HE SYSTEMATIC
APPROACH

I've been programming computers for almosttwo decades, so you might
be surprised to learn that I don’t use a word processor when I sit down
to write technical documents or books such as this one. I write every-
thing by hand on a pad of legal paper, and later 1 transcribe what I've
written into a word processor for editing.

I'm obviously not computer-phobic, and writing the old-fashioned
way with pen and paper certainly isn’t easier than using a word proces-
sor. Nevertheless, that's what I do.

I discovered long ago that whenever I sat down to write using a
word processor, | would get so caught up in editing every sentence the
moment I wrote it that after a day’s worth of effort I'd have written al-
most nothing. Editing was too easy, much easier than writing the next
paragraph, and 1 naturally fell into the habit of doing the easy work. 1

DEBUGGING THE DEVELOPMENT PROCESS

had to do it sometime anyway, right? In reality, I was editing in order to
procrastinate, and it worked all too well.

Once I realized I had been sabotaging my writing effort, I looked
for a process I could use to get the results I needed: being able to write
technical papers much more speedily. I tried to force myself not to edit as
I wrote with the word processor, but I wasn’t very successful. I needed
a system in which writing would be easier than editing. That’s when I
stopped using a word processor to write my first drafts and went back to
traditional longhand. I now use the word processor only for what it's
especially suited for—editing what I've already written.

My new “writing system” solved my procrastination problem by
getting me to focus on the writing part of writing.

The important point here is that adopting a trivial process or sys-
tem can produce dramatic results. I now write five pages in the time it
used to take me to write five paragraphs. Was this improvement the re-
sult of my becoming a more experienced writer? No. Was it because I
worked harder and longer? Again, no. I became a more productive
writer because I noticed that the tool I was using had drawbacks and I
developed a new system for writing.

As you'll see throughout this chapter, the use of little systems can
achieve amazing results. Once you grasp this concept and learn to apply
it to your software projects, you can truly claim that you're working
smart, not hard, and you can come that much closer to hitting your
deadlines without the long hours and daily stress that seem to afflict so
many software projects today.

BAD COFFEE

A common problem for servers in coffee shops is remembering who's
drinking regular coffee and who's drinking the decaffeinated stuff. A
coffee shop manager with unlimited time and resources might send all
the servers to Kevin Trudeau’s Mega Memory seminar, where they’d
learn to vividly imagine a calf with a hide that matches, say, the
customer’s paisley tie, so that seeing the tie at refill time would trigger
the thought of the paisley calf—and decaf coffee. Most coffee shop man-
agers take a much simpler approach to the problem, though: they just
tell the servers to give you a different kind of cup if you order decaf. The

24

2 THE SYSTEMATIC APPROACH

server need only look at your cup to know what type of coffee you're
drinking.

A trivial system for solving a common problem.

Now imagine a coffee shop that has a whole collection of such
trivial “systems” that produce better results with little or no extra effort.
Let’s look at another example.

There are two coffee shops near my house. They have identical
coffeemakers, they use the same supplier for their beans, and the servers
in both places are college students. But one shop consistently brews
great coffee, whereas coffee at the other shop is sometimes good, some-
times watery, sometimes too thick, and sometimes burned beyond
drinking—you never know what you're going to get when you order
coffee there.

Circumstances at the two shops are identical except for one seem-
ingly insignificant detail: the shop that consistently serves great coffee
has a short horizontal line embossed on the side of each of its coffee pots.
That short line is part of a simple “quality system” that consistently pro-
duces good coffee. When a new employee first comes on duty at this
shop, the manager pulls him aside and gives him a short lecture:

“Whenever you pour a cup of coffee and the level of coffee drops
below this line,” he says, pointing to the mark on the pot, “immediately
start a new pot. Don’t go on to do anything else before you start that
new pot.”

“What if it’s really busy?”

“I don’t care if the place is filled with Seattle Seahawks an hour af-
ter they’ve blown a Super Bowl game. Start that new pot before you give
Mad Dog Mitchell the cup you’ve just poured.”

