SCHEDULING
M ADNESS

I explained in Chapter 2 why I believe it’s critical that teams fix bugs as
they’re found. We didn’t follow that practice back when I was working
on the Microsoft Excel project. In fact, we were pressured to ignore bugs
until all scheduled features had been completed. Why? Because if we
had stopped to fix bugs we would have appeared to have slipped the
schedule. It wouldn’t have mattered that.the ship date would actually
have been pulled in; anything that appeared to cause intermediate slips
was discouraged, and a growing bug-list didn’t count as slipping—
you’d slipped only if you hadn’t “finished” a feature as scheduled. The
schedule, not the project goals and priorities, not even common sense,
was driving the development process.

91

DEBUGGING THE DEVELOPMENT PROCESS

At that time, Microsoft's Applications division used a type of sched-
ule that seemed reasonable on paper but that in practice demoralized
teams and created a situation in which the strongest motive was to hit
deadlines at the expense of all else—including product quality. Of
course, at the time nobody thought of it that way because the problems
weren’t apparent. It took Microsoft several years—a round of product
cycles for its applications—to realize the problems inherent in the sched-
uling system it was using.

Once the problemé with the scheduling system became apparent,
the process was tossed out, and a more humane scheduling system was
brought in. Still, that was a costly learning experience for Microsoft, and
I'll describe that experience so that others don’t follow the same mis-
taken path. I'll also describe the scheduling process that many groups at
Microsoft have moved to and that I have found to work quite well.

ON A Project LONG, LONG AGO. ..

My primary reason for joining Microsoft back in 1986 was to work on
high-quality Macintosh applications. I was assigned to Microsoft Excel,
then Microsoft’s latest entry into the Macintosh market. By any measure,
working on Excel should have been exciting for me. It met all of my
criteria: it was a serious Macintosh application, it was a highly visible
application, and users loved it. Even better, Microsoft wasn’t about to go
belly-up, so I knew that the product would have a long life. I could get
the Macintosh experience I wanted and have an influence on one of the
industry’s most promising applications.

Working on Excel was exciting at first, but after several months the
work had become dull and then finally just plain aggravating. The Excel
project should have been a dream project. It didn’t make sense that I
should find it so aggravating, but other team members were aggravated
too, and so were programmers I knew who were working on other
Microsoft projects. The problem wasn’t the people we worked with, nor
was it the work setting—Microsoft’s environment was the best I'd expe-
rienced, hands down, in 10 years of computer industry work, and I
know the aggravated team members and programmers on other
Microsoft projects felt that way too. No, the aggravation was a side

92

5 SCHEDULING MADNESS

effect of the type of project schedules Microsoft had begun using right
around the time I joined up.

In the projects I'd worked on before I joined Microsoft, the team
members had been excited by the work, and the dominant feeling had
been enthusiasm over how much better the product was getting with
each passing day. The Excel project never felt that way. Although we
regularly improved the product, we were bombarded perpetually with
the message that we were slipping. I was slipping, he was slipping,
everybody was slipping, the project was slipping! The focus wasn’t on the
quality or even the quantity of our work: it was on the schedule.

In Chapter 1, I mentioned weekly status reports that had the effect
of regularly slapping the programmers in the face. Those reports were
just one aspect of the demoralizing scheduling process Microsoft was
using back then. Besides writing those weekly status reports, the team
members had to meet each week with the testing and documentation
teams for a general discussion of how we’d slipped that week. We’d
learn that the writers were stopped cold because the programmers had
slipped and that the testers were sitting on their hands because the pro-
grammers had slipped. All we talked about was slipping.

I think even worse than the status reports and those awful status
meetings was the project task list. Each week the Excel lead would use
the latest round of status reports to update the master task list. Then
he’d distribute the updated master list to each team member. Nothing
wrong with that. But the first item you’d notice on the cover page would
be the chart showing exactly how much each team member had slipped
that week and how much the project as a whole had slipped. The chart
didn’t explain that you’d slipped because you’d had to tackle several
unlisted but nevertheless required tasks that hadn’t been anticipated
back when the schedule had been created. Upper management would
get these reports, see that you'd slipped yet again, and demand to know
what was going on. Slap! Slap! Slap! It was not pretty in those days.

