THAT SINKING
FEELING

When projects start slipping, the first two actions leads often take are the
easy, obvious ones: hire more people, and force the team to work longer
hours. These may seem like reasonable responses, but in fact they’re
probably the worst approaches leads can take to turning around a
troubled project.

Imagine a sixteenth century merchant galleon crossing the Atlantic
Ocean from the Old World to the New World. When the galleon is far out
in the ocean, the first mate notices that the ship is taking on water and
alerts the captain. The captain orders members of the crew to bail water,
but despite their efforts, the water continues to rise. The captain orders
more crew members to bail water—to no avail. Soon the captain has the
entire crew bailing water in shifts, but the water continues to rise. . .

151

DEBUGGING THE DEVELOPMENT PROCESS

Realizing that he has no more sailors to call on, and with the ship
continuing to take on water, the captain orders all crew members to bail
ever longer hours, their days and nights becoming nothing but bailing
water, collapsing from exhaustion, waking up, and going back to bail-
ing. It works. The sailors are not only able to prevent the water from
rising, but they’re able to make headway, bailing water out faster than
it’s coming in. The captain is happy. Through his brilliant management
of human resources, he has prevented the ship from sinking.

At least for the first week.

Soon the crew members get bone weary and bail less water than
they did when they worked in shifts and were well rested. The ship
again starts taking on more water than they can bail out. The first mate
tries to convince the captain that he must allow the crew members to rest
if he wants them to be effective. But because the ship is sinking the cap-
tain rejects all talk of giving the crew a break. “We're sinking. The crew
must work long hours,” the captain shouts. “We—are—sinking!”

 The water continues to rise and the ship eventually sinks, taking
everybody with her.

Could there have been a better approach to saving that ship than
putting all the crew members on the bailing task and then forcing them to
work long, hard hours? If you were on a ship that was taking on water,
what would you do? I can tell you what I'd do: I'd search for the leaks.
Wouldn’t you?

This is such an obvious point, but why then do so many leads run
their projects as if they were sinking ships? When a project starts to slip,
many a lead will first throw more people onto the job. If the project con-
tinues to slip and the lead can’t get more people, he or she will demand
that the developers put in longer hours. Just as that ship captain did.
The project can be waist-deep in water, but the lead won't stop to look
for and fix the leaks. Fortunately for their companies, most project teams
can bail water slightly faster than it comes in, and they end up shipping
their products, but often not without an enormous amount of misplaced
effort.

In Chapter 1, I described a user interface library team that had been
working 80-hour weeks for more than a year, with no end in sight. Water
was gushing in on that project, but nobody stopped to look for leaks.

152

8 THAT SINKING FEELING

The team was fully staffed, and they were working 12-hour days, seven
days a week. What more could they do? But as I pointed out in Chapter 1,
that team was spending most of its time on work they shouldn’t have
been doing. They were ignoring what should have been their primary
goal: to provide a library that contains only functionality that is useful to all
groups who will use the library. That was a leak.

In Chapter 3, I talked about a dialog manager team that was work-
ing hard to speed up their library for the Word for Windows team.
Despite all their hard work, they kept falling short of the quality bar for
speed that the Word team had set. Word’s swapping hack that kicked out
all “unnecessary” code segments was kicking out every byte of the
library code, so that physically reloading the code, to say nothing of
executing the code, took more time than Word'’s quality bar allowed. But
nobody was looking at load issues. The dialog manager team members
were focused on optimizing the code to make it run faster.

And in Chapter 5, I described the Excel team’s working 80-hour
weeks to meet an unrealistic and demoralizing schedule.

In all of those cases, the need to work long hours should have been
a red flag, a clear indication that something, somewhere, was seriously
wrong. Unfortunately, many leads take the two obvious steps when
projects start to slip their schedules—hiring more people and demand-
ing longer hours—instead of looking for the causes of the schedule slips.

HAVE A LIFE

AsT've said, for several years at Microsoft, my job was to take flounder-
ing projects and make them functional again. In every case, the team
members had been working long hours, seven days a week, in a desper-
ate attempt to catch a ship date that was moving ever further away.
Team morale was usually low, and often programmers had come to de-
test their jobs.

