OF STRATEGIC
IMPORTANCE

I like to think that my projects are always on course, but in fact they
never are. Sometimes a project is ahead of schedule, sometimes behind,
but always close. The project zigzags along an imaginary line that plots
the ideal course.

Even the best-run projects are never on course. But if you let a
project coast, not knowing how far off course it is, you're going to wake
up one morning to find that you’ve zigged so much that you can’t zag
enough to correct. In that respect, a project is like a rocket aimed at the
moon—a tiny fraction of a degree off, and the rocket will miss the moon
by thousands of miles. If your project is off track, even slightly, it will
steadily get further off track unless you make regular, tiny adjustments
to its course.

45

DEBUGGING THE DEVELOPMENT PROCESS

Effective leaders understand this principle. They take consistent,
daily steps to nudge their projects back onto those imaginary trajecto-
ries. In this chapter, we’ll look at simple, effective strategies you can use
to keep your projects on track.

FREEWAY OVERPASSES

I'm convinced that the main reason projects go astray is that the people
running the projects don’t spend enough time thinking about how to
keep them running smoothly. They don’t anticipate problems and
instead wait until problems show up. By then, it's too late. What could
have taken 30 seconds of extra thought to prevent a month ago is now
going to take hours or days to correct. This is known as “working in
reaction,” and many leads seem to do it.

The alternative to simply reacting is to actively look for potential
problems and take little steps to avoid them. Suppose one of those house
movers I talked about in Chapter 1 had hopped into his flatbed truck
and started slowly on his way along the route to the house’s new loca-
tion, only to turn a corner and be blocked by a low freeway overpass.
Oops—gotta retrace at least part of the route and have the same over-
head power and phone lines taken down again. Or what if the planned
route looked flat on the map but had hills too steep to pull a house up?
Or what if the route were usually passable but road crews were out that
week resurfacing a stretch of the road? Each of these obstacles could
have been foreseen by the “house lead” if only he had taken the time to
drive the route the day before and then again an hour before starting the
house rolling. Can you conceive of a house lead’s not taking that step?
Why then do so many software leads fail to drive ahead and look for ob-
stacles that could easily be avoided, allowing their projects to be stalled
by those obstacles?

Leads don’t always look ahead because that’s harder to do than not
looking ahead. How many times have you heard a lead faced with an
unexpected obstacle say, “I could have prevented this if I'd spent time
thinking about it earlier”? In my experience, few leads make such an
admission. Rather, leads tend to be not at all surprised that something
unexpected has come up. After all, they think, it happens to everybody,
all the time. It's normal.

3 Or STRATEGIC IMPORTANCE

To get out of this mind set, you need to work proactively instead of re-
actively. There are many techniques you can use to train yourself to work
proactively, but they can all be boiled down to a fairly simple practice:

Regularly stop what you're doing and look ahead, making little
adjustments now to avoid big obstacles later on.

Leads don’t have trouble spotting the already big obstacles coming
up—say, having to support Windows NT once the regular Windows ver-
sion is done, or having to find time to create a demonstration-quality
product in time for COMDEX. It’s the little obstacles that blindside
people, the ones that blossom into huge obstacles if they aren’t foreseen
and handled early, while they are still manageable. That kind of fore-
sight is like stopping for gas before heading to the ski slopes—taking
that simple step could prevent you from having to make a long, snowy
trek because you ran out of gas halfway up the mountain.

The habit I've developed and used successfully for more than a
decade is to spend the first 10 or 15 minutes of each day making a list
of answers to this question: ‘

What can I do today that would help keep the project on track for
the next few months?

It's a simple question, but if you ask it regularly, it will give you all
the information you’ll need to protect your projects from being clob-
bered by problems you could have foreseen. Note that the tasks you'll
list probably won’t be complex. In fact, most such tasks are simple and
can be completed in a few minutes. My own list of tasks is usually like
this one:

® Order the MIPS and Alpha processor manuals so that they’ll
be here well before Hubie needs them.

& Send e-mail to the Word team reminding them that they must
make additional feature requests by Monday if they’ll need
those features in our next library release.

¢ Send e-mail to the Graphics lead to verify that the Graphics
library we’'re depending on is still on track for delivery three
weeks from now.

47

DEBUGGING THE DEVELOPMENT PROCESS

None of these tasks would take me much time to do, but they could
save me an enormous amount of time later on. Ordering that MIPS pro-
cessor manual may not seem like a big deal, but if the manual takes three
weeks to arrive, that could cause a three-week slip in the MIPS work.
How long does it take to order a manual? About 10 minutes? You could
spend 10 minutes now and have the manual in time, or spend 10 minutes
and three weeks later on. . .

Often, by means of such little tasks, you can discover that the
Graphics lead thinks he might slip two weeks, or that the Word group
does have another request but didn’t think there was any need to hurry
up to tell you. Without checking (looking ahead), you could get caught
off guard by a slip of the Graphics library schedule, or you could have a
last minute fire when the Word team realizes that the feature they need
hasn’t made it into the next release of the library.

In an ideal world the Graphics lead would tell you well in advance
that his project was going to slip, but how many times does that really
happen? In my experience, almost never, because leads don’t want to
alarm anybody until it’s clear that they are definitely going to slip—
three days before the scheduled drop.

—’_.___
Each day, ask, “What can I do today to
help keep the project on track for the
next few months?”