After the sting had lessened a bit, you’d turn to subsequent pages
of the master task list and see what seemed like thousands of unfinished
items. Worse, the list would be almost identical to the one you’d seen the
week before. Here we were, working our hardest, and almost nothing
seemed to be getting done. It was like that joke, “How do you eat an

93

DEBUGGING THE DEVELOPMENT PROCESS

elephant? ... A bite at a time.” The task list was our elephant, and it
seemed as if we’d never finish eating it.

The focus was so much on the schedule’s deadline that no matter
how solid our work was we couldn’t feel any sense of accomplishment.
Quite the contrary: we were overwhelmed by the feeling we were so far
behind that even with our best efforts we couldn’t make any headway. It
wasn’t the nature of the work that was the problem; it was the apparent
hopelessness of the position we were in.

Until that Excel project, I'd never seen how destructive a schedule
can be to morale. What should have been my dream job felt like a night-
mare. We were constantly slipping our schedule, but we weren’t goofing
off. The reality was that the project’s schedule was hopelessly unrealis-
tic. The schedule made these assumptions, for instance:

4 That all tasks—for a two-year project—were known and
listed on the schedule

That each week each programmer would complete 40 hours’
worth of the tasks listed on the schedule

*

That all task estimates were completely accurate

® That all features would be implemented perfectly, without
bugs

The world’s most accomplished programming team couldn’t have
met a schedule based on those assumptions—unless, that is, they had
regularly worked 80-hour weeks from the outset to compensate for all
the unforeseen tasks, inaccurate estimates, and bugs, to say nothing of
the meetings, reports, interviews, and e-mail that steal hours each week.
The schedule also failed to account for the 10 legal holidays each year
and for each programmer’s two-week vacation each year. For a two-year
project, that was an almost-two-team-months scheduling error. The sched-
ule was doomed to slip.

+
Never allow the schedule to drive the
project or to demoralize the team.

Q;

94

5 SCHEDULING MADNESS

Just Following Standard Procedure

I want to emphasize that the Excel lead didn’t intend to create a demor-
alizing situation. He was following the accepted scheduling process,
and he later even adjusted the 40-hours-per-week assumption to ac-
count for meetings and other regular but unscheduled tasks—some-
thing that some leads on other projects would never do. Nor do I believe
the schedule was intentionally designed to extract 80-hour work weeks
from the programmers, although that was the result and is perhaps
the source of Microsoft’s reputation for working people hard. I believe
the schedule was a sincere attempt to accurately predict and track
progress. After all, what makes more sense than using the sum of the
estimates for all known tasks to derive a scheduled “done date”? Of
course, nobody believed the task list was complete or that all the esti-
mates were accurate, but that didn’t stop people—particularly upper
management—from treating the derived “done date” as though it were
realistic. In time, most Microsoft groups scrapped these task-list-driven
schedules for a type of schedule that was more successful and that I'll
describe later in the chapter.

PRIMING THE PumP

You've probably heard at least one lead say, “If you want the team to
work hard, you have to give them an aggressive schedule.” I think all
leads believe that to some degree—I certainly do. The question is, how
aggressive is “aggressive”? If aggressive means making the schedule
challenging enough that it drives the project forward at a reasonable
clip, that's fine; but if aggressive means unattainable, such a schedule can
only demoralize the team as slip-hysteria sets in.

A schedule should be aggressive enough to instill a sense of ur-
gency in the programmers, to help them stay more focused on the
important work. Think about your own situation. If you were taking off
for a three-week vacation tomorrow, would you work at the same pace
today that you normally would? My guess is that you’d work much
smarter today than you usually do. You’d probably focus squarely on

95

DEBUGGING THE DEVELOPMENT PROCESS

getting all high-priority items out of the way—no long chats in the halls,
no time spent on unimportant e-mail or news, no unnecessary meetings.
That’s the sense of urgency in action—better focus.

