Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

Specifications Document

Contents

(1 The XMMS2 Client Project|

1

Project Description|

T2

Target Audience|.

W N NN

[2.1.2 Important Features| oL
[2.1.3 Highly Desirable Features|
|211'1 IJig:g: !!2 II;!yg: Ig:zi!lllg:{il --------------------------
2.1.5 Future Pland

R

U B o W W w W

Other Requirements|, .

[3 System Components|

B.1

Interactions Diagram| oL

B2

Component Descriptions|

B21 Main GUI o

[3.2.4 Song Tablel
[3.2.5 Current Playlist|
[3.2.6 Current Song|
[3.2.7 Playlist Manager|
[3.2.8 Collection Manager| L.
[3.2.9 Query Manager|
...............................
[3.2.11 Stable Storage|.o

[olNoclNe BN BIEN EEN BEN BEN BEN eI e N e e N)

4__User Interfacel

A1

GUI Mockup|

© o ©

E

422 The Collection Iistl 10
[4.2.3 The Song Tablel 10
[4.2.4 The Current Playlist| 10
[4.2.5 Current Song| 10

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

[> Risks, Challenges, and Dependencies 11
[>.1 The Learning Curvel 11
[5.2 Required Installation| oo 11
[>.3 External Dependencies: XMMS2| 0oL, 12
[>.4 External Dependencies: QT 12

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

1 The XMMS2 Client Project

1.1 Project Description

XMMS2 is an open source project aimed at creating the next generation music player /manager.
Currently, the project exists as a music database and playback server with an elaborate API
for client applications. Essentially, it is a back end to a music player that handles looking
up files, decoding various audio formats, and outputting sound under a veriety of system
environments. There are several client programs for XMMS2 currently under development,
but many of them are incomplete and unusuable, and none of them fully take advantage of
the capabilities of the XMMS2 database.

The XMMS2 project was created because the current options in music management and
playback software were considered limited and unsatisfactory by advanced users. The project
was designed to be very powerful, but also abstract. It is meant as a starting point for a wide
variety of music projects that offers much potential, but doesn’t apply many limitations to
the end product.

What this XMMS2 Client Project aims to create is a GUI client for XMMS2 that will
improve on current music management software options in several key ways. This new
project will mainly be useful for users with very large collections of music. It will make both
finding individual songs and constructing playlists faster, easier, and more natural. It will
do this primarily through use of Collectiond}

1.2 Target Audience

This project is aimed at users who meet any of the following criteria:

Have a large collection of music

Have difficulty organizing their music

Have difficulty finding songs

Have difficulty remembering all the songs they own

e Are dissatisfied with current music management solutions

This project will be only for users of Linux. Although XMMS2 currently supports a
few other unix-like operating systems and QT also supports Windows and Mac OSX, the
complexities of designing a project to work accross multiple platforms are beyond the scope
of this project in CS190. Perhaps if this project is a success, it could be ported to different
OSes in the future.

The XMMS2 Project defines collections merely as unordered subsets of a user’s music library. Collections
can be used to group related songs together arbitrarily and without any hierarchical limitations. New
collections can be generated from the intersections and unions of other collections. This is the new key
concept that the XMMS2 Developers hope will revolutionize how electronic music is managed.

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

1.3 Goals

e Play music.

Be simple enough to accomodate most computer users.

Provide methods to quickly find songs in the user’s library and organize them into
playlists.

Fully implement collections. (No current XMMS2 client does this)

2 Requirements

2.1 Features

The following are the desired features in order of priority.

2.1.1 Critical Features

1. Play music

2. Add/Remove songs to the user’s library

3. Browse the user’s library

4. Search the user’s library by ID3 tag information
5. Construct playlists by hand

6. Save and Load playlists

7. Provide an easy-to-use GUI

2.1.2 Important Features

1. Browse the user’s library by collection

2. Provide meta-data collections (most recently played, play frequency, etc.)

3. Allow for user-constructed collections

4. Add and remove songs from user-constructed collections quickly with minimal effort

5. Generate playlists from collections

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

2.1.3 Highly Desirable Features

1.
2.

Generate new collections from set operations on existing collections

Allow for logical collections (generated on the fly from a filter or from set operations)

. Allow for mixed logical and hand-picked collections (Say you take two collections A

and B and find their union to generate collection C. If you add song s; to collection
C and sy to collection A, C' should then contain both s; and s,.)

Enable drag and drop for moving songs or collections into the current playlist, or
perhaps even for adding songs to collections

2.1.4 Nice to Have Features

1.
2.

2.1.5
1.

6.

Advanced search strings (ie, "artist:Cake title:xlovex*")
Perform Medialib?| queries through search bar

Browse songs that are not in any hand-picked collection (to find songs that haven’t
been categoried)

Recognize when new songs have been added to the library (watch for new files)

Future Plans

Use sound-pattern recognition to look up a user’s collection online and correct eronious
ID3 tag data (perhaps using MusicBrainz@

. Share your collections with other users so they can categorize their music the same

way you did without organizing their library by hand
Search songs by lyrics

Import music categories from tagging services such as Last.fm to automate the process
of building collections.

