/

ITS ALL ABOUT
ATTITUDE

In Chapter 6, I emphasized how important it is that you work with team
members to improve their skills and knowledge. Exposing team members
to new kinds of tasks promotes incremental learning, and getting the pro-
grammers to read books and develop new coding habits makes for even
more impressive results. But the most profound improvements come
about when a team adopts new attitudes about how to develop products.

BUGGY ATTITUDES

AsIsaid in Chapter 1, the job of the professional programmer is to write
useful, bug-free code in a reasonable time frame. A key point in that idea
is that the code be “bug-free.” Unfortunately, writing bug-free code is
hard. If it weren't, everybody would write bug-free code.

125

DEBUGGING THE DEVELOPMENT PROCESS

One pervasive attitude in programming shops is that bugs are
inevitable and there’s not much you can do about them except to fix
them when they show up. While common, that attitude is completely
wrongheaded. Programmers can make great strides toward writing
bug-free code, but it requires extra effort, effort that programmers won'’t
willingly make until they internalize the attitude that writing bug-free
code is critical to product development. |

One simple—and obvious—technique I use to catch an entire class
of bugs is to turn on the compiler’s optional warnings, the ones that
display an error message for correct, yet probably buggy, code. For
example, many C compilers have an optional warning to catch this
common mistake:

if (ch = tab_char) /* Note single = sign. */

The code above is perfectly correct C code, yet it contains a bug that
the compiler can detect. The tab character is being assigned to ch when
what the programmer intended was to compare the tab character to ch:

if (ch == tab_char) /* Note double = sign. %/

Enabling just one commonly supported compiler warning would
allow the compiler to flag all such erroneous assignment bugs, yet I've
worked with many programmers who absolutely refuse to use that
option. The programmers feel that the warning interferes with writing
code because the compiler gives them a warning even when they inten-
tionally make an assignment in an if statement, forcing them to rewrite
their code. Instead of writing

if (ch = readkeyboard())
process character typed by the user

which would generate a warning, they would have to make a slight
change, having to write either

ch = readkeyboard();
if (ch != nul_char)
process character typed by the user

126

7 IT’s ALL ABoUuT ATTITUDE

or the more terse

if ((ch = readkeyboard()) != nul_char)
process character typed by the user

Neither of the two work-arounds would generate any additional
object code because both simply make the test against the nul character
explicit instead of implicit. And to most C programmers, either of the
work-arounds is as clear as the original code—possibly more so if a pro-
grammer is reading the code quickly.

- But some programmers are adamant. They refuse to use optional
compiler warnings. “I should be able to write code any way I want,”
they say. “The compiler should never issue a warning for perfectly legal
code.” Given the intensity with which some programmers talk about
this issue, you'd think I was suggesting that they give up their desktop
PCs and go back to using punch cards.

This issue points up a difference in programmer attitudes toward
bugs. Since I habitually use the compiler work-arounds, I never get
warnings unless I've actually created a bug by mistake—and I want to
know when I've made such a mistake. To me, being able to find bugs
easily is far more important than what I view as an inconsequential style
change. Programmers who refuse to enable any compiler warnings, it
seems to me, are more concerned with personal expression than with de-
tecting bugs. If those programmers aren’t willing to make such minor
changes, what are the odds of their making more critical changes?
Would they adopt the team-wide or company-wide naming or coding
style? Would they agree to give up favorite but error-prone coding
tricks? Would they even entertain the idea of stepping through all their
new code in a-debugger to detect implementation bugs at the earliest
possible moment?

Yes, writing bug-free code takes effort, effort that programmers
won’t make unless their attitude is that bugs are simply unacceptable.

On my own projects, I review every reported bug, keeping an eye
out for bugs that should have been caught by someone’s using the
project’s unit tests or stepping through the code with the debugger. Any
programmer who allows such bugs to get into the master sources needs
more training—he or she is failing to meet the quality bar.

127

DEBUGGING THE DEVELOPMENT PROCESS

Novice programmers tend to give up far too early because they
have the basic attitude that their code probably doesn’t contain bugs:

I'm done because the code compiles without error and appears to
run correctly.

Novice programmers have that attitude because they haven’t yet been
caught over and over again by overflow and underflow bugs, signed
and unsigned data type bugs, general type conversion bugs, precedence
bugs, subtle logic bugs, and all the other bugs that go unnoticed when
novices read code in the editor and that show up only for special cases
when they run their code—cases they haven’t yet learned to test for.

Fix Bugs Early

The primary reason I push hard for programmers to step through their
code the moment they write it and to run their unit tests is that it takes so
much less time than letting even a single bug slip by and find its way
into the product’s master sources.

The moment a bug makes it into the master sources, it not only
hurts the product but costs everyone huge amounts of time. The pro-
grammer on her end has to stop working on features and track down the
bug, apply a fix, test the change (we hope), and report the bug as fixed.
Back to Testing. Since a bug was found, the testers must retest the entire
feature to ensure that the fix works and that the fix hasn’t broken any-
thing else. Then they must write a regression test for the bug. If the re-
gression test can’t be automated, a tester must manually verify that the
bug has not returned in every future testing release.

