CONSTANT,
LINCEASING
IMPROVEMENT

During this year’s Winter Olympic Games, I was struck by one aspect of
the figure skating events. The television footage of earlier gold medal
performances seemed to suggest that 25 years ago you could win a gold
medal with a few layback and sit spins, a couple of double toe loops, and
a clean, graceful program. Today such a simple performance, however
pleasing to watch, wouldn’t win a hometown skating championship.
Nowadays you must do at least three triple jumps, several combination
jumps, a host of spins, and lots of fancy footwork. On top of that, your
program must have style, or the scores for artistic impression will look
more like grade point averages than the 5.8s and 5.9s you need to win
the gold.

At one point in the TV coverage, the commentator mentioned that
Katarina Witt planned to skate the same program with which she had

107

DEBUGGING THE DEVELOPMENT PROCESS

won the gold medal six years earlier at the Calgary Olympics. He added
that it was unlikely Ms. Witt would place near the top even if she gave a
clean performance—the very best programs only six years ago simply
weren’t demanding enough for competition today.

Think about that. Are skaters today actually better than the skaters
of a quarter century ago? Of course, but not because Homo sapiens has
evolved to a higher state of athletic capability. Some of the improve-
ments in today’s peffo_rmances, I'm sure, are a result of better skates and
ice arenas. But the dominant reason for the improvement is that each
year skaters raise their standards as they try to dethrone the latest
national or world champion. Skaters 25 years ago could have included
all those triple and combination jumps in their routines, but they didn’t
need to, so they didn’t stretch themselves to master those feats.

In the book Peopleware, Tom DeMarco and Timothy Lister describe
a similar difference in standards of performance among programmers
who work for different companies. DeMarco and Lister conducted
“coding wars” in which they gave a programming task to two program-
mers from every company participating in one of the contests. They
found that the results differed remarkably from one programmer to the
next, at times by as much as 11 to 1 in performance. That disparity is
probably not too surprising. The surprising news is that programmers
from the same company tended to produce similar results. If one did
poorly, so would the other. Likewise, if one did well, both did well, even
though the two programmers were working independently. DeMarco
and Lister point out that the work environments at the companies could
account for some of the difference in performance among the compa-
nies, but I believe the major reason for the 11 to 1 variance is that the
acceptable skill level for the “average programmer” varies from one
company to the next.

When was the last time you heard a lead say to a programmer, “I'm
disappointed in you. You're doing just what you're expected to do”?
Whether a company is aware of the phenomenon or not, its program-
mers have an average skill level, and once a programmer reaches that
average level, the pressure to continue learning eases up even though
the programmer might still be capable of dramatic improvement. The
programmers are like those ice skaters 25 years ago—good enough. And

108

6 CONSTANT, UNCEASING IMPROVEMENT

leads tend not to spend time training people who are already doing their
job at an acceptable level. They work with people who haven’t yet
reached that level.

Having a team of programmers who do what is expected is not
good enough. An effective lead perpetually raises the standards, as
coaches for Olympic-class skaters must do. As you raise the program-
ming standards of your team, you'll ultimately raise the standards—the
average—of your whole company.

FIVE-YEAR TENDERFEET

Occasionally I'll run across a programmer who after five or more years
still works on the same project he or she was first assigned to. No prob-
lem with that, but in many cases I find that the programmer is not only
on the same project but also doing the same job. If the programmer was
assigned to the Microsoft Excel project to work on Macintosh-specific
features, for instance, that’s what he’ll still be doing—as the specialist in
that area. If the programmer was assigned to the compiler’s code
optimizer project, years later she’ll still be working on that isolated
chunk of code—again, as the specialist.

From a project standpoint, creating long-term specialists for spe-
cific parts of your product is a good idea, but creating specialists can
backfire if you don’t educate them wisely. You'll cripple those program-
mers and ultimately hurt your project and your company if you don’t
see to it that your specialists continue to learn new skills.

Suppose that Wilbur, a newly hired programmer, spends his first
year becoming your file converter specialist and then spends the next
four years writing filters to read and write the file formats of competing
products. There’s no question that such work is important, but Wilbur
will have gained a year’s worth of real experience and then tapered off,
learning little else for the next four years. Wilbur would claim that he
has five years of programming experience, but that would be mislead-
ing—he would in fact have one year’s experience five times over.