_.___._

BAD INTELLIGENCE

During the development of Word for Windows, I was asked to take a
look at an internal code library written by non-Word programmers. The
library was a dialog manager whose purpose was to isolate the operat-
ing system from Microsoft’s applications, allowing programmers to
create dialogs without worrying about whether the applications were
going to run on Windows, the Macintosh, or some other system.

I was called in to find out why the library was so slow—the Word
for Windows project lead and program manager were irritated by the
delay between the time a dialog was invoked and the time it was fully

3 OF STRATEGIC IMPORTANCE

displayed and ready for user interaction. The programmers working on
the dialog manager had profiled their code and had made numerous
optimizations, but the Word group was still dissatisfied and was making
a ruckus, slowly ruining the library’s reputation within the company.
Other teams who were planning to use the library had begun to back off.

When I talked with Word’s program manager to better understand
the speed problem and find out what performance would be acceptable
to the Word group, he handed me a list of acceptable display times—
their quality bar. Each dialog had to be fully displayed in the time indi-
cated next to its name. The program manager then demonstrated by
bringing Word up and invoking a dialog with one hand while starting a
stopwatch with the other. “See,” he said, showing me the stopwatch.
“This dialog takes too much time.” Visually the dialog itself didn’t seem
to be that slow to me, so I reached over and invoked the dialog a second
time to get another look. The dialog appeared almost instantly. I pointed
out that the second invocation was well under the acceptable time limit.

“It’s always fine the second time,” he said. “We’re only concerned
about the first time, when the dialog is invoked after a period of inactiv-
ity. That’s when the dialogs are too slow.”

I understood the problem and went back to my office to look at the
code. What I found was startling. It turned out that, at the time, Word
itself contained an optimization that overrode the normal Windows
code-swapping algorithm. The optimization was kicking out all “unnec-
essary” code segments after a certain period of inactivity, and that
optimization was kicking out every byte of code related to the dialog
manager. A little measuring showed that even if the dialog code were
executed instantaneously, no dialog would pass its speed test; Word
simply took too long to reload those “unnecessary” segments.

So the speed problem that the Word people had been complaining
about wasn’t a speed problem at all, but was instead a code-swapping
problem. The Word team thought the dialog manager was much too
slow, yet the dialog team couldn’t see where the slowdown was—the
. code seemed fast enough in the library’s test application, and there was
no reason the dialog manager should have behaved differently when
linked into Word. Of course, the test application didn’t override the
Windows swapping algorithm.

49

DEBUGGING THE DEVELOPMENT PROCESS

The Word team had been complaining about the speed problem for
months, and the dialog team had been working long, hard hours to opti-
mize code and algorithms in the library, hoping that each latest round of
improvements would finally be enough to satisfy Word’s requirements.
Had anybody stopped to profile Word’s handling of the dialog manager

The Debugging Game

Many programmers don’t do research during debugging sessions. Some
programmers try to fix a bug by jumping into the code, making a
change, and then rerunning the program to see if the bug went away.
When they see that the bug still exists, they make another change and do
another run. Nope, that didn’t work, better try something else. . .

I know that some programmers play the “maybe this is the prob-
lem” game because whenever they get a difficult bug for which none of
their guesses seems to work, they ask me, their lead, what they should
try next. The “next?” question is a dead-giveaway that they’re playing
the guessing game instead of actually looking for the cause of the bug.

In my experience, the most efficient way to track down a bug is to
set a breakpoint in the debugger, determine which piece of data is bad,
and then backtrack to the origin of that bad data, even if it means
mucking around in data structures, following pointers, and other such
tedious stuff. There’s no question that it's sometimes easier to guess
where a bug is and then fix it with a lucky hit, but it’s consistently more
efficient to look at the actual data and backtrack to its corruption.

I'm also skeptical of programmers who find bugs by “looking at
the code.” Andrew Koenig’s C Traps and Pitfalls is an entire book of C
examples that look perfectly correct but in fact contain subtle bugs. And
Gimpel Software’s marketing campaign for their PC-Lint product fea-
tures magazine ads each month that point out obviously correct, yet
buggy, code. ‘

Looking for bugs by looking at the source code is lazy and ineffi-
cient; it shouldn’t take a programmer any more time to view the code in
a debugger, watching the data as he or she progressively steps through
each line of source.

50

E}

3 OF STRATEGIC IMPORTANCE

code, he or she would have seen that no amount of code optimization
could have solved the problem the Word team was complaining about.

Granted, it’s not always reasonable for a library team to regularly
build and test all of the dozens (or sometimes thousands) of applications
they support. It does make sense for a library team to use an aggres-
sive—and I stress aggressive here—test application specifically designed
to exercise every aspect of the library. But in this case, the Word team had
been complaining loudly for quite some time, and the library team
had found no obvious problems in their test application’s use of the
library. Somebody well before me should have built and profiled Word
to see why it was behaving so. differently from the test application. A
little bit of research early on could have saved months of misguided
optimization work, and the library probably wouldn’t have developed
an undeserved reputation.

As a lead, you should keep a wary eye open for any problem that
persists and make sure that you, or someone, stops to do some focused
research to figure out what’s going wrong. The research may be tedious
and time-consuming, but that’s better than spending weeks or months
trying to fix the wrong problem.

+
Don’t waste time working on the wrong
problem. Always determine what the real

Tl problem is before you try to make a fix.