On my first day as the new lead, my initial actions were always to
put a stop to the long hours and start looking for the causes of the slip-
ping schedule. I would walk down the halls in the early evening and
kick people out. “Get outta here. Go have a life.”

Programmers would protest: “I can’t leave—I'm behind on this
feature.”

153

DEBUGGING THE DEVELOPMENT PROCESS

“That’s OK,” I'd say. “The entire team has been working insane
hours for nearly a year, and all that effort hasn’t kept the project from
regularly slipping. Working long hours won’t bring this project under
control. There’s something fundamentally wrong here, something we
need to find and fix, and continuing to work long hours is not going to
help us find the problem. Go home. Get some rest. We’ll look for the
problem first thing tomorrow.”

At first the team members would think I was joking. The message
they had been getting—in some cases for more than a year—was work
harder, longer hours, and I was telling them to go home while the sun
was still out. They thought I was nuts. If the project was slipping so badly
now, they thought, what would it look like if they stopped working those
long hours?

But over the next few weeks, I'd hit the project with all the strate-
gies I've described in the first seven chapters of this book. I’d put a stop
to unnecessary reports and meetings and all other unnecessary inter-
ruptions. I'd toss out the existing task-list-driven schedule and replace
it with a win-able schedule made up of subproject milestones of the type
I've described in Chapter 5, cutting all nonstrategic features in the pro-
cess. I’d promote the attitudes I've presented in Chapter 7, such as the
attitude that it's crucial that the team fix bugs the moment they’re
found. I'd make sure that the project goals were clear and that the pro-
grammers understood that one of my goals as a lead was to help create
large blocks of time during the day for them to work uninterrupted. I'd
do all of the things I’ve encouraged you to do. A hard month or two later,
the team would hit their first milestone, as planned, but they’d do it
without working 80-hour weeks. They’d have their first win. In the fol-
lowing months, hitting those subproject milestones would get progres-
sively easier as new work skills became habits.

—.—Q—_
If your project is slipping, something
is wrong. Don't ignore the causes

and demand long hours of the team
members. Find and fix the problems.

+

154

8 THAT SINKING FEELING

THE COMMITMENT MYTH

Some teams work long hours, not to meet an ever slipping schedule, but
because an upper-level manager demands that they work 80-hour
weeks, believing that development teams must work long hours to get
products out the door. When such a manager sees a team working 40-
hour weeks, his or her immediate interpretation is that the team is not
committed to the company. If you point out that the team hits all its drop
dates, the upper-level manager will counter with the statement that the
team must be padding its schedules with gobs of free time. That same
manager will hold up a team whose members work 80-hour weeks as an
example for other teams to follow. “This team shows commitment!” If
the team isn’t hitting its deadlines, well, that's just because the project’s
schedule is unattainable, just as a schedule should be if you want pro-
grammers to work as hard as possible.

Obviously, I disagree with that point of view. If I held that view, I
would have to conclude that the user interface library project, the dialog
manager project, and the Excel project were model projects to be emu-
lated. And I'd have to conclude that any team who had concrete goals
and objectives, who focused on strategic features, who constantly in-
vested in training, and who as a consequence always hit their drop dates
while working efficient 40-hour weeks was a team who were screwing up.

It sounds silly when I put it that way, but that’s effectively what
that manager is saying when he sees a team working only 40-hour weeks
and demands that the lead force the team members to put in more hours:
“This is not a company of clock-watchers. You tell your team they’re ex-
pected to put in more hours. I want to see some commitment!”

What nonsense. Managers like that praise the teams who work in-
efficiently and think the worst of the teams who work well. Compare
such a manager with a manager who looks at a 40-hour-per-week team
and is grateful that at least one project is running smoothly. That man-
ager asks the team what they’re doing to achieve such success and
works to get other teams to duplicate that success.

Why such opposite reactions to the same event? In a word, attitudes.