If Wilbur had spent the last four of those five years working on
other areas of the application, he’d have a much wider range of skills. If
he had been moved around to work on different aspects of a mainstream

109

DEBUGGING THE DEVELOPMENT PROCESS

Windows or Macintosh application, for instance, he would have had an
opportunity to develop all of this additional know-how:

& How to create and manipulate the user interface libraries—
the menu manager, the dialog manager, the window man-
ager—and all of the user interface gadgets you’d create with
those libraries.

& How to hook into the help library to provide context-sensitive
help for any new dialogs or other user interface extensions he
incorporates into the application.

How to use the graphics library to draw shapes, plot bit
maps, do off-screen drawing, handle color palettes, and so on,
for display devices with various characteristics.

® How to send output to printers, achieving the highest quality
for each device, and how to make use of special features
unique to each device, such as the ability of PostScript print-
ers to print watermarks and hairlines.

How to handle international issues such as double-byte
characters, country-specific time and date formats, text orien-
tation, and so on.

& How to handle the issues related to running an application in
a networked environment.

® How to share data with other applications, whether the task is
as simple as putting the data on the system clipboard or as
complex as using the Windows Dynamic Data Exchange
library or the Object Linking and Embedding library.

® How to write code that will work on all the popular microcom-
puter operating systems—MS-DOS, Windows, Windows NT,
0S/2, and the Macintosh.

You get the idea. These skills are easily within the grasp of any pro-
grammer who works on a Windows or Macintosh application for five
years—provided that every new task contains an as-yet-unlearned
element that forces a programmer to learn and grow.

110

6 CONSTANT, UNCEASING IMPROVEMENT

Compare the two skill sets. If you were to start a new team, which
Wilbur would you want more, the five-year file converter specialist or
the Wilbur with one year’s experience in writing file converters plus
four more years’ experience with the varied skills in the list? Remember,
both Wilburs have worked for five years. . .

A lead’s natural tendency when assigning tasks would be to give
all the file converter work to Wilbur because he’s the specialist in that
area. It’s not until the Wilburs of the world threaten to leave their projects
for more interesting work that leads switch mental gears and start throw-
ing new and different tasks their way.

But “if the specialists aren’t doing the tasks they’re expert in,
wouldn’t they be working more slowly on tasks they know less about?”
Or to put it another way, “Don’t you lose time by not putting the most
experienced programmer on each task?”

If you view the project in terms of its specific tasks, the answer
must be Yes, each task is being done more slowly than it could be done
by a specialist. However, that little setback is more than compensated
for when you look at the project as a whole. If you're constantly training
team members so that they're proficient in all areas of your project, you
build a much stronger team, one in which most team members can
handle any unexpected problem. If a killer bug shows up, you don’t
need to rely on your specialist to fix it—anybody can fix it. If you need to
implement a new feature in an existing body of code, any of many team
members can efficiently do the work, not just one. Team members also
know more about common subsystems, so you reduce duplicate code
and improve product-wide design. The entire team has versatile skill sets.

Your team may be losing little bits of time during development as
they learn new skills and gain experience, but for each minute they lose
learning a new skill, they save multiple minutes in the future as they use
that skill again and again. Constant training is an investment, one that
offers tremendous leverage and tremendous rewards.

Don't allow programmers to stagnate.
Constantly expose each team member
to new areas of the project.

—

111

DEBUGGING THE DEVELOPMENT PROCESS

REUSABLE SKILLS

At Microsoft, when a novice programmer moves onto a project, he or she
is typically given introductory work such as tracking down bugs and in-
corporating small changes here and there. Then gradually, as the pro-
grammer learns more about the program, the tasks become increasingly
more difficult, until the programmer is implementing full-blown mega-
features. This gradualist approach makes sense because you can’t very
well have novices making major changes to code they know nothing
about. My only disagreement with this approach is that the tasks are
assigned according to their difficulty rather than according to the
breadth of skills they could teach the programmer. As you assign tasks
to programmers, keep the skills-teaching idea in mind. Don’t assign suc-
cessive tasks solely on the basis of difficulty; make sure that each task
will teach a new skill as well, even if that means moving a novice pro-
grammer more quickly to difficult features. Even better, assign tasks at
first that teach skills of benefit not only to your project but to the whole
company.