Maintain data about frequency and tempo to find similar songs by sound quality (This
could be further specialized to searching for songs that begin similarly to how another
song ends, etc.)

Port to various operating systems

2The “Medialib” is the conceptual media library upon which all of XMMS2 is based. It is used to store
song metadata and perform music library queries. It is implemented using an SQLite database.
3http://musicbrainz.org/

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

2.2 Other Requirements
These aren’t exactly features, but they would be expected by potential users:
e The interface must be quick to load, responsive, and intuitive.
e Data about collections and playlists must be persistant and safe.

e The program must not damage, rearrange, or otherwise interfere with the user’s music
files (with the possible exception of when authorized by the user).

e Searches must return results quickly, even with a very large music database. Not all
results have to come in at once, but waiting more than 10 seconds with no results is
unacceptable.

e Fetching all the songs from a collection must be wvery fast, even if that collection is
large or if it is a ”special” collection.

e The program must be easy to build and install on any standard Linux system. The
source code must be freely available.

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)
3 System Components
3.1 Interactions Diagram
Key: Main
D Component GUI

[] GUI Component
Abc Request Connection
Abc Graphical Connection
Abc Callback Connection

Get Playlist List,
Fetch Playlist Songs
Update Playlist List

Contains Contains Contains
A
Search Collection Song
Bar Update Search - LlSt shuxv Sorfgs Table
Results in Collection

Contains

Contains

Get Collection List,
Fetch Collection Songs
Update Collection List

Add Songs
to Playlist

Current
Playlist

Load/ Save

Current Playlist

A

- >
Display Current
Song

Current
Song

Add/Remove Song
From Collections

Perform
Searches

Playlist
Manager

Perform Collection
Operation Queries

N ——
Query XMMS2
B - Stable
Manager Submit Medialib Query API SQLite Database
Operations Storage

Collection
Manager

Update
Collections
Update
Collections
Update Playlist List
Update Playlist List

Update Playlist,
Control Playback
Update Playlist

3.2 Component Descriptions

3.2.1 Main GUI

This will be the actual window that will contain the various GUI components and link
them together. The interface will be developed in QT, so connections between GUI com-
ponents and most callback connections will be implemented using the QT signals and slots
paradigm. This way, the Main GUI will be the only component that needs to know about
the various GUI components and how they interconnect (The Mediator Pattern).

3.2.2 Search Bar

This component will be used for performing searches on the Medialib based on ID3 tag
inoformation. Advanced search patterns or full Medilib database queries will also be accepted
here. When a search is performed, the Collection List will be notified and it will load the
“Search Results” collection.

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

3.2.3 Collection List

This component will display a list of the user’s collections, including hand-picked col-
lections, metadata collections, search results, and playlist contents. It will allow the user
to select a single collection or somehow designate unions or intersections of collections (See
the discussion of GUI features below). When a selection is chosen, the Song Table will
be updated to show the contents of the current selection. The Collection List will also
communicate with the Playlist Manager and the Collection Manager so that it can
fetch data about the available playlists and collections, and so it can be notified if any of the
playlists or collections changes.

3.2.4 Song Table

This component will display a list of the songs in the current collection, displaying all
relevant metadata. This listing can be sorted by any of the metadata fields, but not edited
manually. It is used to view collections and as an intermediary between the Collection List
and the Current Playlist.

3.2.5 Current Playlist

This component displays the songs that have been played, the song that is playing cur-
rently, and the songs that will play after the current one. It is responsible for controlling song
playback and will need to synchronize itself with XMMS2. Since the concept of a current
playlist is built into XMMS2, most of its work will merely be delegated to the XMMS2
API. Also, the Current Playlist is responsible for updating the Current Song component
when a new song is selected.

3.2.6 Current Song

This component displays detailed information about the song the user has selected in the
Current Playlist component and allows the user to change which collections that song is
associated with. It will have to communicate with the Collection Manager in order to do
this.

3.2.7 Playlist Manager

This component serves as an intermediary between the XMMS2 API and the rest of
the program. It allows for logical management of playlists at a level above XMMS2, but uses
XMMS2 to store and retrieve playlists via the Medialib.

3.2.8 Collection Manager

This component serves as an intermediary between the XMMS2 API and the rest of
the program. It will handle organizing songs into collections in a unified way, and will use
song properties in the Medialib to store this data.

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

3.2.9 Query Manager

This component serves as an intermediary between the XMMS2 API and the rest of
the program. It constructs medialib queries based on simple requests from other parts of the
program, such as performing a search.
3.2.10 XMMS2 API

This is the C++ API for XMMS2. It handles all audio decoding and playback features
as well as interactions with the Medialib.

3.2.11 Stable Storage

This is where the song metadata, collection information, and playlist information is all
stored. This is implemented through the SQLite Database which holds the XMMS2 Medialib.