The manager goes on to explain that by taking 15 seconds to start a
new pot before the old one is empty, the server might make the current
customer wait an extra 15 seconds but that the practice prevents the next
customer from having to wait a full 7 minutes for a new pot to brew be-
cause the current pot ran out.

If you order coffee at the other coffee shop, it’s not unusual for the
server to reach for the pot only to find it empty, and you have to begin
that 7-minute wait. Of course, sometimes you don’t have to wait the full
7 minutes. To shorten your wait, some servers will watch until just

25

DEBUGGING THE DEVELOPMENT PROCESS

enough coffee for one cup has brewed and pour you that cup. But for
good coffee, you must let the entire pot of water drip through so that the
initial sludge can mix with a full pot of hot water. If you pour a cup too
early in the process, that cup will be so strong it will be undrinkable, and
any other cups you pour from that pot will taste like hot water. That's
one reason the quality of the second shop’s coffee fluctuates. Depending
on when your coffee is poured, you'll get sludge, coffee-colored hot wa-
ter, or sometimes even normal coffee. And of course occasionally you'll
get burned coffee—when the pot holds just enough coffee for one cup
and there’s not enough liquid to prevent the coffee from burning on the
warmer as the water boils out.

The only difference between the two shops is that in one they make
coffee when their pots get low and in the other they make coffee when
their pots get empty. Their systems are so similar, yet they produce dras-
tically different results, and the results have nothing to do with the skill of
the people involved. '

I wouldn’t be talking about these coffee shop systems unless they
made a point that related to software development. They do.

If I were to ask you if it mattered when in the software develop-
ment process your team fixed bugs, provided the bugs were fixed before
you shipped the product, what would your answer be? Would you argue
that the team shouldn’t focus on bugs until all the features have been
implemented? Would you argue that bugs should be fixed as soon as
they’re found? Or would you argue that it doesn’t matter, that it takes
the same amount of time to fix a bug no matter when you get around to
doing it?

If you thought that it doesn’t matter when you fix bugs, you would
be wrong, just as a coffee shop manager would be wrong if he thought it
didn’t matter exactly when his servers made new coffee. Possibly the
worst position a project lead can find herself in is to be so overwhelmed
by bugs that the bugs—not the goals—drive the project. If you want to
stay in control of your project, one of your concrete goals must be to
never have any outstanding bugs. To ignore this goal is to set a destruc-
tive process in motion, one I described in Writing Solid Code. There 1
noted that when I first joined the Microsoft Excel group, it was custom-
ary to postpone bug-fixing until the end of the project. I pointed out the

26

2 THE SYSTEMATIC APPROACH

many problems that approach created—the worst being the impossibil-
ity of predicting when the product would be ready. It was just too hard
to estimate the time it would take to fix the bugs that remained at the
end of the project, to say nothing of the new bugs programmers would
introduce as they fixed old ones. And of course fixing one bug inevitably
exposed latent bugs the testing group had been unable to find because
the first bug had obscured them.

Concentrating on features and ignoring bugs enabled the team
to make the product look much more complete than it actually was.
But high-level managers would use the product and wonder why
“feature complete” software had to spend six more months in develop-
ment. The developers frantically debugging the code knew why. Bugs.
Everywhere.

When a series of bug-ridden products ended with the cancellation
of a buggy unannounced application, Microsoft was finally prompted to
do some soul-searching. Here’s how I summarized the results of that
self-examination in Writing Solid Code:

® You don’t save time by fixing bugs late in the product
cycle. In fact, you lose time because it’s often harder to
fix bugs in code you wrote a year ago than in code you
wrote days ago.

¢ Fixing bugs “as you go” provides damage control be-
cause the earlier you learn of your mistakes, the less
likely you are to repeat those mistakes.

¢ Bugs are a form of negative feedback that keep fast but
sloppy programmers in check. If you don’t allow pro-
grammers to work on new features until they have fixed
all their bugs, you prevent sloppy programmers from
spreading half-implemented features throughout the
product—they’re too busy fixing bugs. If you allow pro-
grammers to ignore their bugs, you lose that regulation.