At Microsoft, the same sense of urgency develops whenever a final
ship date nears. The lead typically sends out an e-mail message similar
to this one:

We're nearing our ship date, so we need to be particu-
larly careful about how we use our time. Everybody's time
is valuable now--we're all working toward this one final
goal. Think twice before calling a meeting. Think twice
before bothering somebody with a question you could
easily look up yourself. If you come across an unexpected
task, don't assume that somebody else is going to take
care of it; they're just as busy as you are. Don't keep

a private to-do 1ist of tasks that you'll get around to
"eventually." There is no "eventually.” Tell me about
every pending task so that we can decide whether the task
is critical for this release. If you find yourself with
nothing to do, don't kick back because you think you're
done. Unless the team is done, you're not done. I could
go on, but you're all smart. You've all got brains. You
know if you're wasting time.

Whenever I see a notice like this one (they get passed to other groups
periodically), my question is, shouldn’t the team be working that way all
the time?

“Geez, Steve, that sounds pretty awful. I thought you said in the
last chapter that you weren’t a ‘nose to the grindstone’ kind of lead.” I'm
not. If you look at the essence of that message, you’ll see that it says,
“Don’t do business-as-usual. Work smarter-than-usual. Question every
task to prevent wasting time, be careful about wasting other people’s
time, and take an active role in moving the product forward.” That’s
what I've been saying all along. The language in the e-mail is harsh be-
cause the lead wants to convey in one message what I've had the luxury
of spending a few chapters on.

If you felt pressed for time, would you conclude a meeting with
“George, find out about such and such, and we’ll meet again to make a
final decision”? I doubt it. When people are pressed for time, they don’t
put tasks off—they either kill those tasks or handle them immediately.

96

5 SCHEDULING M ADNESS

Do you think a team would crackle with energy if they didn’t have
a sense of urgency? Imagine a team with so much time to spare that they
could arrive each morning, put their feet up, and mull over every aspect
of their project. Such contemplation can be rewarding, and the findings
can certainly be valuable, but would the team be filled with energy and
enthusiasm? Would the project be exciting? Somehow I doubt it, just asI
doubt that a slow exchange of ideas can be as exciting as a rapid-fire
brainstorming session. I believe that for a team to get on a creative roll,
you have to pump energy into the process. The sense of urgency—time
pressure—is one source of that energy.

®
Make sure your schedules are attainable

but aggressive enough to keep team members
focused on steady progress.

How MucH Is Too MucH?

Can you pump too much urgency into a situation? Sure. If the schedule
starts to look unattainable, you risk having team members start to make
stupid decisions. I've worked with programmers who felt so swamped
they stopped testing their code. If the code compiled and didn’t blow up
the first time they ran it, they moved on. Those programmers knew they
weren’t doing quality work, but they felt they had no choice, given the
pressure of the schedule. They crossed their fingers and prayed that the
testing team would catch any bugs that slipped through.

As a lead, you must keep your eye on the decisions people make
under schedule pressure and remind people, when you have to, that hit-
ting the deadline is rarely so critical that they should jeopardize the
product with ill-conceived designs, slapped-together implementations,
or untested code. Missing a deadline will hurt the project once, but bad
designs and implementations will haunt the product forever—unless
someone further down the line decides to use valuable time to rewrite
all the sloppy code.

97

DEBUGGING THE DEVELOPMENT PROCESS

———
Never allow team members to jeopardize
the product in the attempt to hit what might
be, after all, an arbitrary deadline.

—&__

THE WIN-ABLE SCHEDULE

A win-able schedule is one that benefits both the company and the de-
veloper. As I've pointed out, the schedule must be aggressive enough to
get the product out the door but attainable enough to allow the develop-
ers to feel they have time to do what you and they believe is best for the
product. Another essential aspect of a win-able schedule is that it em-
phasize the progress made by the team, creating situations in which the
team can have “wins.”

Do you remember that elephantine Excel task list I talked about
earlier in this chapter, the one that stayed the same size from week to
week? For almost two years I would routinely arrive at work each day
and knock a few tasks off that huge list. How much urgency do you
think I felt as I chipped away at features for a deadline two years away?
I can tell you: not much. In fact, the project didn’t begin to feel urgent
until practically the last couple of months, when the deadline was in
plain sight.

Maybe you’ve heard the saying that a goal without a deadline is
just a wish. It's the deadline that pumps energy into the development
effort and gets people to scrap the dreary procedures of business-as-
usual in favor of more effective strategies. We had a deadline for the Ex-
cel project, but that deadline was so far out that it had no power to ignite
the team. We might as well have said, “Someday we’ll ship Excel.”