The two upper-level managers respond differently because their
primary attitudes about projects that run smoothly are polar opposites:
one manager assumes that teams who work only 40-hour weeks and

155

DEBUGGING THE DEVELOPMENT PROCESS

who consistently meet their schedules are doing something wrong; the
other type of manager assumes those teams are doing something right.
Either manager could be mistaken in the case of a particular project, but
what good does it do to start out assuming the worst of a team?

Just as some leads ask first for long hours instead of looking for
the real problem and then solving it, some upper-level managers have
glommed onto that same uninventive approach, believing that long
hours are good for the project and the corporate culture. Such managers
forget that the business purpose of a development team is to contribute
value to the company. A team can contribute value in numerous ways:
reducing their cost-of-goods and thereby increasing the profit per box
shipped, writing shareable code that saves development time, and so
on. A manager who demands long hours focuses on one obvious way it
might seem that programmers can add value to the company: giving the
company all of their waking—and some of their sleeping—time.

It might seem logical that having the programmers work all of
those hours would enable them to finish the product sooner. Unfortu-
nately, it doesn’t work that way, not in software development. If the
company made widgets and managers demanded that workers run the
widget-making machines for three extra hours every day, the company
would get three hours” worth more of widgets—added value. There’s a
direct correlation between the number of hours worked and the amount
of product produced, a correlation that in my experience doesn’t exist in
software development.

If upper management pressures programmers to put in 12-hour
days, working, say, from 10 o’clock in the morning to 10 o’clock at night,

Don’t Blame the Programmers

I've been picking on the user interface library and dialog manager
projects, but the problems with those projects and with the Excel project
were not the programmers. In all of these cases, the programmers were
working hard, trying to do their best in a frustrating situation. It's easy
to make the mistake of blaming the programmers when a project is slip-
ping and not running smoothly, but if the entire team is in trouble, that
indicates a management problem.

156

8 THAT SINKING FEELING

the programmers might leave the office three hours later than they
would otherwise; but consider what actually goes on during those three
extra hours.

Take those twelve hours, and subtract one hour for lunch and an-
other hour for dinner since 10 o’clock is rather late to work without stop-
ping to eat. Factor in the natural tendency of programmers who regularly
work 12-hour days to fit other activities into their work schedules, such
as taking an hour each day to jog in the park or work out at the health
club. That leaves nine of the twelve hours for actual work. And since
programmers who work 12-hour days don’t feel they have time outside
work, they wind up taking care of other personal business at the office.
I've seen programmers working through their stacks of unpaid bills,
writing checks and licking envelopes. I've seen programmers practicing
their piano skills on keyboards they keep in their offices. I've seen pro-
grammers playing in the halls with other team members, everything
from group juggling to “hall golf.”

People who work 12-hour days rarely put in more than the stan-
dard eight work hours they’d put in if they worked a normal 9-hour day,
such as the traditional 8 to 5 workday. A programmer who works 12-
hour days might actually get some work done between 8 o’clock and 10
o’clock at night, making it appear to some managers that long hours do
result in added productivity, but those two hours actually just make up
for dinner and some of the other personal time the programmer spent
earlier in the day.

Sometimes a programmer will actually get more than eight hours
of work done when he or she stays late—mainly when driven, being
kept awake by thoughts of an elusive bug or a feature that’s almost fin-
ished. The desire to find a resolution keeps the programmer focused on
the problem. But in such a case, the programmer will tend to stay late
even without pressure from upper management.

As a lead, one of your jobs is to protect the team members from
those upper-level managers who think that forcing team members to
work long hours is going to be productive. It won’t be easy, but you've
got to stand firm and fight such demands, explaining to those upper-
level managers why their demands will only hurt the project. When
upper-level management demands long hours of teams, it’s a lose-lose

157

DEBUGGING THE DEVELOPMENT PROCESS

situation for the lead: you have to either fight management or hurt the
team. Personally, I'd rather fight upper-level management than force
team members to do something I'm fundamentally opposed to, but
thankfully, I haven’t had to fight many of those battles. Most of the
upper-level managers I've worked for at Microsoft and elsewhere have
understood that demanding long hours of the team was a misguided
and inefficient approach to increasing productivity.