Compare all that effort expended on a single bug to the effort it
would take for the programmer to step through the code and run the
unit test before ever merging the feature into the master sources. If the
programmer finds the bug before sending the feature to Testing, none of

‘that protracted effort I just outlined is necessary. That's why I say that
it’s so much cheaper for programmers to find their bugs before the test-
ing team ever sees the code.

128

7 It’s ALL ABouT ATTITUDE

Experienced programmers who consistently have low bug rates
have learned that they’re more likely to find Bigfoot slurping ice cream
at the local Baskin-Robbins than they are to write bug-free code. Unlike
the novices, such experienced programmers assume that their code
probably does contain bugs:

Until I find all the unknown bugs in this code, 1'm not done.

It might seem that with such an attitude, programmers could go
overboard in testing their code, but I've yet to see that happen. Anybody
who is smart enough to write programs realizes when he or she is wast-
ing time on redundant tests. Somebody smart enough to write programs
doesn’t always realize, though, when he or she isn’t testing thoroughly
enough. It's hard to know that you've forgotten to test a unique
scenario or two.

— &

Be sure programmers understand that
writing bug-free code is so difficult that
they can’t afford not to use every means

to detect and prevent bugs.

+~

RESISTING EFFORT

One question I regularly ask as I review both designs and implementa-
tions is “How error-prone is this design or implementation?” I look for
weaknesses and try to judge how risky the code would be to modify.
When I find a weakness, I take steps to overcome it, by either changing
the design to get rid of the weakness or introducing debug code into the
program to monitor the implementation for trouble.

I once reviewed a new feature that had been implemented using a
large table of numbers. I like table-driven implementations, as a rule,
because they’re usually concise and less prone to errors, but they do
have a weakness in that the data in the table could be wrong. I pointed
this weakness out to the programmer who had implemented the code
for the feature and asked him to add some debug code to validate the

129

DEBUGGING THE DEVELOPMENT PROCESS

table during program initialization. Without thinking, the programmer
blurted, “Writing that code will take too much time!”

Klaxons blared. Red lights flashed. Flares went skyward.

Those alarms went off because that programmer committed what
I consider to be a fundamental error in intelligent decision making: he
didn’t ask himself whether my request made sense. Instead, he pounced
on how much extra time he thought writing the debug code would take.

That programmer’s first response should have been “Does the re-
quest make sense?” His second response should have been “Does it
fulfill the project goals and coding priorities?” The question whether the
task would take too much time or effort should have come third in the
order of evaluation.

After the programmer had calmed down, I explained my objec-
tions to his decision-making strategy and asked him to start evaluating
requests according to the order of questions I've described:

® Does adding the debug code make sense?

® If so, does adding the debug code fulfill the goals and coding
priorities of the project?

® Finally, is adding the debug code important enough to justify
the time that will have to be spent doing it?

After we stepped through this evaluation process, the programmer—
still reluctant—agreed to implement the debug code.

Thirty minutes later he came into my office, having added the de-
bug code to the program, and showed me three potential problems in the
table that the debug code had flagged. Two of the problems were obvious
bugs—once they had been pointed out. The third problem was confusing:
neither he nor I could see the bug the debug code was reporting. We
thought at first that the debug code itself might have a bug, causing an
invalid report. But if the debug code was buggy, that bug wasn’t obvious
to us either. We pondered the suspected bug for nearly 10 minutes before
we finally realized that the data in the table was indeed wrong. That bug
was hard to spot even though the debug code pointed right at the errone-
ous table entry. Imagine how hard the bug would have been to spot
without the debug code to lead us to it. .

That programmer learned two valuable lessons that day. First, that
it’s still worthwhile to add debug support to code you already think is

130

7 IT’s ALL ABoUT ATTITUDE

bug-free. And second, that the first reaction to any proposal should
never be “That will take too much time” or its disguised sibling, “That’s
too hard (and would therefore require too much time).”

___%____

Watch out for and correct the “it’s too much
work” reaction. Train programmers to first
consider whether the task makes sense
and whether it matches up with the project
goals and priorities.

___Q___

CAN'TTITUDE

I've worked with many programmers—and project leads—who hardly
ever hit upon new ideas or employ new development strategies because
they shut down their thought processes before they ever get started.
Have you ever been at a meeting in which some poor soul proposed a
new idea only to be bludgeoned by the others with all the reasons the
idea couldn’t possibly work, with how impossible it would be to get up-
per management to agree, or simply with the bald “You can’t do that! It’s
never been done before!”

This “can’t attitude”—can’ttitude—is so destructive to creativity
and problem solving that I try to discourage it whenever I run across it.
I have a rule—and in this case it is a rule—that nobody on my teams is
allowed to say that something can’t be done. They can say it would be
“hard” or that it would “take tons of time,” but they can’t say “can’t.”
My reason:

When somebody says that something can’t be done, he or she is
usually wrong.

I learned long ago to disregard most claims that you can’t do such
and such. More often than not, the person who says that hasn’t given
one jota of thought—at least not lately—to whether you really can't. Yes,
of course, you can come up with hundreds of hypothetical, and absurd,
situations in which something can’t be done—getting all 2704 known
bugs fixed by noon tomorrow, for instance. But usually when people

131

DEBUGGING THE DEVELOPMENT PROCESS

make suggestions that get shot down with can'ts, the suggestions aren’t
absurd; if they were, the people wouldn’t have proposed them.

