
LoopBack Toplevel Design

Colin Stebbins Gordon (colin)

February 22, 2007

1 Components

• Network Input - This listens for requests from other instances of LoopBack, and accepts input
from valid connections. When an incoming request to connect is recieved, it calls into the
GUI for a response from the user. Once connections are created, it listens for new track info
from other clients. If a track is requested to be added which the local machine doesn’t have,
it will call into the clip manager, and get a copy of the clip for the local machine from the
remote machine.

• GUI - User interface. See UI mockup in Specifications Document for design. Responsible
for allowing user to manage tracks. When a call is made into the GUI by the network input
module, the GUI treats this input as if the user interacting directly with the UI performed
the corresponding actions himself (e.g. adding a track, switching a track to looping).

• Clip Manager - Keeps track of what clips the local machine has. Manages creation of new
clips, retrieval of clips, etc.

• FileIO - Responsible for getting clips to and from disk.

• Audio Manager - Main module, controlled by the GUI. Recieves input from the UI. It calls
into the clip manager for getting (or creating) clips, propagates edit commands to connected
clients via the network output module, calls into the effects module to enact effects, and
spools audio to JACK.

1



CS190 - CS190 Top Level Design - LoopBack Colin Stebbins Gordon (colin)

• Effects - Apply effects - looping, pitch change, etc. Should be straightforward, as there are
only a couple algorithms, which should be fairly well-documented online.

• Network Output - Propagates copies of user actions out across the network.

• jackd - Recieves and mixes multiple audio streams (external dependency).

2 External Dependencies

2.1 JACK

JACK will be responsible for mixing the audio output. If it doesn’t support enough input streams,
or if we can’t spawn enough of our own threads for all the tracks, we’ll have to mix the audio
streams together ourselves, which will increase the complexity of the project.

2.2 Linux network support

This basically depends on Linux support for TCP being correct.

3 Task Breakdown and Group Org

GUI - Nate, Owen
Responsible for implementing the GUI. Need to create a smooth UI, and export hooks for the
network input module to call into the GUI as if it were another local user.

Network Input and Output - Colin
Propagate and recieve user events to and from other instances of LoopBack over the network.
Transfer and recieve clips not present on one or more machines. Requires designing a network
protocol.

Audio Manager and JACK interface - Sean, Lincoln
Responsible for managing the internal structures representing tracks. Probably the largest module,
and the most central. Must decide how to manage spooling audio from multiple tracks.

Effects - Brendan, Colin
Implementing speed/pitch distortion, per-track volume adjustment, looping setup.

Clip Management and FileIO - Josh, Kevin
Fast search and retrieval of clips. Choice of a coherent naming scheme. File codecs. Choice of
internal representation of sounds (MIDI style, or sample based).

Architect - Kevin, Lincoln
Responsible for creating cohesive overall design, and ensuring that all implementers understand and



CS190 - CS190 Top Level Design - LoopBack Colin Stebbins Gordon (colin)

abide by it. Also responsible for getting feedback from implementers which may alter the design.

Documentation - Dominic
Responsible for documenting UI and network semantics.

PM - Dominic
Responsible for ensuring that the project is on schedule. Should set up meetings between project
subgroups, and regular progress meetings.

Build System & Tools - Lincoln
Responsible for managing the SVN respository, makefiles, etc.

Testing - Tara, Brendan
Create testing plan for whole project, and write unit tests for each module. Work with tools co-
ordinator to create one or more test targets, to make regression testing easy for implementers as
they progress.

4 Schedule

• 2/26 - Pick project

• 3/5 - Updated top level design, corrected roles, following group input.

• 3/12 - Defined interfaces between modules.

• 3/19 - Completed designs for each module’s internals; begin implementation of tier one com-
ponents, and code for generating the GUIs appearance.

• 3/26 - Lower tier components completed. Begin clip manager, and portions of audio manager
independent of clip manager. Begin creation of tests for first tier.

• 4/9 - GUI connected to audio manager.

• 4/16 - Network input complete; final testing begins.

• 4/23 - Continue testing & debugging.

• 4/30 - Continue testing & debugging.

• 5/17 - Demo

5 Assumptions

I omitted most of the optional features, except for adding effects in pseudo-realtime (a few seconds
of processing before playback begins is reasonable).