____’__

Beware of the misguided belief that
long hours result in greater productivity.
If anything, long hours only hurt
productivity.

___’__

But Successful People Work Their Guts Out

You’ve probably run across the argument that because extremely suc-
cessful people, as a group, worked a punishing schedule every day
before they “made it,” it’s clearly necessary to work long hours if you
want to succeed.

If you dig deeper, you'll find that extremely successful people
didn’t become successful because they worked long hours. They became
successful because they had an intense inner desire to accomplish some-
thing they had envisioned. They worked tenaciously toward their goals
because of that inner drive, and it was their constant focus that made
them successful. These successful people worked long hours because
every fiber of their being drove them to work toward their goals; they
didn’t work all those hours because somebody else forced them to.
There are countless examples of people who put enormous efforts into
their businesses or other endeavors and who still did not succeed. Long
hours is not the key ingredient. The key ingredients of success are a
crystal-clear goal, a realistic attack plan to achieve that goal, and consis-
tent, daily action to reach that goal.

158

8 THAT SINKING FEELING

WEEKEND WARRIORS

You can probably get those demanding managers to see that forcing the
team to work long days won’t increase productivity, that it’s better to
enable the development team to work more efficiently. But those upper-
level managers may turn your argument against you: “You say your
team can work efficiently without working long days. Fine. But I want
them in here on the weekends. You can’t tell me that having them work
weekends won’t increase productivity.” In most cases, they would be
right, at least for a while, particularly if the team already works efficient
40-hour weeks and has plenty of personal time in the evenings.

But those upper-level managers need to realize that if they demand
that teams work weekends, they may create an adversarial relationship
between the teams and management. The people on the development
teams know that weekends properly belong to them, not to the com-
pany, and the more weekends they’re forced to work, the more likely
they’re going to resent being taken advantage of. If programmers start
leaving the team, or worse, the company, to work for less exploitative
management, the company loses because those programmers will have
to be replaced by new programmers who naturally will know less about
the project and might be less experienced overall. The resulting loss of
productivity might be great enough to cancel the gains made during all
those weekends. And imagine the loss to a team—and this has been
known to happen—when a fourth of its members leave the week after
their product is released. Does that bother those short-sighted manag-
ers? No way: “Good. We’ve weeded out the wimps and the whiners.”

One argument I've heard is that competition is so fierce in the soft-
ware industry that if a company is to stay competitive, the development
teams have to work long hours and weekends. Have to is another one of
those expressions you should become sensitized to. Saying that develop-
ers have to work weekends to beat the competition is just another way of
saying “We can’t beat the competition unless programmers work week-
ends.” Oh? The team isn’t smart enough to find other ways to release a
product earlier? I hope this book brings home the point that there are
numerous ways to get the job done with much less effort than most teams
are expending.

159

DEBUGGING THE DEVELOPMENT PROCESS

e
Weekends belong to the team members,
not to the company. Teams don’t
need to work weekends in order to
beat the competition.

—Q_

THE INITIATION PROCESS

Some people insist that teams must work long hours for an altogether
different reason than getting more work done: the practice is vital to
team-building, they say. They say that working long hours is an initia-
tion, akin to boot camp, that wears programmers down and ultimately
makes them feel that they’ve earned the right to be part of the team.

Let’s assume that the point is true, that some sort of rigorous initia-
tion is beneficial to team-building. Is working long hours really the best
rigorous initiation?.

In a field such as programming, where the ability to think is critical,
why put a premium on working long hours? If there’s to be an initiation,
shouldn’t it be one that forces programmers to exercise their brains,
to think hard? When new programmers start out, they need to learn to
think hard about their designs, to think hard about how to implement
their designs cleanly, and to think hard about how to thoroughly and in-
telligently test their implementations. A new programmer needs to learn
that when her code has a bug, she must never guess where it is and try to
fix it with a lucky change—she must stop and think whether she has sys-
tematically tracked the bug all the way to its source. She must learn to
think about the bugs she finds to determine whether there are related
bugs that haven’t shown up yet. She must learn to think about how a
bug could have been more easily detected and how it could have been
prevented in the first place. She needs to learn right at the outset that
she is expected to read to keep abreast of the industry and to actively
increase her skill levels.