Whenever you hear somebody say that something can’t be done,
ask yourself whether that person seems to have given any real thought
to the question. If you know the person has, consider whether his or her
evaluation is dated. Things change, especially in our industry. Maybe
what couldn’t have been accomplished last year can be accomplished
fairly handily now—particularly if the proposal revolves around a size
or speed trade-off. There was a time, after all, when people maintained,
“You can’t do a graphical user interface. It would take tons of memory
and be unbearably slow.” That was once true. Now it’s not.

Sometimes it’s a political or administrative matter that meets with
the can’t resistance. Microsoft leads will tell you that you can’t give
back-to-back promotions or a raise bigger than the biggest allowed, but
I've done both of those things in exceptional circumstances. Was it easy?
Definitely not. T had to go out of my way to prove that what I was asking
for was in the best interest of the company. I was successful because
what I asked for made sense, despite corporate policy. Those accom-
plishments weren’t impossible to achieve, just hard.

Many times people latch onto the “can’t be done” attitude simply
because whatever you're talking about is outside their experience.

In 1988, when we were nearing completion of Microsoft Excel 1.5
for the Macintosh, upper management was already talking about the 2.0
release. The plan was that the Macintosh team would continue to port
features from the Windows version of Excel, implementing look-alike
features when the Windows Excel code couldn’t merely be swiped and
reworked to fit. Having spent two years doing just such work, I wasn't
thrilled with the idea. I felt there were too many problems with that ap-
proach. Despite their external similarities, there were numerous differ-
ences between Excel for Windows and Excel for the Macintosh because
they were, in fact, two different bodies of code. I also felt that Excel for
the Macintosh would never be on a par with its Windows sibling. The
Windows product was already considerably more powerful than the
Macintosh product, and their team was larger than ours—a recipe for
ever-widening feature disparity and incompatibility.

There was also a serious problem with the Macintosh implementa-
tion. Because of a design decision that had a pervasive influence on the

132

7 I1t’s ALL ABOUT ATTITUDE

code, the Macintosh application couldn’t use more than 1 MB of RAM.
Even worse, the code had to reside in the first 1 MB of RAM. Users were
complaining loudly—why couldn’t Excel use the other 7 MB of RAM in
their systems? Outrageous!

Programmers at Apple Computer discovered Excel’s predilection
for low memory addresses as they were developing MultiFinder, their
then-new multitasking operating system. The Apple programmers had
designed MultiFinder to load applications from the top of memory
down, but they discovered that Excel wouldn’t work unless it was
loaded at the very bottom of memory. Around their shop, Excel became
known as “the application afraid of heights.” To get Excel and
MultiFinder to work together, Apple’s programmers included special
code in MultiFinder to look for and accommodate Excel, uniquely load-
ing it into low memory. And they asked Microsoft to work on Excel’s
acrophobia, a phobia that had already been “cured” in the Windows ver-
sion of the product. In fact, the Windows Excel team had done a line-by-
line rewrite of the product and fixed numerous problems, with the
result that their code far surpassed the Macintosh code in quality and
maintainability.

When I looked at the 2.0 development plan to rip out Macintosh
Excel’s guts to fix the 1-MB problem and to port as many Windows Excel
features as possible, I saw that the Macintosh team members would be
spending all their time duplicating work that the Windows team had
long ago completed. And we’d still end up with a somewhat incompat-
ible and far less powerful product than theirs. That seemed like a big
waste of time to me.

Why not instead, I thought, expend half as much energy to create a
multi-platform version of Excel from the existing Windows sources? I'd
spent years writing multi-platform code before joining Microsoft, so I
knew what the challenges were in writing such code, and I couldn’t see
any reason why the Windows Excel code couldn’t be modified to sup-
port the Macintosh. If we took that approach, I reasoned, the Macintosh
product—being built from the same code—would be just as powerful as
the Windows product and fully compatible. The 1-MB memory restriction
would disappear, and instead of having to invest in the full develop-
ment effort that would otherwise be required, Microsoft would be able

133

DEBUGGING THE DEVELOPMENT PROCESS

to create future Macintosh releases at a fraction of the previous develop-
ment cost.

When I talked to upper management about scrapping the 2.0 devel-
opment plan in favor of creating a multi-platform version of Excel, they
asked me to take a week to review the Excel for Windows sources and
write an attack plan proposal for the work.

A week later, after I had released the attack plan to upper manage-
ment and both Excel teams, I was taken aback by all the objections to
what I proposed. Even though the attack plan was straightforward,
people focused on all the problems they felt couldn’t be overcome. I
was surrounded by can’ttitude.

“Maguire is dreaming,” said one programmer. “Windows and the
Macintosh are just too different,” said another. A third said, “Assuming
we could create a multi-platform product, it would ruin Excel. The code
would be too slow and too fat and wouldn’t take advantage of the
unique features of each platform.” Still another said, “We don’t have the
time now. We should wait until after the next release”—as if there would
be time then. One person even threatened to quit the company if we
chose to take on the amount of work he thought it would take.