__._.___.

OUTRAGEOUS MENUS

One time, the technical lead for the Windows-like user interface library I
talked about in Chapter 1 came to me in a panic. He had just received a
request from an application group for a feature that would take weeks to
implement, yet our delivery schedules were pretty much carved in
stone—we were not in a position to slip, at least not without severe re-
percussions. I asked him what the application group’s request was.
“They want a modified form of our drop-down list boxes. They
want to be able to use the list boxes outside dialogs; they want to be able
to display the list boxes without their scroll bars and to be able to dim

51

DEBUGGING THE DEVELOPMENT PROCESS

some of the list box items. They also want to be able to click on a list box
item and have it automatically pop up another list box, but if you move
the mouse back into the original list box, the new list box automatically
disappears.”

Whew!

I had to agree: implementing those requests would kill our deliv-
ery schedules. After hearing a full description of the request, though, I
wasn’t concerned—anything that unusual didn’t belong in a shared
library. My initial thought was to give the application group the code for
the standard list boxes so that they could implement those quirky list
boxes themselves. Still, I was puzzled by their request. What were they
going to use those list boxes for? I assumed it must be for some new-
fangled user interface I'd yet to see. So before saying we wouldn’t do it,
I asked the technical lead to find out what the application group was
going to do with those bizarre list boxes. He returned a while later, a
wide grin on his face.

“They want to use the list boxes to simulate hierarchical menus,
like the menus in Windows and on the Macintosh.” ‘

Now I knew why the technical lead was grinning: we already had
an add-on library that fully supported hierarchical menus; the other
group was simply unaware of the fact.

I bring this story up because it’s common for groups to ask for
something without explaining the reason behind their request. I see this
all the time, even outside work. At a diner I sometimes go to for an early
lunch, people occasionally come in and, seeing that everybody is still
eating breakfast, ask the waitress, “How late are you going to be serving
breakfast?” I've seen dozens of hungry people turn on their heels, mum-
bling, “I really want lunch,” and walk out the door before the waitress
can tell them they can order lunch. The lunch menu is available around
the clock.

Why did those people ask about breakfast when what they really
wanted to know was “Can I get lunch?” Their thinking went off on a tan-
gent that seemed to be related to what they wanted, and they asked the
wrong question. It happens all the time. I'm sensitive to the problem of
asking the wrong question, but I still find myself asking my wife, Beth,
when she’ll be home from her evening soccer game—when what I really
want to know is what time she’d like to have dinner.

52

3 OF STRATEGIC IMPORTANCE

Asking the wrong question or raising the wrong issue seems to be a
common problem, and if you're aware of this tendency in people, you
can save everybody time and effort by making it a habit to determine
what the other people are actually trying to accomplish. If what they’re
trying to achieve isn’t clear from their request, be sure to ask them what
they’re trying to do before you spend much time working on the
request—or you refuse it.

—..___

People often ask for something other than
what they really need. Always determine what
they are trying to accomplish before dealing
with any request.

——

First Define the Context

A good way to avoid miscommunication in your own requests is to first
define the context of what you’re trying to accomplish and then make
your specific request. Suppose the programmer from the application
group who made the list box request had started his e-mail this way:

We need hierarchical menus for the next release of our
product. Since drop-down 1ist boxes are similar to menus,
we think we can simulate hierarchical menus if you can
provide us with a modified form of drop-down 1ist boxes
that allows us to. .

If we had received that e-mail message, our technical lead
wouldn’t have panicked, he wouldn’t have had to meet with me to fig-
ure out how to handle the request, and he could have immediately told
the other group about the add-on library’s support for hierarchical
menus. Even more important, I wouldn’t have almost rejected their
request—in which case they could have spent weeks reimplementing a
library we already had.

By first telling people what you're trying to accomplish, you get
them focused on helping with your ultimate need, not on one possible
solution to that need.

53

DEBUGGING THE DEVELOPMENT PROCESS

JusT SAY NO

Suppose we hadn’t bothered to find out why that group needed those
weird list boxes and had simply turned down their request. Do you
think they would have said, “OK, we understand. Thanks anyway”?
Maybe. But plenty of groups would have argued that as custodians of
the user interface library we had a responsibility to maintain the code
and provide new features when they were asked for—that giving them
some source code to adapt just wouldn’t do.

Of course, the easiest way to resolve such disagreements is to
knuckle under and agree to do the work, and that’s exactly what I've
seen many leads in troubled groups do. These leads would rather defuse
a tense situation than fight for what’s best for the product or their team.

Sometimes a group will make a perfectly reasonable request that,
because your schedule is full, you can’t meet, and you're put in the posi-
tion of saying No to that group. I know from experience that there are
plenty of leads who, to avoid the confrontation, will agree to fulfill the
request anyway, without having any idea how they’ll get the work done
on time. Somehow, they think, they’ll pull it off. And, of course, they
rarely do.

What these leads don't realize is that by agreeing to work they
shouldn’t do or can’t do they are dodging a bit of short-term pain in ex-
change for a lot of long-term pain—and not just for themselves, but for
every single member of their teams. Which do you suppose is more
painful all the way around: showing the lead of a dependent group why
you can’t possibly fulfill a request given your current schedule, or prom-
ising to finish the work on a specific date and then missing that date by
six weeks?

Consider the difference. When the lead of the dependent group
makes a request, the date on which that request needs to be fulfilled is
often in the distant future; if you can’t fulfill the request, there’s plenty
of time for you and the lead of the dependent group to consider alterna-
tives. The only way you can be considered the villain is to reject the
request without even trying to help the other lead work something out.
Compare that approach to caving in and agreeing to deliver some new
functionality, thinking you will somehow get the work done—and

3 OF STRATEGIC IMPORTANCE

missing the deadline you agreed to. Not only did your group miss its
deadline, but you’ve possibly caused all the groups depending on you to
miss their deadlines as well. .