These practices are tough to learn and follow through on. Really
tough, because they can’t be done mindlessly. Yet they must be mastered
at some point. Make mastering these practices the initiation—not work-
ing long hours, which has nothing to do with programming well.

160

8 THAT SINKING FEELING

___Q.__._

Stress the importance of thinking hard,
not working hard.

0.—.

I'll Lose My Bonus!

When I went down the halls kicking programmers out of their offices
with “Go have a life,” some programmers would protest: “But what
about bonuses? If I don’t work long hours, I won't get a big bonus at re-
view time.”

I would explain that I never base bonuses on how much overtime a
programmer works, that in fact I view the need to work overtime as an
indication of problems that need to be fixed, not as something to reward
a programmer for.

“If you want large bonuses,” I'd tell the programmer, “look for
methods that will help bring our products to market more quickly and
with higher quality. Point out areas in which we’re duplicating effort, or
where we could leverage code written by another team. If you’'ve got an
idea for a new type of testing tool that would automatically detect certain
kinds of bugs that we have trouble spotting right now, bring it up. If you
know of a commercial tool that will do the same thing, that’s even better.
If you think of a user interface feature that would be more intuitive to use,
great—particularly if the idea would work across the product line.”

“And if you want to get large raises,” I'd continue, “increase your
personal value to the company by actively learning new skills and de-
veloping good work habits—things that will make you work more
effectively. If you want to really shine, develop the habit of constantly
earning bonuses—look constantly for new ways to bring our products to
market more quickly and with higher quality. That habit will earn you
large bonuses and large raises.”

I want programmers to work better, not longer.

161

DEBUGGING THE DEVELOPMENT PROCESS

TURNING THE PROJECT AROUND

If your team is currently working long hours and you decide to put a halt
to that backbreaking effort in order to focus on finding the causes of prob-
lems and fixing them, you’d better brace yourself. When you first start
kicking people out, nobody will get any work done. That can be frighten-
ing, but it is an essential part of the turn-around process. Just as people
don’t naturally have study skills, they don’t naturally have skills for
working efficiently in a 40-hour week. Such skills must be developed, or
relearned. Be prepared to do some immediate training.

When I find a programmer who is having trouble getting his work
done in a 40-hour week—and I don’t believe it’s because the schedule is
too ambitious—TI ask him to make a list of how he spent his time that day,
or the previous day, to get a snapshot of how he uses his time. The pro-
grammer would typically create a list similar to this one:

® Conducted an interview and wrote feedback for Human
Resources

Chatted with a programmer on the CodeView team for
30 minutes

L 4

Read the daily drop of the comp.lang.c and comp.lang.c++
news groups

Read PC Week
Took a two-hour lunch break to eat and run errands

Reviewed a draft section of the user’s manual

t ¢ ¢ ¢

Attended another team’s status meeting to report on the
progress of a feature they want

Played air hockey in the game room for 30 minutes
Read 27 e-mail messages and responded to 15 of them

That’s how he would have spent his first seven or eight hours at the
office, without having written any code. Am I joking? No. In my experi-
ence this is a typical list of activities for a programmer who is used to
working 12-hour days.

Of course the programmer wasn’t reading PC Week every day, but
throughout the week he was reading something every day—the company

162

8 THAT SINKING FEELING

newsletter and his subscriptions to InfoWorld, Microsoft Systems Journal,
PC Magazine, Windows Sources, and Software Development. E-mail would
be a constant interruption. He would conduct one or two interviews a
week, read those comp.lang news group drops daily, and regularly take
two-hour lunches to run errands.

Flextime, or Do Time?

Microsoft, like many high-tech companies, has a “flextime” policy. You
can work any hours you want as long as you get your job done. That's
why I would find programmers who had no qualms about playing air
hockey for 30 minutes or taking two-hour lunches. You can get fired at
stricter companies for taking such liberties, but not at Microsoft—as
long as you get your job done.