I had been expecting the plan to be wholeheartedly embraced. I got
an education that day. I learned that fear of the unknown can affect even
the best and most self-assured development teams.

A few days later, the Excel teams met with upper management,
there was a vote—the only vote I ever saw at Microsoft—and the plan
was shot down. There would be no multi-platform product, and work
on Macintosh Excel 2.0 would go ahead as planned.

I was still reeling from the decision when we got word that Bill
Gates, Microsoft’s CEO, had read the proposed attack plan and thought
that the multi-platform approach made sense. The work was on.

The team went on to do the multi-platform work in just eight
months. And the application never fell prey to all those early concerns
people had expressed. It’s true that a few operations were a bit slower in
the multi-platform version of Excel than in the original Macintosh ver-
sion, but the slowdown was the result of lifting the 1-MB restriction, not
of the multi-platform work. The product’s speed would have been af-
fected by the lifting of the restriction either way.

134

7 I1t’s ALL ABoUuT ATTITUDE

The Excel programmers were rightly proud of their accomplish-
ment, and many went on to help other Microsoft project teams implement
multi-platform code.

— -
Don't let can’ttitude discourage
innovation.

+

Don’t Bring Me Problems! Bring Me Solutions!

The problem with can’ttitude—if there’s enough of it—is that people
stop speaking up when they see an opportunity for innovation, or
worse, when they see a problem that needs to be fixed. Sadly, some
project leads go out of their way to shut down people who would other-
wise raise valid concerns. Have you ever been at a meeting in which
somebody raised a problem and the lead barked back, “Don’t bring up
any problem you don’t know how to solve—it wastes our time”?

Unfortunately, that approach leads team members to clam up until
they can think of solutions for the problems they’ve noticed. A program-
mer could spot a serious problem affecting development but, not know- -
ing how to solve the problem, might never bring it up for fear of getting
a crushing and humiliating response.

Leads who insist that team members can’t bring up any problems
they don’t know how to solve should instead realize that all problems
need to be raised regardless of whether there is a known solution. Would
you want a worker at a nuclear plant to clam up because she didn’t
know what to do about the green goo she found leaking from a critical
part of the reactor? Of course not. She might not know how to handle the
goo, but somebody else on the reactor team probably would know or
would certainly be motivated to find a solution quickly.

Why should development teams be run any differently? Even if the
person who brings up the problem doesn’t have a solution, somebody
else on the team might be able to come up with one. Problems that aren’t
brought up are problems that don’t get solved.

135

DEBUGGING THE DEVELOPMENT PROCESS

IT's GOOD ENOUGH FOR USERS

Occasionally I'll run into a programmer who thinks he or she is unique
in requiring things from a product that mere users don’t need.

One time I asked a programmer to demonstrate an important fea-
ture he had just completed. He launched the application and began
showing me how the feature worked. The feature looked sharp, except
that it seemed sluggish. -

“Are you running the debug version of the code?” I asked, thinking
that debug code must be responsible for the poky response.

“No, this is the ship version.” He went on demonstrating.

“Have you thought about how to speed things up?”

“What do you mean?”

“I mean, don’t you think the code is a bit slow?”

“Well, I wouldn’t like it, but it’ll be OK for the users.”

I was shocked. “What makes you so different from the users? Espe-
cially in this case, when the users are other programmers just like you?”

I have never understood why some programmers think that users—
whether they’re other programmers or gourmet pasta shop owners—are
any less concerned about speed and other aspects of quality than the
programmer who wrote the code.

I'd argue that end users are more particular about speed and other
aspects of quality since they actually use the features, whereas the pro-
grammers who write the code often don’t. Do you think the program-
mers working on Microsoft’'s FORTRAN compiler use FORTRAN when
they write code? Do the programmers who worked on Word’s Mail
Merge feature ever use that capability? What about Excel’s macro lan-
guage? Dozens of programmers have extended the macro language
over the years, but how many have ever written their own user-defined
macros? I'm not saying that all of these programmers are guilty of the
gross disregard for the user expressed by that earlier programmer. That
simply isn’t so. My point is that programmers routinely implement code
that they themselves never have occasion to use. Think about your own
project. Do the programmers on your team actually use the code they
write?

When programmers don’t use the code they write, it’s easy for
them to distance themselves from the end user. This distancing may

136

7 It’s ALL ABoUT ATTITUDE

account for the occasional programmer who thinks that end users are
bozos who aren’t concerned about speed and other aspects of software
quality—at least not to the same degree that the programmer himself
would be.

To keep the end user in mind, programmers should measure their
work against this reminder-—you might want to put it on a large banner
you hang over the entrance to your building;:

The end user is at least as concerned about speed and other aspects
of software quality as the programmer who implements the code.

We all know that some users don’t care much about the quality of
the programs they use, as long as they aren’t prevented from getting

Usability

When Microsoft first began conducting usability studies in the late 1980s
to figure out how to make their products easier to use, their researchers
found that 6 to 8 out of 10 users couldn’t understand the user interface
and get to most of the features. When they heard about those findings, the
first question some programmers asked was “Where did we find eight
dumb users?” They didn’t consider the possibility that it might be the
user interface that was dumb.