& By keeping the bug count near zero, you have a much
easier time predicting when you’ll finish the product.
Instead of trying to guess how long it will take to finish
32 features and 1742 bug-fixes, you just have to guess
how long it will take to finish the 32 features. Even bet-
ter, you're often in a position to drop the unfinished
features and ship what you have.

27

DEBUGGING THE DEVELOPMENT PROCESS

As 1 said in Writing Solid Code, 1 believe these observations apply to any
software development project, and I'll repeat the advice I ended with there:

If you are not already fixing bugs as you find them, let Microsoft’s
negative experience be a lesson to you. You can learn through your
own hard experience, or you can learn from the costly mistakes of
others.

_.___.—

Don't fix bugs later; fix them now.
__._.__

When programmers fix their bugs matters a great deal, just as when
servers make new coffee matters a great deal. Requiring programmers to
fix their bugs the moment they’re found introduces a small system into

“Unacceptably Slow”

Some groups at Microsoft have broadened the traditional concept of
what constitutes a bug to include any flaw that has to be addressed be-
fore the product is shipped. In these groups, a feature could be consid-
ered buggy simply because it was unacceptably slow. The feature might
function without error, but the fact that it would still require work be-
fore it was ready to ship would be considered a bug.

If they have a policy of fixing bugs as they’re found, groups that
define bugs so broadly are forced early on to define what is and is not
“unacceptably slow.” In fact, they're forced to define all their quality
bars early on. The result: programmers don’t waste time rewriting
unshippable code, at least not more than once or twice, before they learn
what quality levels they’re aiming for.

The drawback to this approach is that some programmers might
waste time writing complex, efficient code, say, when straightforward
code would do just fine. But such a tendency could be easily detected
(and corrected) in regular code reviews.

28

2 THE SYSTEMATIC. APPROACH

the development process that protects the product in many ways. In
addition to the benefits I described in Writing Solid Code, the system pro-

duces these good side effects:

*

The constant message to programmers is that bugs are serious
and must not be ignored. This point is emphasized right from
the start of the project and receives perpetual reinforcement.

Programmers become solely responsible for fixing their own
bugs. No longer do the careful programmers have to help fix
the bugs of the sloppy programmers. Instead, the careful pro-
grammers get to implement the features the sloppy program-
mers can’t get to because they’re stuck fixing bugs in their
earlier features. The effect is that programmers are rewarded
for being careful. Justice!

If programmers are fixing bugs as they’re found, the project
can’t possibly have a runaway bug-list. In fact, the bug-list
can never sneak up and threaten your project’s timely deliv-
ery. How could it? You're always fighting the monster while
it’s little.

Finally, and perhaps most important, requiring programmers
to fix their bugs as they find them makes it quite apparent if
a particular programmer needs more training—his or her
schedule starts slipping, alerting you to a problem that might
otherwise go unnoticed.

Whether you realize it or not, your development process is filled
with little systems that affect the quality of the product and the course of
the project. That coffee shop manager with the mark on his pot under-
stood the power of developing a system and used that power to his
advantage. You can do the same with your projects, coming up with

little systems that naturally give you the results you want.

-—
Actively use systems that improve
the development process.

—>—

29

DEBUGGING THE DEVELOPMENT PROCESS

The E-Mail Trap

Electronic mail is a wonderful tool. I can’t imagine working efficiently
without it. Having said that, I have to add that when it isn’t handled
wisely, e-mail can destroy your productivity.

I've found that newly hired programmers allow e-mail to con-
stantly interrupt their work. I don’t mean that they’re sending too much
e-mail; I mean that they’re stopping to read every new message as it ar-
rives. New employees don’t get much mail that they have to respond to;
most e-mail they receive consists of passive information that’s just mak-
ing the rounds. You know, things like the closing price of Microsoft
stock, what Spencer Katt had to say about this or that company that
week, the business news wire releases for the day, and so on. This stuff
trickles in throughout the day.

New employees tend to leave their e-mail readers running and to
stop every 5 minutes to check out the latest “blip.” They never get any
work done because their entire day is broken into 5-minute time slices.