Flextime can be wonderful. If you have a dentist appointment, you
just go. You don’t need special clearance from your manager. If your
daughter is in a school play, you go. If you happen to be a baseball fan,
afternoon home games aren’t a problem; you hop in your car and go.
Flextime can dramatically improve the quality of life for employees be-
cause it allows them to design their work schedules around the needs of
their personal lives.

But there is a dark side to flextime, one that the Human Resources
folks don’t tell you about as they itemize the reasons you should join the
company. By definition, flextime means that there are no set working
hours, so the primary way to gauge whether a programmer is working is
to see whether he or she is knocking out features as scheduled. If you
think this through a bit further, you can see that if a programmer starts
slipping, the implication will be that he or she is not working enough.
Nobody comes right out and says that, of course, but there’s no question
that you're expected to stay until you've finished. It doesn’t matter that
you’ve already put in a full day.

If you see that one of the programmers needs to work long days to
do his or her job, that’s an indication of a problem. Maybe the program-
mer chronically abuses flextime, using it to mask a pattern of procrasti-
nation throughout the day, or maybe the long hours indicate something
more serious. Don’t ignore the problem.

163

DEBUGGING THE DEVELOPMENT PROCESS

For a programmer working 12-hour days, such a schedule makes
sense. When else is he going to run errands or read all those magazines?
If not during “work hours,” when? This is the point missed by those
upper-level managers intent on having programmers work long hours.

They badger the programmers into working long hours, and the pro-

grammers inevitably rearrange their lives to accommodate the longer
work schedule.

Once I had the programmer’s typical workday down in black and
white, I would start asking questions.

“Now that you're leaving at a reasonable hour and not at 10 o’clock
at night, do you still need to take two-hour lunches to run errands, or
can you handle errands after work? Do you read e-mail in batches a few
times a day, or do you let e-mail constantly interrupt you? If keeping
regular hours meant you had to read your news groups and magazines
at home, would you be willing to make that trade-off? Do these talks
you're having with people on other teams concern project-related issues
that I should be handling instead of you?. . .”

I'd work with the programmer to create a schedule that would
allow him to get his work done during the day and leave at a reasonable
time. It's not difficult to work with a programmer to create a win-able
daily schedule. It just takes action on the lead’s part.

___._._’__
Train the development team to work
effectively during a normal workday. Don’t
allow them to work long hours, which serves
only to mask time-wasting activity.

—

I CAN'T WORK DURING THE DAY

Programmers themselves regularly complain that they can’t get any

work done during the day, and a look at that programmer’s work list in
the previous section supports that contention. Many of the tasks on that
work list seem to be legitimate business items. Programmers have to
conduct interviews, read and respond to e-mail, review draft sections of
user manuals, and so on.

164

8 THAT SINKING FEELING

The problem with such necessary business tasks is that they con-
stantly interrupt the primary job: improving the product. Just as reading
each e-mail message the moment it arrives chops the workday into little,
unproductive time chunks, so too does the regular stream of necessary
business if team members don’t have a plan for tackling such tasks effi-
ciently. If they’re handling each task the moment it lands on their desks,
they’ll have a difficult time getting work on the product done.

I've heard a lot of management advice recommending that you fin-
ish every task the moment it shows up. Either handle it immediately, or
decide that you're never going to handle it and dismiss it forever. I agree
with that advice because it prevents procrastination and helps people to
stay on top of things, but I want to qualify the point. If programmers
were to blindly follow that advice, interrupting their design and coding
work to handle every distraction as it arrived, they wouldn’t get much
done on their product unless they worked late into the night, when there
are usually far fewer interruptions.

The key idea in the advice is to “handle the task the moment it
shows up.” You might not think that programmers have any control
over when tasks show up, but they do. Consider the e-mail example. If
programmers respond to their e-mail at set times, only two or three
times a day, they turn those random interruptions into predictable daily
- tasks. Then they can either respond to their messages (handling them
immediately) or delete them (never to be considered again).