If the programmers on your team consciously or unconsciously be-
lieve that the users are unintelligent, you had better correct that atti-
tude—and fast. Consider two teams, one on which the programmers
believe that users are probably intelligent, discerning consumers and
another on which the programmers assume that users are essentially
dumb. Which team is more likely to take users’ complaints seriously and
act on them to improve the software? Which team is more likely to ask
users for their opinions about new features that would improve the prod-
uct? Which of the two teams is going to consistently put out a product
that fits the users’ needs? On the other hand, which team is more likely to
ignore users’ complaints and instead waste time on features that the users
don’t need or want? The basic attitude the team adopts toward the users
can make a great difference in the quality of the product.

137

DEBUGGING THE DEVELOPMENT PROCESS

their jobs done. But if you want to ship great products, you can’t target
those unfussy people. You must target the users who do care whether a
program is slow or quirky or contains bugs that can make it crash.

e
Don’t let programmers believe that
users don’t care as much about software
quality as programmers do.

—’___.

BEWARE THE SUBSTANDARD FEATURE

I used to have the attitude that it was better to give the user a painfully
slow feature, or an overly restrictive one, than to cut the feature and give
the user nothing at all. “At least the user will have something between
now and when we ship the more polished version in the next release,”
I'd reason. Eventually it dawned on me that users weren’t aware of the
choice I'd made—giving them something, even of substandard quality,
over giving them nothing at all. Users, I realized, open the box, run the
program, and see only that they’ve gotten another poorly implemented
feature. “Why does it always take them two releases to get things right?”
they wonder.

I've seen this reaction often enough now that rather than trying to
give the user something, I cut any feature that doesn’t meet the quality
bar. Users rarely miss what they’ve never had, but if you give them a fea-
ture they feel is unpolished or frustrating to use, they’re liable to think
less of the whole program. If you give them several such features, they
might start looking at your competitor’s product.

It pains me to say this, but if a feature doesn’t meet your quality
bar, consider cutting it, even if it seems as if it could be a useful feature.
Wait until the next release, and do it right. If the feature is so strategic
that you feel you must ship it, it’s also probably worth slipping your
ship date to do it right.

e
Don'’t ship substandard features.
Postpone them until you can implement
them properly.

—0___

138

7 It’s ALL ABoUT ATTITUDE

THE SENSITIVE PROGRAMMER

In Chapter 1, I described a situation in which a lead for a Windows-like
user interface library had never bothered to view the library as one of
the library’s “customers” would. The lead had never considered the
possibility that a library that wasn’t backwards compatible would be
frustrating to its users. I've seen this lack of appreciation for the users’
perspective so many times that it’s worth talking about.

When the Windows Excel team was rewriting parts of the applica-
tion so that it would work on the Macintosh, one programmer was
implementing keyboard-driven menus, a capability many business
users were asking for that the Macintosh operating system didn't offer.
Macintosh users were required to use the mouse. Since there was
no Macintosh standard for keyboard-driven menus to follow, the pro-
grammer implemented Windows-style keyboard-driven menus to mini-
mize the user interface differences between the Windows and Macintosh
versions of the product. When the programmer finished the feature, he
called me into his office to demonstrate his new creation. The menus
looked just as they did in Windows. I was impressed.

“Wow!” I said as I played with the menus. When the excitement
wore off, I turned to the programmer: “How do I disable the Windows
interface?”

“Why would you want to do that?” he said, puzzled. “The feature
doesn’t interfere with the Macintosh mouse-driven interface. There’s no
reason to disable the interface.”

I was surprised by the programmer’s response because, at the
time, you couldn’t pick up a Macintosh-oriented magazine that wasn’t
full of hatred for Windows. Macintosh users were upset that the indus-
try was raving about Windows, which they considered a third-rate
product, and that their beloved Macintosh was viewed as a whimsical
toy. Windows was the archvillain to Macintosh users everywhere.

“If Excel ships with Windows-style menus as the default,” I said,
“it’ll alienate Macintosh users. Excel will get killed in reviews if it has
‘“Windows’ written all over it.”

The programmer was reluctant to change his code—he’d been
thinking he was done and was eager to move on to the next feature. We
called over some other team members to talk about the interface. The

139

DEBUGGING THE DEVELOPMENT PROCESS

consensus was unanimous: Excel for the Macintosh not only had to look
like a Macintosh product right out of the box but had to bleed Apple’s
six colors as well. The programmer went back to work.

A while later the programmer emerged from his office, offering to
demonstrate his new version of the feature. I was surprised to see that
he hadn’t merely added an on/off switch for Windows-style menus. He
had implemented a smart feature in which the menus were drawn in
standard Macintosh format by default but were redrawn as Windows-
style menus the moment the user hit the lead-in key for keyboard-driven
menus. The menus remained in Windows mode until they were dis-
missed; then reverted to Macintosh-style menus. Even better, the pro-
grammer responsible for implementing the new Macintosh dialogs
carried the feature into that code as well. When you invoked a dialog
using the mouse, you got a standard Macintosh dialog; when you in-
voked a dialog by means of a Windows-style menu, the dialog came up
with the Windows-style interface. The best of both worlds.

e
Be sure that programmers always view
the product as an end user would.
Programmers must be sensitive to the
end user’s perceptions.

