 78

when to write, 80
pot roast rule, 75
print preview feature, 142—-43
priorities

for coding, 17-19

and decision making, 20, 130, 131

and subprojects, 100-101
proactivity, 46—-47
problems. See also questions

anticipating, 46—48

bringing up, 135

defining correctly, 48-51

e-mail as, 2, 3, 30, 163, 164

and use of time, 162-64
process work, 3-4, 7-10, 88-89
products. See also Microsoft projects

focus on improving, 2-4

“free,” 61-62

inclusive definition, 141

requests to add features, 63-65

substandard features, 138
program managers, Xviii, xix

181

programmers
attitudes toward bugs, 125-29
“average” skill level, 108-9, 112
and bug-fixing, 27, 28-29, 31-32
effectiveness of, 1-2
vs. end users, 136-38
on feature teams, 11
as long-term specialists, 109
need for focus, 2—-4
personal schedules, 162-67
protecting, 4—6
questions to ask, 32
reassigning, 113-15
and skill-building, 108-13
and task decisions, 130, 131
training, for promotion, 116-18
from upstart companies, 123
use of time, 162-67
working long hours, 151-70
project goals
and bug-fixing, 26-29
and coding priorities, 17-19
and debug code, 130-31
and decision making, 20, 130, 131
and need to say No, 57
setting, 12-15
specificity of, 12-15
and subprojects, 98-104
project leads
anticipating problems, 46-48
asking questions, 32-35
and delegation, 4-5
effectiveness of, 1-2
vs. leaders, xv—xvi
need for focus, 3—-4
of other leads, 6
proactivity of, 46—48
as protectors, 4-6

DEBUGGING THE DEVELOPMENT PROCESS

project leads, continued
status meetings for, 8
as team members, 171-73
training for, 116-18
project review meetings, 4-5, 86
projects. See Microsoft projects; project
goals
project task list. See task lists

The Psychology of Computer Programming,

117

Q

quality bars, 18, 19, 28, 49, 138
questions. See also problems; requests
defining context, 53
level of precision, 32-35
wrong vs. right, 51-53

R

raises, basis for, 161
recurrent meetings, 81-84
reports
follow-up, 3
oral, 76
postmortem, 78-81
problems with, 77
status, 3
trip, 74-76
requests. See also questions
for added product features, 63-65
defining context, 53
from superiors, 58—60
when to say No, 54
research, as problem-solving strategy,
50, 51
reusable code, 141-43

182

robustness, as coding priority, 17, 18
rules vs. guidelines, 35-37, 75

S

safety, as coding priority, 17, 18, 19
saying No, 54-56
schedules
aggressive vs. unattainable, 95-97
and arbitrary deadlines, 99
and bug-fixing, 27, 28, 29
and goal setting, 99
and long working hours, 151-70
and Microsoft Excel project, 91-95,
153
and milestones, 98-104
personal, 162-67
questions to ask, 33-34
and sense of urgency, 95-97
and status reports, 7-10
and subprojects, 98-104
undue focus on, 93-95
unrealistic, 94, 95, 97
scheduling meetings, 82
sense of urgency, 95-97
shared library, as goal, 13, 57
sharing code, 141-43
ship dates. See also deadlines
best case, 104, 105
questions to ask, 33-34
680x0 cross development system
becomes product, 145-47
and FORTRAN compiler, 59-62
subprojects in development, 1024
size, as coding priority, 17, 18
skill-building, 1-2, 31, 108-13
by asking questions, 32-35
leveraging, 144-45

INDEX

skill-building, continued
for promotion, 116-18
and versatility, 111
snap decisions, 20
solutions, 135
speed, as coding priority, 17, 18
speed bumps, 88-89
status meetings, 3,7, 8
status reports
benefits vs. drawbacks, 8-10
as necessary evil, 7-10
need for, 3
negativity of, 8-9
positive, 9-10
strategies. See goal setting; systems,
work
subprojects, 98-104
substandard features, 138
superiors, as team members, 171-73
systems, work, 24, 25, 28, 29, 30

T

task lists
breaking up, 98-104
for Microsoft Excel project, 93-95
and subprojects, 98-104
team leads. See project leads
team spirit, 82
technical leads, xvii
third party vendors, 65-67
time
efficient use of, 162—-67
and scheduling meetings, 83
and sense of urgency, 95-97
training. See skill-building
trial and error, 1-2
trip reports, 74-76

183

trivial processes, 24, 25, 28, 29, 30

U

urgency, sense of, 95-97

usability studies, 137

user interface library project
responding to requests, 51-53, 56,

65-67

schedule problems, 152-53
setting goals for, 12-15

users
attitude toward, 13640
consideration of, 139-40

\Y%

Visual C++, 141
visual freeze point, xix

W

weekends, working, 159-60

Weinberg, Gerald, 117

What They Don’t Teach You at Harvard
Business School, 117

Windows Everywhere, 146

Windows vs. Macintosh, 132, 133-34,
139-40

Winter Olympics, 107

Word for MS-DOS, 56

Word for Windows, 48-51

working hours, 151-70

work systems, 24, 25, 28, 29, 30

Wow! factor, 101-4

Writing Efficient Programs, 117, 119

Writing Solid Code, xii, xvi—xvii, 27-29, 117

writing vs. editing, 23-24

ABOUT THE AUTHOR

Steve Maguire graduated from the University of Arizona with a degree
in electrical and computer engineering, but he has always gravitated
toward work in computer software. Steve has programmed profession-
ally for the past 19 years in both Japan and the United States. In the late
1970s Steve regularly contributed developer tools, applications utili-
ties, and the occasional video game to the Processor Technology and
NorthStar users’ groups. Steve has been responsible for numerous
projects since then, including valFORTH in 1982, an award-winning
FORTH development system that enabled Atari programmers to write
high-quality graphics applications and video games.

In 1986 Steve joined Microsoft Corporation for the opportunity to
work on high-end Macintosh applications. Steve worked on Microsoft
Excel and led the development of Microsoft’s Intel-hosted MC680x0
Macintosh cross development system. He was the driving force behind
Microsoft’s switch to a cross-platform shared code strategy in its appli-
cations development and is perhaps best known in the company for his
efforts to increase the utility and quality of shared code libraries. As a
veteran software design engineer and project lead, Steve spent several
of his years at Microsoft working with troubled projects—enabling
teams to work effectively and, not incidentally, to enjoy their work.

| Debugging the Development Process is the second of several books
Steve is writing to give programmers practical guidelines for develop-
ing professional, high-quality software. His first book, the critically
acclaimed Writing Solid Code (Microsoft Press, 1993), focuses on strate-
gies that programmers can use to write bug-free programs. It won a pres-
tigious Software Development Jolt Productivity Award and awards from
the Society for Technical Communication in 1994.

Steve lives in Seattle, Washington, with his wife, Beth, and their
Airedale terrier, Abby. He can be reached at stephenm@stormdev.com or
microsoft!storm!stephenm.

The manuscript for this book was prepared
using Microsoft Word 5.0 for the Macintosh
and submitted to Microsoft Press in electronic
form. Galleys were prepared using Microsoft
Word 2.0 for Windows. Pages were composed
by Microsoft Press using Aldus PageMaker
5.0 for Windows, with text and display type
in Palatino. Composed pages were delivered
to the printer as electronic prepress files.

Cover Designer
Rebecca Johnson

Interior Graphic Designer
Kim Eggleston

Principal Compositor/Illustrator
Peggy Herman

Principal Proofreader/Copy Editor
Deborah Long

Indexer
Julie Kawabata