Programmers can apply the same principle to the other daily inter-
ruptions by turning them into predictable tasks that no longer disrupt
their work. They just have to create a schedule describing how they’ll
work during the day—a plan that gives priority to improving the prod-
uct, not handling interruptions. Take my daily schedule, for example,
one which looks like the schedule shown on the next page.

I dedicate the time before lunch, when I'm freshest, to working
solely on the product or the project, depending on whether I'm working
primarily as a programmer or as a lead. I rarely answer my phone during
those hours, and I certainly don’t turn on my e-mail reader because read-
ing and responding to e-mail is perhaps the most disruptive activity of
the environments I work in. I try to get three or four solid hours of unin-
terrupted work completed before I do anything else. I don’t read and re-
spond to e-mail for the first time until I get back from lunch.

165

DEBUGGING THE DEVELOPMENT PROCESS

Read and handle e-mail for first tim

mail for second time

Read and handle e-mail for final time

After I handle the post-lunch e-mail task, I have a second block of
time devoted solely to working on the product or the project. If other
tasks crop up during the day, I don’t look at or think about them—they
go right into my pile of tasks to tackle at the end of the day, where I have
time scheduled to do them. When I finally get to those tasks, I handle
them immediately or never. If for some reason I can’t finish a task that
day, I don’t look at it again until the scheduled time the following day.

The point is that, with such a schedule, e-mail and other common
interruptions don’t distract me from my primary work. I take care of
those tasks, but during the time I have planned for them, not when they
happen to roll in. My schedule turns unpredictable interruptions into
predictable tasks, and it puts those tasks lower in my list of priorities
than working on the product—just where they should be.

Unfortunately, too many programmers unknowingly have their
priorities reversed: they give e-mail and unforeseen tasks higher
priority than improving the product, so at the end of the day, they
haven’t even begun to work on designs or write code. Instead, they have
answered e-mail messages that didn’t really need responses or tackled
tasks that could have been spread over several days. What choice do
they have, then, but to work long hours? If they didn’t, they’d never get
any product work done.

166

8 THAT SINKING FEELING

If you truly believe the project schedule is attainable and yet the
programmers find they must work long hours to meet that schedule,
you still have problems to find and solve. You should check these pos-
sible sources of the trouble:

® Programmers are allowing unpredictable interruptions to
disrupt their work on the product instead of turning those
unpredictable interruptions into predictable tasks.

® Programmers are giving interruptions higher priority than
the primary task.

The schedule I've laid out works well for me, but I'm sure that for
others it would be too restrictive or too something for their tastes. I'm
sure that for some people the idea of not reading e-mail until after they
get back from lunch seems impractical: “I can’t do that.” If reading and
responding to e-mail is an integral part of their primary task, I'd agree
with them. But if their primary task is working on the product, I'd urge
them to try working for a few hours each day before first turning on their
e-mail reader. At the very least, I'd urge them to consider reconfiguring
their mailers to call their hosts less frequently and to turn off the notifica-
tion beep that sounds when new mail arrives. In any case, the members of
the development team should have daily schedules that help keep them
focused on their primary work.

| ——
Work with programmers to create daily sched-
ules that turn unpredictable interruptions into
predictable tasks. The schedules should give their
primary tasks priority over all other work.

+

“Working Solely on the Product” Defined

When I say “working solely on the product,” I don’t mean that program-
mers should lock themselves in their offices and barricade the doors,
doing nothing but designing and writing code. Spontaneous discussions
in the hall, brainstorming sessions, and code reviews are also part of
working solely on the product.

167

DEBUGGING THE DEVELOPMENT PROCESS

CONSUMED BY EXCITEMENT

There are a few cases in which working long hours over the short term
makes sense—working the weekend right before a drop to put all the
finishing touches on the code, for example, or working hard the week
before a COMDEX show to create a killer demonstration. But I stress
short term. Long hours produce increased productivity for only the first
week or two, when the sense of urgency is strongest. If you ask a team to
work months of 80-hour weeks, they will work hard initially, but once
the sense of urgency wears off, they’ll fall into the pattern I described
earlier—taking two-hour lunches to run errands, having long chats in
the hall, and so on. A

The exception to this tendency is when people are so excited about
their project that you can’t get them to leave. Such projects are truly
wonderful because you eat, breathe, and sleep programming. I hope
that everybody experiences such a project at least once, but I do have
one reservation about such projects.