—’_____

THE WHOLE PrODUCT AND NOTHING BuT

For the longest time, Microsoft’s Languages division—the division re-
sponsible for compilers, debuggers, linkers, and so on—viewed the
tools as separate, autonomous products. That made sense from a devel-
opment viewpoint, but it didn’t make sense from an end user viewpoint.
Programmers who bought a Microsoft development system didn’t care
whether the compiler and debugger development teams were different.
From their viewpoint, Microsoft C/C++, the debugger, and the linker
were parts of the same product. Pretty easy to understand.
Unfortunately, that wasn’t the predominant attitude toward the
tools in the Languages division. Programmers, both external and inter-
nal, were asking for improved debugging features, but the debugging

140

7 It’s ALL ABoUT ATTITUDE

team didn’t have enough people to fill the requests. Meanwhile, the com-
piler team was merrily working on code optimizations that few people
were asking for. The mindset was “We’ve got to keep improving the com-
piler.” It should have been “We've got to improve the overall product.”

For years, Microsoft’s linker was clunky, slow, and tedious to use
while competing products had fast linkers. Every programmer in the
company knew that Microsoft’s linker crawled, but very little was done
to improve it. The one programmer assigned to the linker did his best to
improve the tool, but he had other duties and didn’t have time to make
major speed improvements to the linker. Besides, the view in the Lan-
guages division seemed to be, it was the compiler that was important—
the linker was just a support tool. Users didn’t see it that way, though,
because they didn’t distinguish between the compiler and the linker. To
users, they were part of the same product.

At least one Microsoft team dumped the company’s own linker
and used a competitor’s linker. And in the Applications division, a pro-
grammer finally got so frustrated with the linker that he hacked to-
gether a quick and dirty incremental linker for the Applications teams to
use. The Languages group eventually discovered the Applications incre-
mental linker, cleaned it up a bit, and began shipping that linker with
retail releases of the compiler.

Eventually, after a few rounds of management change, the Lan-
guages group caught on and began improving the development system,
not just the compiler. The result was Visual C++, a product that review-
ers hailed as a refreshing, long-needed change to Microsoft’s develop-
ment system.

__—0—
The product is everything that
goes into the box.

——

DOUBLE MEANS TROUBLE

As the Excel programmer was writing his keyboard-driven menu code,
a Word programmer not more than ten doors away was implementing
the same feature in Word for the Macintosh. Although I pointed out this

141

DEBUGGING THE DEVELOPMENT PROCESS

duplicate effort to the Excel programmer and mentioned it to the man-
ager in charge of both Excel and Word, nothing happened. The two pro-
grammers continued to implement the code in parallel. When the
products eventually shipped, both sported keyboard-driven menus, but
the user interfaces were totally different. I saw that as a lost opportunity
to make the Excel and Word interfaces work identically, to save half the
development effort, and to create a menu library that Microsoft’s other
Macintosh teams could have popped into their products. The attitude
wasn’t so much “not invented here” as it was indifference. Nobody
seemed to be concerned that programmers were duplicating effort and
creating unnecessary differences between products.

I take the other approach to development effort: if I can reuse code
that has already been written and debugged, I'll grab it in an instant.
Similarly, I always write code assuming that some other team is going to
borrow it in the future. No, I don’t write all my code so that it’s portable,
nor do I spend extra time just in case the code might be reused. Butif I'm
faced with the choice between two equally good designs, I always
choose the design that can be more easily shared.

In Excel’s initial release, one of the programmers implemented a
feature never seen in a Macintosh application before: a “print preview”
feature that enabled the user to view pages on the screen formatted as
they’d actually be printed. The design for the print preview feature was
straightforward. The “page viewer” would take a “picture” of a page
and then display it. If the user wanted to preview a full document, an-
other piece of code simply called the viewer to display pictures of suc-
cessive pages.

The feature was such a hit with users that the Macintosh Word
team added a print preview feature to their application, one with a
much nicer and more useful page viewer. The Word implementation
made Excel’s look rough and unpolished. I was assigned the task of add-
ing many of Word’s bells and whistles to the Excel version.

My first thought was to scrap the Excel print preview code and
transplant Word’s implementation into Excel. Not only would trans-
planting take less time than implementing all the new code, I thought,
but transplanting the code would make the two applications look and
behave identically. When I explained to the Word programmer what I
intended to do, he told me that his implementation of the print preview

142

7 Ir’s ALL ABoUT ATTITUDE

- feature was inextricably tied to Word. He could have written the code to
be more shareable, he said, but it had never occurred to him that we
might want the code for the Excel project. After all, Excel already had a
print preview feature. Sadly, I couldn’t use his polished page viewer.

In the end, I enhanced Excel’s existing print preview code, but the
Word feature was still much nicer. Even more disappointing, because
Excel’s code was shareable, its version of print preview was the version
that spread to Microsoft’s other applications.

AsT've said, one of the best ways to implement a solid new feature
is to grab it from a team that has already done the work of writing and
debugging the code. Most programmers appreciate this point. But most
programmers, it seems, fail to recognize that they can’t grab code unless
they and other programmers write their own code so that it can be
grabbed.