To combat this tendency, I routinely tell new hires to respond to
their e-mail in batches: “Read it when you arrive in the morning, when
you return from lunch, and just before you leave for the day.” That tiny
system for e-mail reading—governing only when they read their mail—
allows developers to get their work done because the work is no longer
subject to constant interruption.

The developers are reading the same number of messages; that
hasn’t changed. They’re just reading those messages more efficiently
and doing their other work more efficiently as a consequence. '

LEANING ON CRUTCHES?

I've described using such trivial systems to programmers and leads on
many occasions, and every once in a while I’ll run into somebody who
thinks systems are a bad idea. Such a person usually maintains that sys-
tems are a crutch: “You’re cheating those people out of a learning experi-
ence. The next job they go to, they’ll not have learned anything.”

30

2 THE SYSTEMATIC APPROACH

As much as I believe in using systems, I do take seriously the con-
cern these people express. As you'll see throughout the book, I believe
you must continually work to improve the skills of each member of your
team. I just don’t believe that the project has to be a casualty of that
learning experience.

The beauty of setting up a system is that team members don’t have
to immediately grasp the rationales behind the system in order for it to
work. But don’t keep the rationales behind your system a secret. I'd urge
you to do just the opposite: fully describe the thinking behind the sys-
tem you set up and what you expect the system to accomplish. In time,
the team members will begin to appreciate the thinking behind the sys-
tem and probably start to add improvements that will make it even more
effective. Encourage your team to understand and improve the systems
you put in place.

+
Don't use systems in lieu of training.
Use systems and explain why you
expect them to work.

—y—

PLEASE PAsS THE POPCORN

Well-designed systems for working are valuable because they can nudge
people into doing what's best for the product. A strategy is valuable be-
cause it condenses a body of experience into a simple attack plan that
anybody can immediately understand and act on. A collection of such
strategies can catapult an individual (or a team) to a higher level of pro-
ductivity, quality, or whatever it is that the strategies focus on.

As a lead, you should encourage your team to share the strategies
they’ve found to be effective in achieving project goals and priorities.
My highest priority for software products is that they always be bug-
free, for instance, but as we all know, achieving that state is much easier
to talk about than to accomplish. Even so, I can look at different pro-
grammers and see that some have much lower bug rates than others.
Why? The programmers with lower bug rates have a better understand-
ing of how to prevent bugs and of how to effectively find any bugs that

31

DEBUGGING THE DEVELOPMENT PROCESS

.do creep into their code. They have better strategies for writing bug-free
programs.

To encourage developers to come up with strategies that result in
bug-free code, I have them ask themselves two questions each time they
track down the cause of a bug:

How could I have prevented this bug? |
and
How could I have easily (and automatically) detected this bug?

As you can probably imagine, any programmer who habitually
asks these questions begins to spot error-prone coding habits and starts
to weed them out of his or her coding practice. Such a programmer also
begins to discover better strategies for finding bugs. Of course, most
programmers would, in time, develop such strategies anyway, but by
constantly asking those two questions, they more rapidly—and con-
sciously—learn how to prevent and detect bugs. As with anything else,
if you systematically focus on an area, you get better results than you
would if you haphazardly wandered over to it every now and then.
There’s no magic here.

As alead, you can ask yourself similar questions for each problem
you encounter:

How can I avoid this problem in the future?
and
What can I learn from this mistake/experience?

These are critical questions that successful leads habitually ask them-
selves as they actively improve their skills. Some leads forever repeat
the same mistakes because they fail to ask these questions and act on
their findings.

Of course, the quality of the questions you ask will determine
the quality of the strategies you derive from them. Consider these two
questions:

32

2 THE SYSTEMATIC APPROACH

Why do our schedules always slip?
vs.
How can we prevent schedule slipping in the future?

Although the questions are quite similar, would you give the same
answers to both? I doubt it. I doubt it because the first question gets you
to focus on all the reasons your schedules slip: you have too many de-
pendencies on other teams, your tools are lousy, your boss is a bozo and
always gets in your way, and so on. The second question gets you to fo-
cus on what you can do to prevent slipping in the future: reducing your
dependency on other groups, buying better tools, establishing a new
work arrangement with your boss. The questions focus on different
aspects of the problem—one on causes, the other on prevention—so the
quality of the answers for the two is different. The first question elicits
complaints; the second question elicits an attack plan.