Without exception, every exciting project I've worked on has had
deadlines much closer than Excel’s two-year release date. It's not that
the projects weren’t large and didn’t undergo development over a long
period of time—they were and they did—but they were broken up into
smaller subprojects, each with its own deadline, and the deadlines were
spaced roughly two months apart. The result was that each subproject
had an attainable near-term deadline that promoted the sense of urgency
and each contributed to our feeling of progress as we completed it. We
didn’t ship every two years. We “shipped” every two months.

98

5 SCHEDULING MADNESS

Thankfully, most Microsoft teams have moved to some form of this
milestone-scheduling since the days when I worked on that Excel
project. But using milestone-scheduling isn’t enough. If you were to take

Arbitrary Deadlines

In my experience, most deadlines are arbitrary, either derived from the
list of known tasks or simply handed down from above: “Thou shalt
ship on June 11, or else.” If you agree to a deadline, you should try to hit
it, but the fact that you or upper management has set a date doesn’t
mean that the date is a priority that overrides quality. The date is too ar-
bitrary. Think about your own project. If you missed the ship date by a
month, what would the long-term impact on the company be? Would
anyone even care six months later? But suppose, instead, that you hit
your deadline and shipped your code with bugs and ill-conceived fea-
tures. Which would affect your product more, a slightly late release date
or an onslaught of bad product reviews?

Unless your code has to be functional by a date that simply can’t be
changed—say, the arrival of Halley’s Comet after a long 76 years—your
release date is probably not so critical that you must hit it at all costs. If
your not having a piece of equipment ready for a scheduled space
shuttle launch would cost your company millions of dollars, it would
probably be better to cut functionality and focus on getting all the bugs
out of the remaining code than to send all the code aloft and have the
equipment crash the first time the astronauts try to use it.

Of course, this discussion makes it sound as if it takes more time to
do things right. In my experience, it takes less time to do something the
right way. You do spend more time up front as you set goals and priori-
ties, think through designs and implementations, create test suites, and
set quality bars, but you save a lot of time-later. Think about it. Which
would be more valuable, writing test suites at the start of the project or
at the very end? It’s that simple. When other teams are working 80-hour
weeks, scrambling to whittle down their huge bug-lists, your team can
have almost no bugs and spend the last few weeks of the project cycle
adding ever more thorough checks to the test suites and debug code just
to find that one, last, unknown bug.

99

DEBUGGING THE DEVELOPMENT PROCESS

Excel’s two-year task list and merely chop it into two-month chunks,
you wouldn’t change anything—you’d still have a two-year schedule,
but now with artificial “ship” dates every two months. It’s not the two-
month period alone that creates the wins and fosters enthusiasm. It's the
thrill of finishing an interesting subproject.

“Finishing all top-priority items” may be important, but the top-
priority items don’t make up a subproject. They’re just a random list of
things that happen to be important. There’s no motivating theme behind
such a list.

“Implementing the charting subsystem” is a subproject. All of the
tasks that would be involved would relate to that common theme. You
might use a task list to remind people of the known charting issues
they’d have to handle, but ultimately the theme of the subproject would
drive development. The goal wouldn’t be for the team to finish 352
unrelated tasks. The goal would be to do everything necessary to fully
complete—to “ship”—the charting subsystem, regardless of whether
the tasks it would take were on a list somewhere. The subproject would
be in “ship mode” from the outset.

Think of it this way: if you were throwing a dinner party and you
went to the store for groceries, would you search only for the party items
you’d thought to write down on your shopping list, or would you view
that list as the “known items” you need for the party and walk the store
aisles thinking “What else do I need? What have I forgotten? There must
be something I haven’t thought of. . .” Wouldn’t you also have a sense of
urgency? That’s the difference between trying to fulfill a goal—"Get
everything I need for my party”-—and merely checking off items on a list
of unrelated tasks.

Remember that typical e-mail message from the lead as a ship date
nears? The emphasis is on wrapping everything up, especially all loose
ends. When people focus on a task list, the question they ask themselves
is “What’s next on my list?” When they focus on a subproject, the
question is usually quite different: “What else needs to get done?” The
focus is on searching out and handling every task related to the sub-
project.