* Early in my career, I spent nearly five years working on a handful
of projects that were so exciting that I did little but write code, eat, and
sleep. So did the other members of the development team. We didn’t
know what a social life was. We lived to code, often working until 2 or 3
o’clock in the morning, only to return six or seven hours later to start
another day. And we loved it. We had that burning desire to see the
product finished as we envisioned it.

After working on those projects, I worked on several more exhila-
rating projects, but I didn’t program to the exclusion of all else. I worked
a traditional 8-hour day, which gave me the opportunity to pursue an
active social life after work—going to parties, taking 40-mile bike rides
with friends, going to the theater, learning to ski, meeting new and inter-
esting people. . .

What an eye-opener. If somebody had told me as I worked on those
earlier projects to the exclusion of all else that I was missing out on an
important part of life—a personal life—I would have laughed at them,
just as people using 8-MHz IBM PC machines often laugh at people who
suggest they should upgrade to the latest machines, which are 100 times
faster. “I'm happy now. Why should I change?” But once the user’s ma-
chine breaks and she buys a new one, her attitude undergoes a dramatic

168

8 THAT SINKING FEELING

transformation: “I can’t believe I waited so long to upgrade. To think
that I was actually satisfied with that old clunker!”

Like such computer users, had no idea what I was missing out on,
not having had an active social life for so long. Those projects were so
exciting that I never felt the need for a social life; my life was complete as
it was. But once I'd worked on exhilarating projects during which I also
pursued an active social life, I learned how important it is to have a bal-
anced life. And that has been the driving force behind my desire to do
absolutely the best I can in a regular 8-hour day, so that I can balance
that work with my personal life, getting the best of both worlds.

As exciting as it was when I was working on those all-consuming
projects, I wish that somebody had pulled me aside back then to explain
that there was more to life than work. I might not have listened, but I
still wish that somebody had tried. So even though programmers on my
teams are sometimes so thrilled with their work that they want to work
long hours, I urge them, “Go home. Have a life.”

HIGHLIGHTS

® The need to work long hours is a clear indication that some-
thing is wrong in the development process, whether it’s be-
cause the team is doing nonstrategic work or because the
team is being bullied by a misguided manager. No matter
what the reason for the need to work long hours, leads must
not ignore the problem and continue to let the team work late
into the night over the long term. Leads must tackle that prob-
lem and make it possible for team members to work effec-
tively in the scheduled 40-hour week.

& | often hear upper-level managers and project leads praise
team members for working long hours. “Your commitment to
the company is admirable. Excellent job!” That's exactly the
wrong message that managers and leads should be sending.
People should be praised for working well, not for the num-
ber of hours they’re in the building. Managers and leads must
never confuse “productivity” with “time at the office.” One
person might work far fewer hours and produce more than
somebody who works twice as long.

169

DEBUGGING THE DEVELOPMENT PROCESS

You can minimize meetings, reports, and other corporate pro-
cesses, but unless you also focus on the wasted effort unique
to each individual, you'll be missing a significant part of the
problems you need to work on. Make it a priority to help each

~ team member design large blocks of uninterrupted time into

his or her daily work schedule.

If you care about your team members, don’t allow them to
spend all their waking hours at work. Make sure they work a
solid 8-hour day, and then kick them out. Taking that stand at
your organization may seem sacrilegious, but if you believe,
as I do, that people work better if they have an enjoyable per-
sonal life, take that stand.

There’s nothing sacred about the 40-hour work week. It's a
U.S. tradition, so software projects tend to be scheduled on
the assumption that each programmer will work a 40-hour
week—five 8-hour workdays. If it takes a lot more than 40
hours per week per programmer to meet one of those sched-
ules, something is wrong. The schedule might be unrealistic,
or the programmers might need more training. Either way,
there is a problem that needs to be fixed—not masked by hav-
ing the programmers work long hours to compensate for the
problem.

170