Even if the questions you ask yourself have the right focus, they
may not be precise enough to elicit effective strategies. Just as goals gain
power as you increase their detail, questions become more powerful as
you increase their precision. Let’s take a look at another question:

How can we consistently hit our ship dates?

Some leads who asked that question might decide to pressure their
teams to work overtime by threatening them. Others might decide to
bribe their teams to work overtime with bonuses or free dinners or by
projecting blockbuster movies at midnight and passing out buckets of
popcorn. (Don’t laugh. It has happened.)

But suppose those leads had asked a more precise, and in my opin-
ion more beneficial, question:

How can we consistently hit our ship dates, without having
developers work overtime?

The leads would obviously get a different kind of answer because
threats or midnight movies wouldn’t answer the requirements posed by
this more precise question. The leads would have to toss out any “solu-
tion” that called for getting their teams to work overtime. They’d be

33

DEBUGGING THE DEVELOPMENT PROCESS

forced to search for other possibilities. They might decide that to hit
their ship dates without demanding overtime work they’d have to hire
more developers. That’s a possibility, but not one that companies usu-
ally like to consider, at least not until all other approaches have been
exhausted. To eliminate that unacceptable solution from consideration,
I'll increase the precision of the question even further:

How can we consistently hit our ship dates, without having
developers work overtime, and without hiring additional people?

The question now eliminates two undesirable solutions, forcing
leads to think more creatively and, not incidentally, to focus more on the
work itself. Maybe a lead would decide that it wasn’t so critical, after all,
that his team write all the code in the product: he could hire a short-term
consultant, or the team could use a code library another team might
have offered them just the month before, or they could even buy a fully
documented commercial library, which could cut their development
time dramatically. Maybe they’d decide to cut features that, upon reflec-
tion, they’d see wouldn’t really add much value to the product.

The Ideal Question

As we'll see throughout this book, there are numerous ways to increase
productivity without resorting to 80-hour weeks. When you ask ques-

- tions to elicit solutions, keep in mind that question from Chapter 1:
What am I ultimately trying to accomplish? No lead is ultimately trying
to get people to work overtime; most are in fact ultimately trying to get
more work done in a shorter period of time.

The simplest technique for zeroing in on the best question to ask is
to envision how you would ideally like your project to run and to tailor
your question so that it reflects that ideal. Wouldn’t your ideal project be
one in which you made perfect estimates, you hit every feature mile-
stone, nobody worked overtime, and all concerned thoroughly enjoyed
their work? That’s a lot to ask, but if you tailor your questions to reflect
that ideal, you’ll come up with the solutions that will bring you closer to
those goals.

2 THE SYSTEMATIC APPROACH

The point is that by asking a more precise question, one that takes
into account the results they’d ideally like to see, leads force themselves
to weed out all the less than ideal solutions—the ones they might have
glommed onto simply because they were the first solutions that pre-
sented themselves. Asking increasingly detailed questions stimulates
the thinking process that leads to inventive solutions.

.___.._
Ask detailed questions that yield
strategies and systems that help to
achieve your ideal project goals.

__._

GoOTOS HAVE THEIR PLACE

Asyou go about creating and promoting strategies, regularly remind the
development team that the strategies are not rules that are meant to be
followed 100 percent of the time. You want to be sure that people are
thinking about what they’re doing, not blindly following a set of rules
even when those rules don’t make sense.

One coding strategy that many programmers treat as an ironclad
rule is “Don’t use goto statements.” But experienced programmers gen-
erally agree that there are a few special scenarios—mostly dealing with
complex error-handling—in which using goto statements actually im-
proves the clarity of code. When I see that a programmer has imple-
mented that kind of error-handling code, scrupulously avoiding gotos,
I usually raise the issue with the programmer.

“Did you consider using gotos to improve this code?” I ask.

“What? Of course not! Gotos are evil and create totally unreadable
spaghetti code. Only incompetent programmers use gotos.”