In a spreadsheet program, for instance, tasks might range from
implementing a new dialog of some sort to working on the recalculation
engine. The skills a programmer would learn from these two tasks fall at
two extremes: one skill has nothing to do with spreadsheets specifically,
and the other historically has little use outside spreadsheet program-
ming. Putting a programmer on the recalculation engine would be educa-
tional and would provide a valuable service to the project, but the skill
wouldn’t be as transferable as knowing how to implement a dialog would
be. Learning how to create and manipulate dialogs could be useful in
every project the company might undertake.

Creating a better “average programmer” means raising the stan-
dard throughout the company, not just on your project. You could assign
programmers a random variety of tasks and ensure that team members
would constantly learn, but you can do better than that. Analyze each
task from the standpoint of the skills it calls upon, and assign it to the
programmer who most needs to learn those skills. An experienced pro-
grammer should already know how to create dialogs, manipulate
windows, change font sizes, and so on. She is ready to develop less glo-
bally useful—more specialized—skills such as the ability to add new

112

6 CONSTANT, UNCEASING IMPROVEMENT

macro functions to the spreadsheet’s macro language. At some point,
she’ll know the program so well that in order to continue learning she’ll
have to move to extremely project-specific work such as implementing
an even smarter recalculation engine.

A novice team member should be assigned a few tasks in which he
must learn to create dialogs, followed by a few tasks that force him to
manipulate windows, and so on. Deliberately assign tasks that cumula-
tively require all the general skills. That way, if the division should be
reorganized and the programmer should find himself on another
project, the skills he’s learned will still be useful.

This is another example of a small system that produces greater re-
sults. Which specific work you assign to a novice programmer may not
make much difference in the progress of your own project, but by first
exposing a new programmer to a wide range of general skills that he or
she can bring to any project, you make the programmer more valuable to
the company.

._._._w—
When training programmers, focus first
on skills that are useful to the entire company
and second on skills specific to your project.

—&____

GIVE EXPERTS THE BOOT

If you constantly expose a team member to new tasks that call for new
skills, he or she will eventually reach a point at which your project no
longer offers room to grow. You could let the programmer’s growth stall
while your project benefited from his or her expertise, but for the benefit
of the company, you should kick such an expert off your team. If you al-
low programmers to stagnate, you hurt the overall skill level of the com-
pany. You have a duty to the programmers and to the company to find
the programmers positions in which they can grow.

Am I joking? No.

The tendency is to jealously hold onto the team’s best program-
mers even if they aren’t learning anything new. Why would you want to
kick your best programmer off the team? That would be insane. . .

113

DEBUGGING THE DEVELOPMENT PROCESS

In Chapter 3, I talked about a dialog manager library that the Word
for Windows group had been complaining about. Although I wasn’t the
lead of the dialog manager team then, I did eventually wind up in that
position. And there came a point at which the main programmer on the
team had reached a plateau: he wasn’t learning anything new within the
constraints of that project. Besides, he was tired of working on the same
old code. He needed to stretch his skills.

When I asked whether he knew of any interesting openings on other
projects, he described a position in Microsoft’s new user interface lab in
which he would be able to design and implement experimental user in-
terface ideas. In many ways, it seemed like a dream job for the program-
mer, so I talked to the lab’s director to verify that the job was a good
opportunity for this programmer to learn new skills. The position looked
great. In less than a week, the dialog team’s best programmer was gone,
leaving a gaping hole.

In these situations, you can either panic or get excited. I get excited
because I believe that gaping holes attract team members who are ready
to grow and fill them. Somebody always rises to the occasion, experienc-
ing tremendous growth as he or she fills the gap. The dialog team’s gap
proved to be no different. Another member jumped headlong into the
opening.

Occasionally I'd bump into the lab director and ask how the project
was going. “Beyond my wildest dreams,” he’d say. “We’re accomplish-
ing more than I ever imagined or hoped for.” He had been expecting to
get an entry-level programmer, but he’d gotten a far more experienced
programmer, and his group was barreling along.

The dialog manager group with its new lead programmer was bar-
reling along too. The new lead had just needed the room to grow, room
that had been taken up by the expert programmer.