Think of it this way: if you were buying a house and needed a loan,
which bank would upset you more, the one whose loan officer turned
you down immediately, or the one whose loan officer agreed to give you
the loan but changed his mind two months later as you were signing the
closing papers?

I'm not saying that you should turn down requests just so that
you’ll have a cushy schedule. I'm saying that you should never commit
to a date you know you can’t meet. It might be tempting to think that
you’ll somehow make the date, but that’s usually just wishful thinking.
There are enough slips in dates leads “know” they can make, let alone in
the dates they’re unsure of.

It’s not easy to fight these little battles up front, but it beats having
the company CEO sitting on your desk several weeks or months later
demanding to know why you waited until Marketing’s ads had hit the
magazine stands before you confessed that you couldn’t possibly make
the dates you promised.

Don’t Halt the Machinery

Fighting your battles up front puts a critical process in motion—the
search for a true solution. If you were truthful and realistic about what
your team could actually accomplish and said No when you knew you
couldn’t meet a date, the search for a workable solution would continue.
‘Maybe the other group would do the work themselves, or maybe they’d
split the work with you, or maybe they’d ask other groups in your orga-
nization if they had a similar piece of code already written, perhaps bur-
ied in the guts of some application. Who knows?

Saying No may be unpleasant, but it keeps the problem-solving
machinery chugging away until somebody, somehow, can say Yes and
believe in what he or she is saying.

55

DEBUGGING THE DEVELOPMENT PROCESS

—_—
Never commit to dates you know you can’t
meet. You'll hurt everybody involved.

+

I Failed to Say No

One time, the Word for MS-DOS team asked our user interface library
team to implement a costly add-on feature in time for Word’s upcoming
beta release. We were booked solid with work, and I couldn’t see any
way to meet their date without slipping our own date and affecting the
more than 20 other groups using the library. I explained to the Word
group that we could—and would—do the work, just not in time for their
deadline. I proposed that, if they definitely needed the feature that
quickly, they implement the add-on themselves, turning it over to us
when it was completed. We would document the feature for other teams,
enhance our test application to cover the feature, and support and con-
tinue to enhance the feature in the future. The Word team was upset.
They felt we should do the work since it was a feature that every other
group would eventually want to use. They were right on that point, but
that didn’t change the fact that we couldn’t implement the code in time
for their release. We battled over this feature for nearly two months. I
finally got so frustrated with the arguing that I broke down and agreed
to do the feature, figuring that I'd temporarily pull a programmer off
one of the other projects I was leading.

Well, I couldn’t find that spare programmer, and the result was
disastrous. We missed Word’s deadline by weeks, and they screamed
bloody murder. We missed all of our other commitments too—which we
had been on track for—affecting those 20-odd other teams. More
screaming. What a mess. If I had stuck to my guns and said No as I knew
I should have, everybody would have been a whole lot better off, includ-
ing the Word group.

56

3 OFr STRATEGIC IMPORTANCE

THE NEED TO PLEASE

As alead, you're going to be faced with all sorts of demands. To be effec-
tive, you must learn to say No when it’s appropriate. Others may not
like it, and they may think you're wrong, but you have to realize that
you can’t always please everybody—there are often just too many con-
flicting requests.

If you're in charge of a shared library, one team may ask you to add
a feature that benefits only their project. If you say No, they’ll probably
get upset. If you say Yes to their unique request, another team may com-
plain about the increase in the size of the library. These no-win situations
- come up all the time, particularly when you’re responsible for code
shared by multiple projects.

Which course of action should you take when you’re faced with
conflicting demands? That’s where your detailed project goals come in
handy. If one of your goals is to provide functionality that will be useful
to all of the groups using your library, you know to reject a request that
doesn’t match that criterion. Sure, you’ll get complaints, but it doesn’t
take much time to explain your reasons and to point out that if you
implement one unusual request you’ll have to implement the special re-
quests made by every other project you're supporting, which will pull
you off features all groups want and bloat the library with features that
most groups don’t need.

There seems to be a human need to please everybody, and that need
can get leads into trouble because, in their desire to please everybody,
they can do things that don’t make sense for the project.

In my experience, people don’t like having their requests rejected,
but if you have solid reasons, they do understand and often appreciate
your not giving them false promises.

___.__.__
Don't let wanting to please everybody
jeopardize your project. Use your goals
to guide your decisions.

—_——————

57

DEBUGGING THE DEVELOPMENT PROCESS

Not a Librarian?

I've been assuming for the sake of argument that you're leading a library
project, and I know that that’'s probably not the case. The points
I'm making apply to most projects, though. Instead of having other
leads making demands on your group, you might have a marketing
team making the demands, or the folks who'll use the finished product.
Every project will have some outside demands made upon it—even top
secret projects always seem to have people outside the development
team poking their noses in and making suggestions.

SUPERIOR SUGGESTIONS

You should be especially conscious of not trying to please everybody
when it’s your boss who makes suggestions. I'm not talking about resist-
ing authority. I just want to point out that superiors can make bad sug-
gestions just as everybody else can, particularly if they aren’t aware of
your goals, your priorities, and the technical challenges you face. If you
want to be an effective lead, you must weigh all suggestions (or de-
mands), no matter where they originate, against the needs of your
project.

If your boss asks you to do something you think is a bad idea, ex-
plain your concerns before you undertake the work. Sometimes your
boss will agree with your concerns and drop the suggestion; other times,
your boss will acknowledge your concerns and go on to ask you to
honor his or her suggestion anyway—in the best case scenario, provid-
ing solid justification. Regardless of the outcome, one or both of you will
probably learn something.