“Well, there are a few cases in which using gotos can make sense,”
tell the programmer. “This is one of those cases. Let’s compare your code
to an implementation that uses a goto statement.” I hand the program-
mer the goto version. “Which implementation is easier to read and
understand?”

“The goto version,” the programmer will usually reluctantly admit.

“So which implementation will you use in the future?”

35

DEBUGGING THE DEVELOPMENT PROCESS

“Mine, because it doesn’t use any gotos.”

“Wait, I thought you just agreed that the goto version was easier to
read and understand.”

“It is easier to read and understand, but using gotos can cause the
compiler to generate less than optimal code.”

“Let’s assume that you're right, that the compiler generates some
less than optimal code in this function. How often would this coding
scenario show up?” '

“Not very often, I guess.”

“And which is a higher coding priority for the project, code clarity
or a questionable efficiency gain?”

“Code clarity.”

“So which version is easier to read and understand and follows our
project priorities?”

At this point there is usually a long pause.

“But gotos are bad,” the programmer blurts out in a last, pitiful protest.

I'll be the first to admit that there aren’t many places in which us-
ing gotos actually clarifies the code; you can be sure that whenever I'm
reviewing code and I see a goto, alarms start going off. I am not pro-
goto—the presence of a goto usually does indicate a quick and dirty

Show Me Code!

Perhaps the most thorough discussion ever published about the pros
and cons of using gotos can be found in Chapter 16 of Steve McConnell’s
Code Complete. In addition to showing those instances in which the judi-
cious use of a goto can actually improve code, McConnell fully delin-
eates the arguments against and for gotos and goes on to show how
often the goto debate is phony. He finishes up with a list of articles that
have exhaustively covered the use of gotos, including Edsger Dijkstra’s
original letter to the editor on the subject and Donald Knuth’s example-
rich “Structured Programming with go to Statements.” As McConnell
points out, “[the goto debate] erupts from time to time in most work-
places, textbooks, and magazines, but you won’t hear anything that
wasn’t fully explored 20 years ago.”

36

2 THE SYSTEMATIC APPROACH

design hacked together while the programmer sat in front of the key-
board with a sugar buzz. But while I'm generally against using gotos,
I’m even more against blindly following rules when they don’t make
sense and actually work to the detriment of the product.

That’s the major drawback to strategies. If you push them as invio-
lable rules, you risk having team members do stupid things.

I know instructors mean well when they advise programmers not
to use gotos, but I wish they would explain that gotos should be used
rarely, instead of never. Even better, 1 wish that they’d demonstrate
those few cases in which using gotos actually makes sense—it’s not as if
there are dozens of scenarios they’d have to cover. The problem, I think,
is that many instructors were taught that gotos should never be used
and they pass this advice on with ever-growing fervor. The mere pres-
ence of a goto is enough for some instructors (and programmers) to de-
clare the code terrible, just as any form of nudity is enough for some
people to proclaim a film immoral.

There are very few programming strategies that should be en-
forced as rules, and you need to make that clear. Otherwise, you may
end up with developers blindly following a rule in situations in which it
doesn’t make sense. This disclaimer certainly applies to all the strategies
in this book.

—_’__—
Don’t present strategies as ironclad

rules; present strategies as guidelines
to be followed most of the time.

—_—y—

FEEDBACK LOOPS

Electrical engineers use the concept of positive and negative feedback
loops to describe the characteristics of a particular type of circuit, one in
which the output of the circuit is fed back as an input to that same cir-
cuit. Here’s a picture.

37

DEBUGGING THE DEVELOPMENT PROCESS

Feedback

4 inputs Circuit 1 output

With the output contributing to its own result, such circuits behave
in one of two ways: the output amplifies itself, so that the stronger it is,
the stronger it gets; or just the opposite occurs, so that the stronger the
output is, the weaker it gets. Feedback loops in which the output ampli-
fies itself are known as positive feedback loops, and those in which the
output weakens itself are known as negative feedback loops. From this
admittedly simplified description of the two types of loops, it might
seem that positive feedback loops are great because they leverage their
own power whereas negative feedback loops are worthless because
every time the output gets stronger, the effect is counteracted. In fact,
negative feedback loops are far more useful than positive loops.