You might think that kicking your best programmer off the team
would do irreparable harm to your project. It rarely works out that way.
In this case, the dialog team experienced a short-term loss, but the com-
pany saw a huge long-term gain. Instead of a slow-moving user inter-
face project and two programmers who had stopped growing, the
company got a fast-moving user interface project and two programmers
who were undergoing rapid growth. That outcome shouldn’t be too
surprising. As long as its people are growing, so is the company.

114

6 CONSTANT, UUNCEASING IMPROVEMENT

Don't jealously hold onto your best program-
mers if they ve stopped growing. For the good
of the programmers, their replacements, and
the company, transfer stalled programmers to
new projects where growth can continue.

The Cross-Pollination Theory — Dismissed

Occasionally I'll run across the idea that companies should periodically
shuffle programmers around so that they can transfer ideas from one
project to another. It’s the cross-pollination theory.

The cross-pollination theory appeals to me because its purpose is
to improve development processes within the company, but in my expe-
rience the cross-pollination practice falls short of its goal, and for a
simple reason: it ignores human nature. Advocates of the theory assume
that programmers who move to brand-new groups will teach the new
groups the special knowledge they bring with them. But how many
people feel comfortable doing that in a new environment? And even if a
programmer would feel comfortable as an evangelist, how many groups
would appreciate some newcomer’s telling them what they should do?
A new lead might feel fine propounding fresh ideas hours or days into
the project, but nonleads? It might be years, if ever, before a programmer
would feel comfortable enough to push his or her ideas beyond a narrow
work focus.

Advocates of the cross-pollination theory assume that new people
bring new knowledge into the group. In fact, that's backwards from
what actually happens: new people don’t bring their knowledge into the
new group as much as they get knowledge from the new group. New
people find themselves immersed in different, and possibly better, ways
of doing things. And they learn. The primary benefit is to the person do-
ing the moving. If that person can continue to grow on his or her current
project, why cause disruption? Let the people who are stagnating move
to other teams and learn more. Don’t shuffle people around to other
teams expecting them to spread the word. They usually won’t.

115

DEBUGGING THE DEVELOPMENT PROCESS

THE NEW YEAR'S SYNDROME

Not all skills can be attained in the course of doing well-chosen project
tasks. A skill such as learning to lead projects must be deliberately pur-
sued as a goal in itself. The person must decide to be a good lead and
then take steps to make it happen. It’s proactive learning, as opposed to
learning as a side effect of working on a task.

If you want your team members to make great leaps as well as take
incremental daily steps to improvement, you must see that they actively
pursue the greater goals.

The traditional approach to establishing such goals is to list them
as personal skill objectives on the annual performance review. We all
know what happens to those goals: except for a few self-motivated and
driven individuals, people forget them before the week is over. Then
along comes the next review, and their leads are dismayed to see that
none of the personal growth goals have been fulfilled. I think we’ve all
seen this happen—it’s the New Year’s Resolution Syndrome, only the
date is different.

Such goals fall by the wayside because there are no attack plans for
achieving them or because, if there are such plans, the plans have no
teeth—just as those postmortem plans I spoke of in Chapter 4 had
no teeth. Listing a goal on a review form with no provision for how it
will be achieved is like saying “I'm going to be rich” but never deciding
exactly how you're going to make that happen. To achieve the goal,
you need a concrete plan, a realistic deadline, and a constant focus on
the goal.

One way to ensure that each team member makes a handful of
growth leaps each year is to align the personal growth goals with the
two-month project milestones. One goal per milestone. That practice en-
ables team members to make six leaps a year—more if there are multiple
goals per milestone.

Improvement goals don’t need to be all-encompassing. They can be
as simple as reading one good technical or business book each milestone
or developing a good habit such as stepping through all new code in the
debugger to proactively look for bugs. Sometimes the growth goal can
be to correct a bad work habit such as writing code on the fly at the
keyboard—the design-as-you-go approach to programming.

116

6 CONSTANT, UNCEASING IMPROVEMENT

Read Any Good Books Lately?