I once reviewed a large piece of code written by an experienced
programmer. I was surprised to find several critical design flaws in the
code, flaws I wouldn’t have expected to appear in code from this par-
ticular programmer. I asked the programmer why he had chosen such
a design.

“I just did the implementation. Kirby did the design.” Kirby was
his lead at the time.

58

3 OF STRATEGIC IMPORTANCE

“How do you feel about this design?” I was curious.

“It’s not the way I would have done it.”

“Did you feel that way at the time you did the implementation?”

“Yeah,” he shrugged. “But I had just started at Microsoft, Kirby
was the lead, and I figured he was more experienced than I was. I
thought he saw something in the design that I didn’t. I didn’t want to
rock the boat.”

In fact, Kirby was less experienced than the programmer who did
the implementation. Kirby had simply been fortunate in getting a more
experienced programmer on his team.

In another case in point, I was leading the teams responsible for
Microsoft’s 680x0 cross development system. Periodically Mort, a man-
ager who had the power to change my development plans, would drop
by my office to chat about the progress of the 680x0 C/C++ compiler.
During every visit, Mort would get around to asking what grew to be the
inevitable question, “How’s the FORTRAN work going?”

Now, Mort knew darn well we weren’t trying to produce a
FORTRAN compiler, but he had a fondness for FORTRAN and felt
there was a market for a good Macintosh FORTRAN compiler. Besides,
creating a FORTRAN compiler out of the C/C++ work we were doing
wasn’t a bad idea—especially if you knew, as Mort did, that Microsoft’s
compilers use the common three-stage process described in most
compiler texts: '

Front end: Parse the specific language (C/C++, FORTRAN,

Pascal, and so on) into a common intermediate
language.

Optimizer: Perform all compiler optimizations (code
motion, common subexpression elimination,
strength reduction, and so on) on the inter-
mediate language.

Back end: Generate optimized object code from the now-
optimized intermediate language.
It's a bit more complicated than that, but you can see from this stag-
ing that to get a Macintosh compiler we needed only to write a new back
end, one that generated Motorola 680x0 code instead of Intel 80x86 code.

59

DEBUGGING THE DEVELOPMENT PROCESS

In theory, then, once we had finished the 680x0 back end, we
should have had our C/C++ compiler, plus FORTRAN and Pascal
compilers—we just needed to link in the proper front ends. That's in
theory. And that's why Mort was so interested in the possibility of a
FORTRAN product. In reality, though, to build the FORTRAN compiler,
we would have needed to fully implement the back end, and we were
implementing only the 95 percent or so required by the C/C++ compiler.

Whenever Mort asked about the FORTRAN compiler, my answer
was always the same: “We haven’t done anything with that compiler.” I
would always follow with “But we’re not doing anything in the back end
that would prevent us from doing the FORTRAN work at a later date.”

Mort may have been right that there was a market for a good
FORTRAN compiler on the Macintosh, but he was ignoring my team’s
project priorities. Just because there was a market and it was possible to
create the product was no reason to temporarily halt work on the C/C++
compiler, which even he agreed had a significantly larger market poten-
tial. We wouldn’t have had this discussion more than once if Mort hadn’t
been personally interested in the FORTRAN compiler. His personal
interest was getting in the way of his business sense.

You must protect your project from outside manipulation, espe-
cially if the request comes from somebody who has clout. Somebody like
Mort might not be right, but you might feel obliged to comply. In my
early years as a lead, I probably would have bowed to Mort’s pressure—
I certainly caved in on similar requests.T"eventually learned, though,
that no matter where a request originates, you must question it. Does it
improve the product? Is it strategically necessary according to your
goals? Does it draw focus away from more important work? Will it be
unnecessarily expensive or risky to implement? You must feel good
about the answers to these questions, or you shouldn’t do the work.

___‘,,—
You are responsible for your project.

Don't let ill-considered suggestions from
superiors disrupt your progress.

—

3 OF STRATEGIC IMPORTANCE

THE TRUE COST

Why did Mort think that a Macintosh FORTRAN compiler was worth
considering as a goal for the cross compiler project? Was it because
people wouldn’t stop calling Microsoft to ask why we didn’t have such
a compiler in our product line? Was it because coding in FORTRAN
just made sense for the Macintosh environment? Of course not. The
only reason the FORTRAN compiler was ever an issue was because
one person who was fond of FORTRAN saw the possibility of getting
a free FORTRAN compiler out of the C/C++ compiler work we were
already doing.

I get excited about free products and features as much as the next
person. There’s that warm feeling you get when you realize that because
you were such a brilliant designer, some unexpected functionality pops
out. But free products are almost never strategic for your company, and
free features are almost never strategic for your product. After all, if they
were strategic, they would have been planned for, not serendipitously
discovered.

It's interesting to note that we could also have gotten a Pascal com-
piler out of the C/C++ work by updating the older Pascal front end, but
that idea never came up, even though the Macintosh was for many years
a Pascal-only system—all the manuals and code examples from Apple
Computer were in Pascal, and there were no serious development sys-
tems to compete with Apple’s Pascal system. That’s all changed now, of:
course; C/C++ has become the language of choice for the Macintosh. But
if Microsoft were to ship a Macintosh compiler other than the C/C++
compiler, it would make far more sense, I think, to ship a Pascal, not a
FORTRAN, compiler.