To increase the value of their code to the company, programmers
should develop the attitude that all of their code is likely to be reused.
With that objective in mind, they should reduce the code’s dependence
on the host application. It's a problem not unlike writing code to avoid
explicit references to global data: sometimes it’s necessary, but often by
using a slightly different design you can eliminate the explicit depen-
dence with little or no extra effort.

Programmers should ask,

Could this code be useful to other (even future) applications?

If the answer is Yes, the code is a candidate for reuse. Both the keyboard-
driven menus and the print preview feature could have been coded in an
application-independent way. Reusability just wasn’t considered a pri-
ority. Too bad. It could have increased the quality of both Word and Ex-
cel, with half the effort.

—_&&_
Give some priority to writing easily
shared code. Programmers can’t share

each other’s code unless they're writing
it so that it can be shared.

___&_—'

143

DEBUGGING THE DEVELOPMENT PROCESS

LEVERAGE YOUR LEVERAGEABILITY

If your team or company is to become successful, you have to ensure
that people understand the power of leverage, how a little well-placed
effort can yield a much greater return. Every team member should keep
- this fundamental principle in mind:

You can extract extra value from every task you do by either using
existing leverage or creating new leverage.

The one example of this principle that all programmers know
about is reusing existing code or creating reusable code. But there are
many ways to use or create leverage.

In Chapter 6, I described how you could make employees more
valuable to the company by first teaching them skills they could use not
just on your project, but on any projéct. That’s creating leverage. As far
as your project is concerned, the order in which you teach worthwhile
skills doesn’t matter. The order in which you teach skills is unimportant
until a programmer moves to a new group. Then either the programmer
must start at square one because the skills he or she has learned so far
are worthless to the new group, or the programmer can leverage the
skills learned on the previous project because those skills are more glo-
bally useful.

As I've said, you can create leverage out of almost any task—you
just need to look for it and then exploit it. For example, during one of the
feature reviews for the user interface library, the technical lead handed
me his list of proposed library extensions. The functionality looked
good—it reflected what the other teams were asking for.

“This looks good,” I told him. “But some of these interfaces seem to
differ from the way Windows does the same thing. Have you cross-
checked the functionality with the Windows reference manuals?”

The lead blew up. “Steve, this library isn’t Windows. Who cares how
Windows does it as long as we provide the functionality in an intelligent
way? It seems like a waste to keep pulling out the Windows manuals.”

He had a good point. I realized then that I had never explained to
him why I felt it was important to model Windows.

“Just so I'm sure I understand,” I said, “you’re saying that it
doesn’t matter what our interfaces look like as long as they do their job

144

7 It’s ALL ABOUT ATTITUDE

well. They could mirror Windows interfaces or be totally different. The
choice is arbitrary.”

“Yeah,” he nodded.

“Let me ask you a question. Since Word for MS-DOS uses our li-
brary, could a Windows programmer mistake Word’s source code for a
Windows application if he or she didn’t examine it closely?”

“Yeah, but it’s not Windows code.”

“Bear with me,” I said. “More than 20 projects use our library. Do
you think the programmers working on those projects will stay on those
teams forever?”

“No. They’ll probably switch to Windows projects.”

“I think so too. So tell me, when those programmers switch to Win-
dows projects, how easily will they pick up Windows programming?”

“Pretty easily since our library is like a subset of Windows.” You
could see the realization sweep across his face even as he said that.

“You mean, we're teaching them Windows programming?”

“ And what does it cost the company?”

He thought a moment.

“Practically nothing, I guess—just my having to occasionally look
up some functions in the Windows reference manuals.”

“Right. And here’s something else to think about: How will this
Windows experience help you in the future? Will you be on this project
forever, or will you also eventually move to a Windows project?”

It might seem that you couldn’t get leverage out of something as
simple as what you name your functions, but you can.

People don’t often create new leverage because it calls for looking
~ into the future and making the grand leap of faith, believing that if you
create the leverage now, it will actually be used in the future. Will the le-
verage be used? Maybe not. But the business environment changes so
quickly that, to be healthy, a company should create opportunities that
can be exploited at a moment’s notice. One truth I've seen proven over
and over again is this:

If you create leverage and make others aware of it, they will
someday exploit that leverage.

When I started the Macintosh cross development project, both the
Applications division and the Languages division viewed the work as an

145

DEBUGGING THE DEVELOPMENT PROCESS

in-house-only development system. My goal was to create a develop-
ment system as an extension of the commercial 80x86 product so that the
in-house Macintosh development system could continually inherit all
improvements made to the commercial product. That’s an obvious case
of creating and using leverage, but I pushed for more. I believed that
‘other, non-Microsoft, programmers who were writing applications for
Windows would cross-compile those applications for the Macintosh if
they had a good—and familiar—cross development system at their dis-
posal. Most people thought I was crazy, but so what? I knew that if we
assumed that the cross development system would never be a product,
we’d make decisions inappropriate for a product. I also knew that if we
wrote the code assuming that it would someday be a product, we’'d
make decisions that reflected that attitude.

In design meetings I would often point out that, yes, a particular
design was workable for an in-house solution but that we’d have to rip it
out and start over if Microsoft ever chose to ship the code as a product.