If you've ever been in an auditorium and heard a speaker and a
microphone together cause an ear-shattering screech that could wake
Elvis, you’'ve been the victim of a positive feedback loop. The micro-
phone has picked up and reamplified its own output, driving the ampli-
fier into overload. That’s the common problem with positive feedback
loops: they typically overload themselves.

A negative feedback loop would take a high output and use it to
reduce the loop’s future output. Imagine welding the brake pedal of
your car to the accelerator: step on the gas a bit, and the brakes go on a
bit to counteract the acceleration; floor the gas, and you floor the brakes
too. The stronger the output, the harder the circuit counteracts it. Such
behavior may sound as useless as going into overload all the time, but
negative feedback loops don’t need to completely dominate the output;
they just need to exert enough force to regulate and stabilize the circuit.

I've been talking about electrical circuits, but you'll find feedback
loops in all sorts of systems, whether systems for personal relationships
or for software development. Some of the feedback loops develop with-
out conscious intention, and others are designed, but whatever their

2 THE SYSTEMATIC APPROACH

origins, you can achieve greater control over your project by becoming
aware of feedback loops and making deliberate use of them.

Bugs, for example, are a common “output” of writing code.
Wouldn'’t it be wonderful if you could design a negative feedback loop
into your development process so that whenever the bug count grew,
something would counteract that growth with equal force? We've al-
ready talked about exactly such a feedback loop:

Require that programmers fix their bugs the moment they re
found.

If a programmer’s code never has bugs, the requirement that bugs
be fixed the moment they’re found will never affect her and she can hap-
pily implement new features. But if a programmer writes code that’s
riddled with bugs, the requirement will kick in in full force, pulling that
programmer off the implementation of new features and back to work
on bugs, preventing her from spreading sloppy work throughout the
program. The more bugs the programmer has, the harder the brakes are
applied. The requirement that bugs be fixed immediately implements a
negative feedback loop designed to keep the product bug-free at all
times. And, of course, the practice gives you all those other benefits I
mentioned earlier in the chapter—the relative ease with which recent
bugs can be fixed, the speed with which programmers learn from fresh
mistakes, easier prediction of project completion dates, and so on.

‘Negative feedback loops can hurt as well as help, though. Do you
remember that lead I talked about in Chapter 1, the one who required his
team members to submit status reports, attend status meetings, and then
write follow-up reports on any insights they had come up with during
the meetings? That lead was trying to get as much good information
from the team as he could. Unfortunately, he’d set up a negative feed-
back loop that thwarted a desirable output. He wanted to hear any ideas
his team members might come up with to solve a problem, but by asking
them to write up those thoughts in reports, he discouraged them from
saying anything. His system made people clam up—the more you
spoke, the longer the report you had to write. Nobody liked writing
those reports, so they learned to keep quiet. Just the opposite of what the
lead was hoping for. Backfire.

39

DEBUGGING THE DEVELOPMENT PROCESS

You must also be careful not to unwittingly set up destructive posi-
tive feedback loops. If you base raises and bonuses on the number of new
lines of code programmers write—and rewriting bad code doesn’t
count—don’t be surprised if the programmers, over time, develop the

Negative Feedback Is Not Negative Reinforcement

Don’t confuse negative feedback with negative reinforcement. I think of
negative reinforcement as scolding, berating, or threatening an em-
ployee—like whipping a horse to get it to do what you want. Or, if an
employee steps out of line, WHACK, giving him or her a solid dose of
negative reinforcement to discourage stepping out of line in the future.

That kind of management style is reprehensible and certainly not
what I'm advocating. Think about the negative feedback requirement that
programmers fix their bugs as they’re found. A programmer shouldn’t
be anxious about having to fix his bugs as they’re reported. The require-
ment might have put him in a position he doesn’t like—being stuck on
the same feature for days on end—but that’s very different from filling
him with a sense of dread. The goal is to have the right things happen
easily and naturally, without personal distress—not to assert who is
boss or to put the employee in his or her place.