Mort was excited about the FORTRAN compiler because it was
free, not because it was strategic. But how free would that FORTRAN
compiler actually have been? To bring that free compiler to market, we
would have had to

Finish the remaining 5 percent or so of the back end to the
compiler—a few programmer-months’ worth of work.

Find some way to enable FORTRAN programmers to inter-
act in the Pascal-defined Macintosh operating system, which

61

DEBUGGING THE DEVELOPMENT PROCESS

makes heavy use of Pascal records—something FORTRAN
doesn’t directly support. We would also have had to find
some way to allow everything from Macintosh “traps” to
Pascal-style strings in FORTRAN.

® Write manuals and help files to accompany the product.

Fully test the compiler, linker, debugger, and other tools that
would go in the box.

I'm sure I could think of additional tasks that would be necessary (say,
training a product support team), but these are the obvious chores that
come to mind. How free does that compiler sound now? Granted, the
technical writers could probably pull the manuals and help files
together fairly quickly if they used the existing 80x86 FORTRAN docu-
ments as a starting point. But there’s no shortcut to testing a compiler.
The Macintosh FORTRAN compiler would have required the same full-
blown testing effort that any release of the 80x86 compiler would
undergo.

That FORTRAN compiler was anything but free. Yes, the compiler
was cheap compared to what it would cost starting from scratch. But
“cheap” can still be expensive—just ask anybody who’s bought a used
Boeing 747 lately.

Free products and features—like free puppies—simply do not ex-
ist. Anytime you hear, or even think, the word “free,” your immedijate
reaction should be resistance, not acceptance. Think of free products and
features as you would those cold-call offers in which you're told that
you’ll get a free dream vacation in Bermuda for simply dropping by a
showroom to hear about some new downtown luxury condominiums.
In rare instances, such opportunities may be gold bars to be picked up,
but in most cases, they’re merely lead weights. If you want to keep your
projects focused and under control, stick to the strategic work and leave
those lead weights alone.

.
There is no such thing as a free
product or feature.

+

62

3 OF STRATEGIC IMPORTANCE

THE LAYOFF MACRO

Sometimes it’s not a superior who makes questionable requests, but the
marketing team. The scent of a big sale can cause the marketing team to
consider features they’d never ask for in less heady situations. You need
to protect your product from such requests.

When I was working on Microsoft Excel, the marketing team asked
the development team to extend the product’s macro language to
include a new LAYOFF macro, which, as you can probably guess, was
supposed to take a list of names and randomly pick people to lay off. A
large corporate client had requested this LAYOFF macro so that they
could lay people off without anybody being able to claim that the selec-
tions were biased. The company would be in a position to simply point
to Excel to prove their innocence.

If you know Excel, you know that it doesn’t contain such a LAYOFF
macro. The task fell to me, and I refused to implement the request: I felt
the macro would harm the product. My lead agreed, and for months we
beat off the marketing team’s persistent requests for the feature. Market-
ing felt they needed the macro to close the sale.

The feature became a big joke in the development group. “Let’s do
it, and we’ll hardwire our names into the code so that we’ll never be laid
off! No, better than that, let's hardwire the marketers’ names into the
code so that they’ll always be laid off!” Of course, none of that ever hap-
pened. In the end, Marketing wrote a simple user-defined macro to ac-
complish the same purpose. With that macro, the corporate client’s
request was met without Microsoft’s having to build such an odious fea-
ture into the product.

In my experience, such ridiculous requests are rare. The marketing
folks don’t want to hurt the product. Just the opposite—they want the
best product possible. But sometimes they’re not too clear about what
“best” means and ask for features you probably shouldn’t implement.
There are at least two types of such features: those that fill out feature
sets and those that satisfy one of those product checklists you find in
magazine reviews. Sometimes filling out feature sets or satisfying prod-
uct checklists does improve the product, but just as often adding such
features merely causes bloat and wastes development time.

63

DEBUGGING THE DEVELOPMENT PROCESS

The reason I say that—besides years of observation—is the motiva-
tion behind the requests. Think about it. Suppose the marketing team
comes to you and says, “The Hewlett-Packard HP12c business calcula-
tor has these five functions that we don’t yet support in our spreadsheet.
We'd like you to add them to the standard set of functions.” Would
fulfilling such a request make for a strategic improvement to the prod-
uct, or is it more likely that the request came about because a marketer
realized, “Hey, we don’t support the full set of HP12c features; we’d
better add what we don’t have”? Those additional features may actually
be important, but if they are, why weren’t they included in an earlier
release? It’s possible that those features simply weren’t worth the time
and effort. They still may not be.

Strategic Marketing

I don’t want to leave you with the impression that you should adopt a
cavalier attitude toward requests made by the marketing team. Every
once in a while, they’ll ask for something inappropriate, but usually
they have sound reasons for their requests. At least that's been my
experience.

Sometimes the marketing team will ask for features that aren’t stra-
tegic for the product from a functional point of view but that are quite
strategic for sales reasons. Does any application really need to read and
write 23 different file formats, for instance? Of course not; users need
only one file format to store their work in. Support for the other 22 for-
mats is driven primarily by marketing needs. If your application isn’t
“file friendly,” that can kill sales, if for no other reason than it discour-
ages users from dumping competing products in favor of yours—they’d
lose their preexisting work.

If you're faced with a feature you feel doesn’t improve the product,
consider whether the feature would measurably increase sales. That
LAYOFF macro was inappropriate because it would have harmed the
product, not because its only reason for being was to land that large cor-
porate account.