I read constantly to gain new knowledge and insights. Why spend years
of learning by trial and error when I can pick up a good book and in a
few days achieve insights that took someone else decades to formulate?
What a deal. If team members read just six insightful books a year, imag-
ine how that could influence their work. I particularly like books that
transform insights into strategies you can immediately carry out. That’s
why I wrote both Writing Solid Code and this book as strategy books. But
mine are hardly the first. The Elements of Programming Style, by Brian
Kernighan and P. J. Plauger, was first published in 1974 and is still valu-
able today. Writing Efficient Programs, by Jon Bentley, is another excellent
strategy book, as is Andrew Koenig's C Traps & Pitfalls for C and C++
programmers.

In addition to these strategy books, there are dozens of other excel-
lent—and practical—books on software development, from Gerald
Weinberg's classic The Psychology of Computer Programming to the much
more recent Code Complete, by Steve McConnell, which includes a full
chapter on “Where to Go for More Information,” with brief descriptions
of dozens of the industry’s best books, articles, and organizations.

But don’t limit yourself to books and articles that talk strictly about
software development. Mark McCormack’s What They Don't Teach You at
Harvard Business School, for instance, may focus on project management
at IMG, his sports marketing firm, and Michael Gerber’s The E-Myth
may focus on how to build franchise operations, but books like these
provide a wealth of information you can apply immediately to software
development. And don’t make the mistake of thinking that such books
are suitable only for project leads. The greenest member of the team can
benefit from such books.

To ensure their personal interest in achieving such goals, I encour-
age team members to choose the skills they want to pursue, and I merely
verify that each goal is worth going after:

& The skill or knowledge would benefit the programmer, the
project, and the company. Learning LISP could be useful to an
individual, but for a company such as Microsoft, it would be
as useful as scuba gear to a swordfish.

117

' DEBUGGING THE DEVELOPMENT PROCESS

® The goal is achievable within a reasonable time frame such as
the two-month milestone interval. Anybody can read a good
technical book in two months. It’s much harder to become a
C++ expert in that short a time.

® The goal has measurable results. A goal such as “becoming a
better programmer” is hard to measure, whereas a goal such
as “developing the habit of stepping through all new code in
the debugger to catch bugs” is easy to measure: the program-
mer either has or hasn’t developed the habit.

® Ideally, the skill or knowledge will have immediate useful-
ness to the project. A programmer might acquire a worth-
while skill, but if he has no immediate use for the new skill,
he’s likely to lose or forget what he’s learned.

Such a list keeps the focus on skills that are useful to the individual, to
his or her project, and to the company—in sum, it focuses on the kinds of
skills a programmer needs in order to be considered for promotion. If
the programmer can’t think of a skill to focus on, choose one yourself:
“What additional skills would this programmer need for me to feel com-
fortable about promoting him or her?”

_+*

Make sure each team member learns
one new significant skill at least
every two months.

Train Your Replacement

Programmers don’t usually choose to pursue management skills unless
they have reason to believe they’re going to need those skills. Find the
people who have an interest in becoming team leads, and help them
acquire the skills they’ll need to lead teams in the future. And remember,
unless you plan to lead your current team forever, you need to train
somebody to replace you. If you don’t, you might find yourself in a
tough spot, wanting to lead an exciting new project and unable to make
the move because nobody is capable of taking over your current job.

118

6 CONSTANT, UNCEASING IMPROVEMENT

IN THE MOMENT

A particularly good approach to identifying skills for your team mem-
bers to develop is to set a growth goal the moment you see a problem or
an opportunity. When I spot programmers debugging ineffectively, I
show them a better way and get them to commit to mastering the new
practice over the next few weeks. When a programmer remarks that she
wants to learn techniques for writing fast code, I hand her a copy of Jon
Bentley’s Writing Efficient Programs and secure her commitment to read-
ing it—and later discussing it. If I turn up an error-prone coding practice
as I review some new code, I stop and describe my concern to the pro-
grammer and get him to commit to weeding the practice out of his
programming style.

I'm big on setting improvement goals in the moment. Such goals
have impact because they contain a strong emotional element. Which do
you think would influence a programmer more: showing him code he
wrote a year ago and asking him to weed out a risky coding practice or
showing him a piece of code he wrote yesterday and asking him to weed
out the practice?