Any milestone without a theme ends up having to be driven by a
task list because, without a theme, you need such a list in order to know
what you're supposed to do.

100

5 SCHEDULING MADNESS

__Q‘__
Break long-term projects into shorter,
well-defined subprojects.

"w,

The Wow! Factor

One way to view the difference between improving the product with
unrelated high-priority tasks and completing specific subprojects is to
look at your house as if you were going to remodel it. Which updates
would have more impact: newly painted trim in one room, a new light
fixture in another, a new end table in the living room, and so on, or the
living room completely transformed—new paint, new carpet, new fur-
niture, and new art on the walls? When you release a subproject, you get
the “living room effect.” Internal users, beta testers, upper manage-
ment—in fact, everybody who fires up the code—thinks Wow! when
they see what’s been done. With the incremental task list approach,
people notice a change here, a change there, but nothing major. That’s
not bad, but why settle for low impact when you could get more?

Of course, the only difficulty lies in choosing subprojects that
present enough different aspects of the work that programmers won't be
stumbling over each other, all needing to work on the same source file.
I've never found this to be a difficult problem to solve, though.

Eliciting a Wow! can be a critical catalyst that gets a team going on
a creative roll.

ENHANCING THE WOW! EFFECT

A milestone goal such as “Finish all top-priority items” is just a mish-

mash of probably unrelated items. If the ship date for such a subproject

were threatened, the lead would be able to mask the problem by quietly

reprioritizing the tasks. That might allow the lead to look better, but it
-would be a misleading and questionable way to go about things.

A more coherent milestone theme would be “Complete all features

that affect the visual display so that we can finalize screen shots for the

101

DEBUGGING THE DEVELOPMENT PROCESS

user manual.” This milestone is better because it has a theme that’s easy
to grasp and because it’s easy to judge which tasks are appropriate. You
can point to any known task and instantly determine whether it affects
the visual display. Even better, if an unforeseen task crops up midway
through the milestone period, anybody on the team, no matter how
green, can easily determine whether it needs to be tackled or whether it
can be postponed until work on an appropriate subproject begins.
Often you can attack a major project in any of several ways. Use
that latitude to create subprojects that will result in exciting conclusions,
to get that Wow! effect. When we were working on the Macintosh C/C++
cross development system, I broke the job up into these subprojects:

¢ Isolate all Intel 80x86-specific code in the compiler to enable
support for other processor types.

¢ Implement a bare-bones MC680x0 code generator in the
compiler.

¢ Implement MC680x0 assembly listing support in all tools.

¢ Implement MC680x0 object file support in all tools.

¢ Link a single-segment application, and run it.

¢ Link a multi-segment application, and run it.

¢ Add code optimizations to the code generator.

Y

I chose these specific milestones and others because each,
according to my estimation, would take between one and two months to
complete, each was easy to understand, and, with the exception of iso-
lating the Intel 80x86 code, each had an exciting conclusion. Don’t think
we didn’t hoot and holler the first time we had code generation working
or when we first saw the generated code dumped on the screen in proper
assembly language format. We cheered when we linked and ran our first
test application and especially when, after adding some basic optimiza-
tions, we realized that the compiler was already generating code compa-
rable to code from the two leading Macintosh compilers on the market.

It was exciting!

102

5 SCHEDULING MADNESS

Don’t Forget the Details

Of course, none of the milestone descriptions was as simple as the one-
liners for the cross development system I listed on the opposite page.
“Link a single-segment application and run it” doesn’t provide enough
detail. The actual milestone statement was more specific:

We should be able to copy an arbitrary single-file Macintosh pro-
gram into a build directory, rename the file test.c, and type make.
The program should compile without problems, the object files
should link without problems, and the executable should transfer
automatically to the Macintosh over a cable that connects the
Macintosh with the development machine. Then, on the Macintosh,
we should be able to double-click on the new file and run the code
without problems.