3 OF STRATEGIC IMPORTANCE

If marketers are looking at magazine product-feature checklists,
you’ll run into the same problem—the requests will be for features that
fill out the chart, not for features that are strategically necessary for the
product. Sometimes the marketing team will see a questionably useful
feature in a competing product and, in a knee-jerk conviction that your
product has to do everything that the competitors’ products do, ask for
the feature. Watch out.

+.
Implement features only if they are strategic to
the product. Don't implement features merely
to fill out feature sets or review checklists.

_.___

TOTALLY COOL, TECHNICALLY AWESOME

In Chapter 1, I mentioned that the user interface library lead and I
reviewed the task list for the library. One of the items on that list was a
six-week task to implement a feature that would allow third party
vendors to hook little standalone applications into Microsoft’s character-
based applications. The idea was to make it possible to implement calcu-
lators, notepads, clock displays, and other types of desk accessories that
Windows and Macintosh users take for granted. I thought the feature
was interesting, but it didn’t seem to me to be strategic for any of the 20
or so internal groups using the library.

When I asked the lead which group had asked for the feature, he
told me that nobody had; it was on the task list because the previous lead
had felt that it was important. I then asked if any of the groups had ex-
pressed interest in the feature when they had learned of it. Again, the
lead said he didn’t know, and he added that if I was considering cutting
the feature, the previous lead would fight it if he found out.

I figured that if the previous lead felt that strongly about support-
ing desk accessories, there must be groups who really wanted the func-
tionality and that the current lead must simply be unaware of them. So
before cutting the feature, we asked the groups if they’d heard of the fea-
ture and whether they were interested in such support. The responses
we got were all pretty much the same: “Yeah, we heard about that So
and So tried to convince us that it was important.”

65

DEBUGGING THE DEVELOPMENT PROCESS

Most groups didn’t want the functionality at all. A few were more
interested than others, but only if we beefed up the feature so that there
was strong communication between the accessory and the application.
They didn’t want calculators and clock displays; they wanted the ability
to truly extend the application—for grammar checkers and other tools
that could provide important functionality. Of course, providing a gen-
eral purpose interface to allow such functionality was much more com-
plicated than the original idea. We didn’t have the time to implement the
six-week feature, much less something more complex.

Our findings pretty much killed the feature, but before scratching
it off the list, I talked with the previous lead to get his thoughts on the
issue. He was disappointed by my decision to cut the feature, but nothing
more. He couldn’t provide any compelling reasons to implement the
code except that it would be an interesting programming challenge and

What About Third Party Vendors?

It's possible that third party vendors would have loved to have seen
support for those little pop-up applications. It’s likely that some small
company or enterprising individual would have seized upon that niche
market and created numerous little add-ons for Microsoft’s character-
based applications. Nobody got the chance because I cut the feature. But
I didn’t cut the feature without first considering how beneficial such
third party support might have been. :

Had the add-on capability been much more powerful, as the appli-
cations groups wanted it to be, third party developers could have
created some truly useful add-ons for other users, which in turn could
have increased demand for the character-based products. But calcula-
tors? Notepads? Clocks? Nobody chooses a word processor, a debugger,
" or any other application simply because a third party vendor sells a nifty
add-on scientific calculator. '

Simply put, the users didn’t need the functionality, which meant
that the applications didn’t need it. It would have been wasteful for us to
spend six weeks working on pop-up code when we could work on code
that users really did care about.

66

3 Or STRATEGIC IMPORTANCE

that it would have been cool if people could have used the little pop-
up applications instead of TSRs, MS-DOS’s problematic approach to
achieving the same ends.

In effect, what we had was a six-week feature that was not at all
strategic to the success of the user interface library, nor to the successes
of the applications using the library. The task was on the schedule for
only two reasons: it would have been fun to work on, and it would have
been cool for the character-based applications to have desk accessories
just as their Windows and Macintosh counterparts did.

.
Don’t implement features simply
because they are technically challenging
or “cool” or fun or. . .

—.—.

Is IT BETTER?

Sometimes tasks sneak onto the schedule because they seem truly im-
portant, but in fact they may not be if you consider whether they are
strategic. For example, it has always irritated me that Excel uses a non-
standard clipboard paradigm—the élipboard is not persistent. It’s not
that Excel’s model is awkward or less useful; it just bugs me that Excel’s
clipboard doesn’t behave the way clipboards found in every other
Macintosh and Windows application behave. The saving grace is that
Excel’s clipboard implementation is close enough to the standard model
that few people ever notice that it’s different.

Now, I believe in following standards, particularly those that con-
cern user interfaces. So you can imagine that if I were the Excel lead, I
might think it important to bring Excel into line and would therefore put
a “standardize the clipboard” task on the schedule. And, in fact, I do
think that’s important. However, I do not think that standardizing the
clipboard is strategic in any way. Changing the clipboard’s behavior
could also break existing user-defined macros that rely on the current
clipboard behavior.

If I were the Excel lead, I would want to standardize the clipboard,
but I would strike that task from the schedule in an instant. I would feel

67

DEBUGGING THE DEVELOPMENT PROCESS

differently if users were confused or irritated by Excel’s clipboard, but
as I said, most people never notice that it’s different.

Another type of important work that is rarely strategic is reformat-
ting source files to adopt new coding styles or naming conventions. Sup-
pose a project lead decides that all functions must have function headers
that describe what the functions do and what the parameters mean. That
seems perfectly reasonable. What I question is a lead’s taking the next
step—bringing development to a halt so that the entire team can spend
days or weeks retroactively adding header comments to all the
headerless functions written over the years. It's even worse when a lead
halts development to institute a new naming convention. That can be
incredibly costly if the team stops to rename every existing variable and
function name. Such work may be important for maintainability, but it is
rarely strategic. You can tell that the work is nonstrategic because it
doesn’t improve the product in any way.