I once trained a lead who would search me out every time he had
a problem. He’d say, “The WordSmasher group doesn’t have time to
implement their Anagram feature, and they want to know if we can help
out. What should we do?” The lead came to me so often that I eventually
concluded he wasn’t doing his own thinking. When I explained my feel-
ings to him, he replied that he always thought through the possible solu-
tions but didn’t want to make a mistake. That was why he was asking
me what to do. I pointed out that his approach made him seem too de-
pendent and that we needed to work on the problem.

I understood the lead’s need for confirmation, so I told him to feel
free to talk to me about problems as they arose, on one condition: instead
of dumping the problem in my lap, he was to

¢ Explain the problem to me.

¢ Describe any solutions he could come up with, including the
pros and cons of each one.

® Suggest a course of action and tell me why he chose that
course.

119

DEBUGGING THE DEVELOPMENT PROCESS

Once the lead began following this practice, my perception of him
changed immediately and radically. On 9 out of 10 occasions, all I had to
do was say, “Yes! Do it.” to a fully considered plan of action. The few
times I thought a different course of action made sense, I explained my
rationale to him, we talked it over, and he got new insights. Sometimes I
got the new insights. We’d go with his original suggestion if my solution
was merely different and not demonstrably better.

This improvement took almost no new effort on either his part or
mine, but the shift in his effectiveness was dramatic. We went from a
relationship in which I felt as if I were making all his decisions to one
in which I was acknowledging his own good decisions. My attitude
changed from “this guy is too dependent and doesn’t think things
through” to “this guy is thoughtful and makes good decisions.” His atti-
tude changed too, from being afraid to make decisions to knowing that
most of his decisions were solid. It didn’t take too many weeks for our
“What should I do?” meetings to all but disappear. He consulted me
only for truly puzzling problems for which he couldn’t come up with
any good solution.

What caused this dramatic change? Was it a major revamping of
this person’s skills? No, it was a simple change in communication
style provoked by my realization that he had become too dependent. A
minor change, a major improvement.

——— |
Take immediate corrective action
the moment you realize that an
area needs improvement.

— -

AFTER-THE-FACT MANAGEMENT

Note that I gave that lead on-the-spot feedback and a goal he could act
on immediately. I didn’t wait for the annual review. I don’t believe the
annual review is a good tool for planning personal improvement or
achievement goals. In my experience such a delayed response to prob-
lems isn’t effective—at least not unless the annual review also contains
detailed attack plans for the goals. Another problem with using the

120

6 CONSTANT, UNCEASING IMPROVEMENT

annual review for improvement goals is that few leads are able to effec-
tively evaluate anyone’s growth over such a long period of time.

We’ve all heard stories about the review in which the manager
brings up a problem with the programmer’s performance that has never
been mentioned before to justify giving the programmer a review rating
lower than the programmer expected. In shock, the programmer stam-
mers, “Can you give me an example of what you're talking about?” The
manager stumbles a bit and comes up with something, that, yes, the pro-
grammer did do, or failed to do, but which sounds absurdly out of pro-
portion in the context of the programmer’s performance for the whole
review period. “You've given me a low rating because of that?” Of
course, it sounds ridiculous to the manager too, so she scrambles to
come up with another example of the problem but usually can’t because
so much time has passed.

Then, of course, once the programmer leaves the meeting and has
time to think about the review a bit, his or her reaction is anger. “Why
didn’t she tell me something was wrong, rather than waiting a year?
How could I have fixed something I didn’t even know was wrong?”

I've lost track of the number of times I've heard people say that
about their managers.

What if professional football teams worked that way? What if
coaches waited until the end of the season to tell players what they’re
doing wrong?

“Mad Dog, I'm putting you on the bench next season.”

“Huh? What? I thought I played great,” says Mad Dog, confused.

“You played well, but at each snap of the ball, you hesitated before
running into position.”

“1did?”

“Yes, you did, and that prevented you from catching as many
passes as you could have. I'm putting you on the bench until something
changes. Of course, this means that your yearly salary will drop from
$5.2 million to $18,274. But don’t worry, you'll still have your benefits—
free soft drinks and hot dogs at the concession stand, and discounted
souvenirs.”

Mad Dog, particularly mad now: “If you spotted this, why didn’t
you tell me earlier? I could have done something about it.”

“Hey, I'm telling you now, at our end-of-the-season contract
review.”