From this more detailed description, you can see that we had to
handle all the loose ends in the compiler project, including support for
the Macintosh-specific C-language extensions such as \p Pascal strings,
Pascal-compatible calling conventions for use in call-back routines,
ROM traps, 4-character longs for resource types, and so on. We had to
modify the 80x86 linker to support MC680x0 code and to create
Macintosh-formatted executables. We had to write the runtime startup
code, some C library code, and the code to support the transfer mecha-
nism between the PC development machine and the target Macintosh.
There was a lot of stuff to do.

You won’t always achieve such aggressive milestone goals. We
didn’t for this particular milestone, but we came close. Supporting some
of the Macintosh C-language extensions required changes to the front
end of the compiler, and a different team was in charge of that code. At
the time, they were frantically putting the final touches on their own re-
lease and didn’t have time enough to do that work, much less ours, nor
did they want us mucking around in their code. We got those changes
after their release. You take what you can get.

103

DEBUGGING THE DEVELOPMENT PROCESS

I could have organized the project so that all high-priority work
was done first, followed by secondary work, and so on, but the sub-
projects would have been quite different, and they almost certainly
wouldn’t have been accompanied by the Wow! effect.

To keep the subprojects challenging (and realistic), we didn’t use a
simple “hello world” test application. That would hardly have exercised
the compiler, the linker, and the other tools. We used a small but fully
functional public domain Macintosh program. Because we used a real
application, we not only saw that the compiler was truly viable but were
also forced to handle numerous final-detail issues that a simpler pro-
gram wouldn’t have raised. In task list scheduling, handling such
details would have been relegated to the end of the whole project, but
the thought of seeing the real-life Macintosh application run spurred the
team on, and what could have been boring final-detail work later turned
into work we wanted to do—and quickly.

Granted, it can be quite disturbing to upper management if he or
she doesn’t understand that you're using this thematic method of sched-
uling. It will seem as though you’re throwing darts to choose which
tasks to do rather than picking the highest-priority tasks.

"
To foster creative rolls, make sure
that each subproject results in an
exciting conclusion.

THE BEST-CASE DATE

People often forget that the purpose of the schedule is to estimate a
completion date given the tasks known at the time. Such a date is not a
commitment in the sense that you must hit it at all costs; rather, the date
is a good-faith estimate of when the known tasks could be done, with
the understanding that there are usually plenty of unknown tasks. In
short, the schedule predicts a best-case ship date, not the ship date. That
may not be what upper management wants to hear, but it’s reality. Using
milestone scheduling instead of task-list-driven scheduling helps to
bring the best-case date in line with a realistic ship date, but milestone
scheduling isn’t perfect either.

104

5 SCHEDULING MADNESS

As a lead, you must protect your product by emphasizing to your
team that product quality is more important than hitting an arbitrary
deadline. Remember the lesson from this chapter:

The surest way to mismanage a project and jeopardize the product
is to put so much emphasis on the schedule that it demoralizes

the team and drives them to make stupid decisions despite their
better judgments.

I certainly believe that you should try to hit every deadline you
commit to, but keep that “best-case date” idea in mind. That way, if you
find yourself about to make a bad decision just to hit that best-case date,
maybe you'll stop yourself before any serious damage can be done.

HIGHLIGHTS

¢ The schedule can have a devastating effect on a project if it
creates slip-hysteria and causes team members to make bad
trade-offs in order to hit arbitrary deadlines. If you create a
schedule that has unattainable goals—in hopes of extracting
as much overtime as you can get out of each developer—
you're creating a situation that will demoralize the team.
Once the team members feel they’re in a hopeless position,
you’'re going to get anything but optimum work from them,
and once the project is finished—maybe sooner—they’re go-
ing to look elsewhere for work.

¢ By using project milestones instead of task lists to schedule,
you can shift the focus to completing subprojects, which cre-
ates “wins” for the team and emphasizes progress. If you
space the milestones at roughly two-month intervals, you can
create a sense of urgency that will hélp people stay focused,
particularly if the milestones have strong, exciting themes.
Try to create milestone subproject goals that result in the
team’s thinking “Wow! Look at what we’ve accomplished!”
As they reach successive milestones, the team will have a
growing sense that their work is important and that they’re

105

DEBUGGING THE DEVELOPMENT PROCESS

doing something valuable for the product’s users. That sense
of contribution and the sense of value created can have a re-
markable influence, making a team pull together to put out a
great product—and have a blast doing it.

106

