Epilogue

A WORD ON
LLEADING

Occasionally I'll come across the idea that as the lead for a project, you
cannot and never will be a part of the team, that you will always be a
step removed, and that there is nothing you can do about it. In my expe-
rience, that isn’t true. I've been a part of dozens of teams—as both lead
and programmer—and without exception the teams that jelled were
those in which the lead was just another person on the team, one who
happened to have some nonprogramming responsibilities. There was
never the feeling that the lead was superior.

To someone who didn’t know much about American football, the
quarterback might seem to be in a superior position with respect to the
other players. After all, the quarterback calls each play, the quarterback
is the focal team member who has control of the ball, and after a victory
it’s the quarterback who usually gets carried off the field by the other
team members.
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The quarterback might appear to be superior in rank to the other
players, but we know better. The quarterback is just another team mem-
ber who happens to have unique responsibilities. An effective project
lead is no different. He or she understands that a focal team member is
not superior to other team members:

The lead is just another team member, who, like every other team
member, has his or her own set of unique responsibilities.

Effective leads understand that team members play different roles
on the team. Some team members are responsible for the data entry part
of the project, others for the print engine, still others for foreign file con-
verters and the user interface design. Leads may implement features
along with everybody else, but in addition to that work, they have the
responsibility for setting project goals and priorities, keeping depen-
dent groups such as Testing and Marketing informed of progress, creat-
ing an environment in which the team members can work effectively,
and ensuring that team members are learning new skills as a way of
adding value to the company. A lead can do all those tasks without
adopting the attitude that he or she is superior.

If a lead has the attitude that he or she is superior, a whole array of
harmful behaviors follows. Here’s what happens in extreme cases:

¢  The lead blames the team for failures but gladly takes the
credit for successes.

¢  The lead doesn’t care about the people on the team. They're
just workers. Who cares if they work 80-hour weeks? The
lead is concerned only that the team might make him look bad
by missing a scheduled date.

¢  The lead expects team members to jump at every, command
and never question her authority. “Isaid ‘doit,” sodo it” is the
motto.

¢  Anxious not to appear inferior in any way, the lead attacks
any team member who threatens his authority or who ap-
pears to be more skilled or knowledgeable than the lead in
any area.

&  Because she must always be right, the lead never admits it
when she is wrong.
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¢  Thelead shuts down anybody who suggests improvements to
the development process or otherwise rocks the boat.

¢  Thelead acts as if he is indispensable.

Granted, not all leads who think of themselves as superior behave
so tyrannically, but even in mild cases the air of superiority still comes
through. Do team members work for the lead or with the lead? The very
langucge the lead uses reveals the underlying attitude.

A lead who views herself as a team member works better because
she spends little or no time fighting to keep the other team members in
their place—why should she? By choosing to adopt the attitude that -
she’s not superior, she relieves herself of having to attack perceived
threats to her authority. When such a lead discovers a superstar on the
team she’s just inherited, she doesn’t raise her guard and start the terri-
torial one-upmanship battle so common in people who must feel supe-
rior. Such a lead is more likely to be thankful and to work together with
the superstar for the benefit of the project.

Your own attitude as a lead can influence everything you do. If you
and a team member disagree over a performance review, how do you
react? Do you stand firm because you feel you need to be “right,” or do
you discuss the problem to see if there’s another valid interpretation of
events? If you and the team member still disagreed, would you amend
the review to describe both positions so that others who read the review
later could make their own evaluations?

Look again at the bulleted list that characterizes the behaviors of
the leads who insist on regarding themselves as superior. Would a lead
who viewed herself as just another team member exhibit those kinds of
behavior? Which type of lead would you be more willing to work with,
one who behaves in a superior way or one who treats you with more
respect? Be the kind of lead you would want to work with.

+
Leads should see themselves
as members of their teams, not
as superior to them.

el ———
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