“But we're never going to ship this as a product,” I'd hear.

“Well, not if we make that assumption,;' I'd say. “Let’s just take a
moment to see if there’s an equally good design that would work for
both the in-house and product solutions.” ‘

In most cases, not only did we come up with dual-purpose solu-
tions, but often the designs were better and took less time to implement.
The extra up-front thinking forced us to come up with more designs to

- consider. In a few cases, the only dual-purpose solution we could find
looked as if it would take more time to implement than the in-house so-
lution. In such a case, we chose the in-house design that would require
the least additional rewriting if Microsoft ever chose to turn the cross
development system into a product.

Whenever upper management asked about the state of the project,
I would tell them what they wanted to know and always tell them again
of our policy of not doing anything that would prevent the company
from shipping the code. Upper management’s only concern—one I
shared—was that we not spend time doing product work that might
never be used.

Nobody ever believed that the code would ship as a product, but
one day Microsoft announced its “Windows Everywhere” campaign. All
of a sudden it had become strategic for Microsoft to provide Windows

146

7 I1T’s ALL ABouT ATTITUDE

solutions for non-80x86 platforms. The Macintosh cross development
system was declared a product, given higher priority, and assigned
more programmers.

0;;.._
Extract the most value possible from
every task you do, by either exploiting
existing leverage or creating new leverage.

———

LEVERAGING ATTITUDES

I've been talking about adopting the attitude that you'll exploit leverage
whenever and wherever you see the possibility. That idea pervades this
chapter even more than I've suggested. Instilling beneficial attitudes in
your team is the ultimate use of leverage. With one small change in atti-
tude you can get a tremendous return for the effort, more return than on
any other training investment I'm aware of.

Constant, incremental improvement is great, and that alone is of-
ten enough to keep you ahead of your competitors, but if you want your
teams to pull ahead, you must help them to develop beneficial attitudes
that drive them to carry on, without supervision. That lead who was irri-
tated because I asked him to refer to the Windows reference manuals
never referred to the manuals himself until I explained the thinking be-
hind my request. Once he understood my motivation—trying to create
leverage—I never again had to pester him to check the Windows manu-
als. He became self-motivated.

HIGHLIGHTS

¢ Novice programmers must understand how difficult writing
bug-free code is. If they have that understanding, they won’t
so readily assume that their code is bug-free. More experi-
enced programmers must understand that even though writ-
ing bug-free code is difficult, it doesn’t mean they should give
up trying to write such code; it means that they must spend
more time testing their code up front, before the code ever

147

DEBUGGING THE DEVELOPMENT PROCESS

reaches the testing group. And because it's so difficult to
write bug-free code, and so costly when bugs make it into the
master sources, all programmers must use every tool at their
disposal to detect and prevent bugs, even if that means ad-
justing their coding styles to weed out error-prone language
idioms.

Watch for the “it’s toe much work” and “it’s too hard” reflex
reactions. When you hear somebody object that a task will
take too much time or that it will be too hard, ask yourself if
the individual first considered whether the task was impor-
tant and whether it matched the project goals and priorities.
If it seems to you that he or she was merely responding reflex-
ively, try to refocus the person on the merits of doing the task
so he or she can evaluate the idea freshly and fairly.

A common tendency is for people to think negatively when
they’re faced with something they haven’t tried before. In one
form or another, they latch onto the idea that the task is some-
how impossible. Try to shake up this habitual response and in-
stead help instill in team members the belief that most tasks
can be done if only people would take some time to think about
them. It's amazing how often you can respond to a “can’t”
judgment with the question “I realize it can’t be done, but if it
could be done, how would you do it?” and hear people rattle
off exactly how they would do the thing they just said was im-
possible. The word “could” takes them out of reaction mode
and puts them into thinking mode, right where they should be.

The attitude that the user is neither demanding nor discern-
ing is a detrimental one. Whenever you hear team members
expressing such views, remind them that users—who by defi-
nition actually use the product—are at least as concerned
about speed and the other aspects of software quality as the
programmers who write the code.

Teach programmers to view the product as an end user would.
Programmers must recognize that end users view everything
that goes into the box as a single product. Usersdon’t care how

148

7 I1’s ALL ABourt ATTITUDE

the individual pieces got into the box, they don’t care if the
product was built by 27 different teams, they don’t care what
language the code was written in—they don’t care about any
of that stuff. These points of information may be important to
the company, and to the development teams, but users see
only that the product is one item produced by one company.
Programmers (and leads) may not work on every piece of the
product, but they should be concerned when any piece
doesn’t meet the quality standards set for the product. When
enough people express concern about a substandard piece,
that piece will get fixed.

Leverage is the most powerful tool at your disposal for add-
ing value to your team, your project, your company, and even
the industry. Take advantage of the principle of leverage by
using it whenever you can. Strive to create new leverage in
every task you undertake, whether it's writing code that
could be shared, training team members in a way that makes
them more valuable to the company as a whole and not just
valuable for your own team, or taking a seemingly arbitrary
decision like what you name a function and turning it into
a way to prepare programmers for a future project. Think
“leverage” in everything you do.

149