True, you can view such file reformatting as an investment in main-
tainability that will ultimately improve the product, but stopping all de-
velopment is a stiff price to pay. If you ask how you can get the benefits
and eliminate the drawbacks, you can derive alternative approaches to
adding those header comments all at the same time. An approach could
be as simple as asking all programmers to spend half an hour a week
writing headers and to add headers to any functions they touch during
the day as they work on strategic tasks. Sure, it'll take longer before all
the functions have header comments, but such an approach puts the
initial investment more in line with the expected return.

Of course, if you're talking about stopping development to add de-
bug code to the product, that might be another matter; adding debug
code could definitely improve the quality of the product—and rapidly.
The return on investment could be substantial, even in the short term.

Occasionally, I'll run across a Usenet news article in which a pro-
grammer says something like “We’re in the process of rewriting all of
our C code using objects in C++, and I can’t figure out how C++ does. . .”
When I read such notes, I shudder and hope that those programmers—
actually their leads—aren’t killing their products by taking the huge
time hit that such a rewrite must entail.

You could argue that it would be beneficial to rewrite an assembly
language program in a high-level language such as C—the resulting

68

3 OF STRATEGIC IMPORTANCE

productivity gains could outweigh the costs of doing the rewrite, and
the resulting code might be more portable. But I've got to question re-
writing a Pascal program in C, or rewriting a C program using object-
oriented designs in C++. I suspect that many such rewrites are initiated
by leads who get caught up in the hoopla of the latest industry trend.
When C++ first started getting attention, there were programmers at
Microsoft who wanted to recode anything and everything using object-
oriented designs. It didn’t matter that the original code worked fine.
These programmers felt that it was absolutely necessary to rewrite the
existing code. Fortunately, calmer minds prevailed, restricting object-
oriented work to new code and to cases in which rewriting a product
would provide strategic benefits.

_+
Don't waste time on questionable improvement
work. Weigh the potential value returned against
the time you would have to invest.

—_————

The “Productivity” Cry

The reason I most often heard for rewriting existing C programs in C++
was that the development team would be so much more productive us-
ing object-oriented methodologies. That may be true, but the people
making those claims were ignoring a significant detail: all the time lost
doing the rewrite. Rewriting a C program to use object-oriented designs
in C++ is not a line by line translation, as a Pascal to C translation can be;
it’s a total, ground-up rewrite.

If you're leading multiple groups and one of them comes to you
wanting to move from C to C++, ask them whether they’re talking about
rewriting the application using object-oriented designs, or whether
they’re simply interested in using the more flexible C++ compiler to
compile their existing C code. If they’re talking about doing an object-
oriented rewrite, be sure to determine whether the benefits would over-
come the time lost doing the redesign and rewrite.

69

DEBUGGING THE DEVELOPMENT PROCESS

LET NOTHING INTERFERE

By now you should have a pretty strong awareness of the kind of work
you should be focused on: the strategic work as defined by the project
goals. But being focused on strategic work is not enough to prevent
schedule slips. You can deflect “free” features, quash the impulse to go
after “cool” features, and minimize effort on questionable improvement
work. But if you don’t learn to say No when you should or if you don't
determine what others truly want, you can find yourself drowning in
work that you shouldn’t be doing.

The key to keeping your projects on track is knowing exactly what
you should be doing and then letting nothing interfere with that effort.
Of course, the trick is in knowing exactly what you should be doing.
That’s why it’s vital that you create detailed project goals.

HIGHLIGHTS

® Don't let foreseeable problems surprise you. If you want your
project to run smoothly, take time to look into the future. You
can prevent many catastrophes by taking small actions today
that either eliminate the problems in the future or steer you
clear of them. If you regularly ask the question “What canIdo
today to help keep the project on track for the next few
months?” you can determine the actions you need to take.

® Before you settle in to solve a problem, be sure you're attack-
ing the right problem. Remember the misguided optimization
work the dialog team was doing? The group complaining
about the speed problem inadvertently misled the people on
the library team. Get to the bottom of the problem before you
try to treat it.

Before spending any significant time on a task, do some re-
search so that you know you’ll be filling the real need. That
request for those bizarre list boxes was misleading because
the group really needed hierarchical menus. When you get re-
quests, be sure to find out what it is the askers are trying to
accomplish. It can save you lots of time.

70

3 OF STRATEGIC IMPORTANCE

For a variety of reasons, some leads find it difficult to say No
to demands made on their teams. In the most serious in-
stances, a lead will commit to a ship date knowing the team
can’t make it. If you have trouble saying No, consider how
you’d want groups you're depending on to respond to your
own requests. Would you want to know up front that they
couldn’t make the date on which you need the feature, or
would you rather they agreed and then missed that date? Be
as responsible to other groups as you would want them to be
to yours.

Whenever you get a feature request, determine whether the
feature is strategic to the product. If the feature isn’t strategic,
don’t implement it. It doesn’t matter that the feature appears
to be “free” or that it’s technically exciting or that a competi-
tor has it. Especially watch for features that round out a set—
such features can appear to be strategically necessary because
it feels as though you must include them for completeness. If
you're unsure whether a feature is strategic, consider the mo-
tivation behind the request for it.

71