Many years ago at Microsoft, there were a couple of leads who,
when a project was not running smoothly, would round up the develop-
ment team and proceed to tell them that they were the worst program-
mers at Microsoft, that they weren't worthy of calling themselves
Microsoft programmers, and other such nonsense. I'm not sure what
those leads were trying to accomplish, but if their goal was to get the
teams to rally and try harder, they picked a pretty strange way of doing
it. As I'm sure you can imagine, those leads only succeeded in angering
and depressing their development teams. Furthermore, in every case of
which I was aware, the problems with the project were management re-
lated—the projects had no clear focus or were simply too ambitious. The
programmers on those projects weren’t any better or worse than other
programmers in the company, and berating them didn’t change any-
thing for the better—only for the worse.

2 THE SYSTEMATIC APPROACH

habit of sticking with their clunky first-draft code and patching flawed
designs with new code instead of doing badly needed rewrites. You
might intend the bonus to be an incentive for programmers to be more
productive, but the long-term result would probably be a company full of
programmers who are satisfied with slapped-together implementations.

I hope you'll take two points away from this discussion. First,

" whenever you design a new system, try to include beneficial negative

feedback loops that help to keep the project on track. Second, consider
the long-term effects of any feedback loops you decide to employ; make
sure there are no feedback loops that can ultimately cripple the effort.

—_—y—
Deliberately use negative

feedback loops in your systems to
achieve desirable side effects.

Beware of feedback loops that create
undesirable side effects.

——

THE SIMPLER, THE BETTER

Finally, make sure that the systems and strategies you come up with are

easy to understand and follow.
Consider some of the systems I've covered: writing in longhand,

using two kinds of coffee cups, watching a line on a coffee pot, reading
e-mail in batches, fixing bugs the moment you find them. These systems
are trivial, not hulking processes that will bog down the whole operation.
One tendency at workplaces is for simple processes to blossom into
time-consuming busy-work because people get caught up in creating
processes instead of working on the product. Having programmers ask,
“How could I have prevented this bug?” is simple. Taking that system a
step further and asking every programmer to write a “prevention re-
port” for every bug he or she encounters is altogether different. All of
a sudden the systematic asking of a simple question has turned into a
cumbersome process. Such process growth is as natural as the growth of
brambles, and you must actively keep that growth cut back.

41

DEBUGGING THE DEVELOPMENT PROCESS

Remember, the overall goal is to stay focused on improving the
product, not on fulfilling process requirements. You want to gain the
benefits that systems can provide and jettison the drawbacks. Well-
designed systems and appropriately applied strategies accomplish both
of these goals. ’

HIGHLIGHTS

® Simple work systems can produce dramatic results. Take a
good look at the processes your team members are already
following. Are there problems with those processes? Are they
too time-consuming? Too error-prone? Are they frustrating
and counterproductive in some way? If they are, look for
simple changes you can make to improve those processes.

® As you put systems in place, explain the purposes behind
them so that the development team can understand what as-
pect of the product the systems are meant to improve. This
openness will educate team members over time and also en-
able them to intelligently improve the systems and create
new, better ones.

® Refine the questions you ask as you look for solutions to prob-
lems. Develop the ability to ask precise questions to increase
the quality of your answers. Unfortunately, it's not enough to
be precise. A precise but wrong question will get you a bad
answer. Be sure the question you ask focuses on what you're
ultimately trying to achieve, on your ideal solution. Don’t
ask, “How can we get programmers to work longer hours?”
Ask, “How can programmers get more done in less time?”

® The more appealing or effective a strategy is, the more people
on your team will want to treat it as an ironclad rule. Remind
your team that even the best strategies don’t apply to every
situation. “Avoid using gotos” is a strategy that can lead pro-
grammers to write more readable code. But you should en-
courage programmers to see that they should set aside even
this strategy when avoiding gotos would make the code less
readable.

2 THE SYSTEMATIC APPROACH

® Whenever you create a feedback loop, be sure to consider the
side effects and the long-term effects. The best feedback loops
enhance the desirable aspects over time while simultaneously
reducing the negative effects.

R e 7