121

DEBUGGING THE DEVELOPMENT PROCESS

Sounds pretty silly, doesn’t it? But how does it differ from the way
many leads make use of the annual review?

Remember the lead I felt was too dependent and was not thinking
things through? The common approach at most companies would be to
wait until the end of the review period and note the problem on the re-
view document:

Relies too much on. other people to make his decisions;
doesn't take the time to think problems through.

Then, of course, after the confused exchange at the review meeting,
the attack plan to fix the problem would be something like this:

I won't rely on other people to make my decisions for me;
I'11 think my problems through.

That attack plan won't be effective because it is too vague. The plan
doesn’t describe what the person is to do, how he is to do it, or how to
measure the results—the plan has no teeth. In all likelihood, the problem
will still exist a year later, at the next review.

Personnel reviews, as I'’ve seen them done, are almost totally
worthless as a tool to promote employee growth. Don’t bother with the
new goals part of the review. Actively promote improvement by seizing
the moment and aligning growth goals with your project milestones.
Use the formal review to document employee growth during the review
period—that’s what upper management really needs to see anyway.
Listing areas in which people could improve doesn’t really tell upper
management much. Documenting the important skills that people have
actually mastered and how they applied those skills demonstrates con-
stant growth and gives upper management something tangible with
which to justify raises, bonuses, and promotions.

e
Don’t use the annual personnel review to set
achievement goals. Use the review to document
the personal growth goals achieved during
the review period.

____*e__

122

6 CONSTANT, UNCEASING IMPROVEMENT

THOROUGHLY KNOWLEDGEABLE

Most of the interviews I conducted at Microsoft were with college stu-
dents about to graduate, but occasionally I interviewed a working
programmer who wanted to join Microsoft. At first I was surprised to
find that the experienced programmers who came from small, upstart
companies seemed, in general, more skilled than the experienced
programmers from the big-name software houses, even though the pro-
grammers had been working for comparable numbers of years. I believe
that what I've been talking about in this chapter accounts for the differ-
ence. The programmers working for the upstart companies had to be
knowledgeable in dozens of areas, not expert in one. Their companies
didn’t have the luxury of staffing 30-person teams in which each indi-
vidual could focus on one primary area. Out of necessity, those pro-
grammers were forced to learn more skills.

As a lead—even in a big outfit that can afford specialists—you
must create the pressure to learn new skills. It doesn’t matter whether
you teach team members personally or whether they get their training
through books and technical seminars. As long as your teams continue
to experience constant, unceasing improvement, the “average program-
mer” in your company will continue to get better—like those Olympic-
class skaters—and that can only be good for your project, for your
company, and ultimately for your customers.

HIGHLIGHTS

¢ Never allow a team member to stagnate by limiting him or
her to work on one specific part of your project. Once pro-
grammers have mastered an area, move them to a new area
where they can continue to improve their skills.

¢ Skills vary in usefulness from those that can be applied to any
project to those that can be applied to only one specific type
of project. When you train your team members, maximize
their value to the company by first training them in the most
widely useful skills and save the project-specific skills
for last.

123

DEBUGGING THE DEVELOPMENT PROCESS

It’s tempting to hold onto your top programmers, but if they
aren’t learning anything new on your project, you're stalling
their growth and holding the company’s average skill level
down. When a top programmer leaves the team for a new
position, not only does he or she start growing again, but so
does his or her replacement. A double benefit.

To ensure that the skills of the team members are expanding
on a regular basis, see that every team member is always
working on at least one major improvement goal. The easiest
approach is to align growth goals with the two-month mile-
stones, enabling at least six skill leaps a year—which is six
more per year than many programmers currently experience.
If Wilbur, the file converter specialist, had read just 6 high-
quality technical books a year, after his first five years of
programming he’d have read 30 such books. How do you
suppose that would have influenced his work? Or what if
Wilbur had mixed the reading of 15 good books with the
mastery of 15 valuable skills over that first five years?

The best growth goals emerge from a strong, immediate need.
If you find a team member working inefficiently or repeating
the same type of mistake, seize the opportunity to create a
specific improvement goal that the team member can act on
immediately. Because such on-the-spot goals lend themselves
to immediate action for a definite purpose, the programmer is
likely to give them more attention than he would give to ab-
stract goals devised for an annual review.

124