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

4 User Interface

4.1 GUI Mockup

MainWindow - [Preview] . s
File
~Music Library
Search: [] ’In All Fields |v]
Collections | Playlists Artist Title Album Length | Year |
Entire Library 1| Artistl Songl Album1 00:00 1995
Search Results —
Recently Played
Most Often Played
Chill
Fast-Paced
Instrumental
Not-English
Cell 5 -
Coll & v
Add] l Remove l . 7
Add to current playlist: Append] l Replace
—Currently Playing
Current Playlist: Current Song:
Artistl - Song 1 Play
Artistl - Song 2
Artist1 - Song 3
Artist2 - Song 1 (Song Data...)
Sort... Found in the following Collections:
[chill [Fast-Paced [] Instrumental [| Not-English
[]coll5 [coll & [coll 7 []collg
[—]Cmp [collo] coll 10 [] coll 11 [] Coll 12
|

4.2 Prominent Features
4.2.1 The Search Bar

At the top of the window will be a text entry field with a combo box designed to fascilitate
searching. The user can type a search term into the text box, and use the combo box to
decide which fields to search in. This combo box will contain options like “In All Fields”,
“In Artist”, “In Title”, “In Lyrics”, etc. Actual database queries could also be performed
here, if desired, and when a search is entered the “Search Results” collection will be selected
and displayed.

10

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

4.2.2 The Collection List

Near the upper left corner of the window is a box with two tabs, one for collections and
one for playlists. This is the main way the user will browse through his library. Typically,
he will look through one collection at a time (including special collections such as “Entire
Library”), but eventually the functionality of selecting multiple collections could be added
here. For instance, each item in the collection list could have a “4+” button and a “-” button
to specifically include or exclude a given collection. The second tab here will list playlists as
if they were collections. Selecting a given playlist means, “show me the collection of songs
contained in this playlist” and playlists could be combined using set operations like any other
collections.

4.2.3 The Song Table

Near the upper right hand corner of the window is a table containing all the songs in the
currently selected collection. These songs can be sorted by field heading, but not manually
removed or edited. This is where the user would browse through the songs in a collection,
see search results, etc., and not where the user would build a playlist.

4.2.4 The Current Playlist

In the lower left hand corner of the window is the current playlist. This is just used to
keep track of what songs have been played recently and what songs will be played next. The
user can add songs to the current playlist from the Song Table, and he can rearrange the
order of songs appearing in the current playlist.

4.2.5 Current Song

In the lower right hand corner of the window is a listing for the current song, which will
include all ID3 tag data, any other desired song meta data, as well as which hand-picked
collections the song currently belongs to. The user can change which collections the song
belongs to using the checkboxes associated with each collection. If there are more collections
than will fit on the screen, the list of collections should be scrollable with the most common
collections at the top. The current song would be whichever song is selected from the current
playlist, not which song is playing. This way, the user can look at details for different songs
without interrupting whatever happens to be playing.

4.3 Discussion

This GUI is not completely set in stone, it does not yet accommodate 100% of the likely
features, and it will likely need to be revised. Here are some issues regarding the GUI which
are still outstanding or should be considered:

e Perhaps the playlists should not be browsable as collections. Perhaps they should be,
but shouldn’t get their own special tab. It may be awkward to allow the user to select
collections to include from multiple tabs at once, since not all the selected collections
would be visible at once.

11

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

Currently, to load a playlist, the user would have to switch the playlists tab, find the
playlist he wants, and add the songs from that playlist to the current playlist. Not only
is this a hastle, but it also technically does not preserve the playlist’s order. Perhaps
another method should be given (ie, another button to go with the current playlist).

The number of buttons for operating on the current playlist is starting to get out of
hand, and I could easily see more needing to be added. Is there some other convenient
way to organize this? Perhaps menus? If so, which features should be immediately
accessible (buttons) and which should be accesible only indirectly (through a menu,
etc.).

Perhaps more controls for the collection list should be added. Things like select all,
deselect all, invert selection, etc.

Drag and Drop seems very natural for this interface and would be quite useful. This
would perhaps be very complicated to add, though, and it’s not entirely clear what
should be draggable where.

To address some of these issues, it would be good to brainstorm with the entire group
and perhaps run some usability studies with early demos of the program.

5)

5.1

Risks, Challenges, and Dependencies

The Learning Curve

We will be using several external libraries for this project, so most if not all of the project
team will need to be very familiar with these libraries’ APIs. Also, the XMMS2 Medialib is
based on an SQLite database. Some of the project team will not only have to get familiar
with SQLite but also with the internal structure of the Medialib in order to perform the
necessary queries.

5.2

Required Installation

The development environments will have to be configured to suit this project.

SQLite must be installed as it is a requirement of XMMS2.

The XMMS2 server must be installed, and a running instance must be available for
development.

The XMMS2 client development libraries must be installed.
The QT development libraries must be installed.

Each tester will need access to a large music database.

12

Specifications Document CS 190 Nathan Gaylinn (ngaylinn)

5.3

5.4

External Dependencies: XMMS2

XMMS?2 is extremely powerful and versatile. It will make most of the tricky operations
such as playing songs and performing database queries trivial, as all of the hard stuff
has been worked out already. It should not limit us much in what we can produce.

XMMS2 is still actively under development. It is far from bug free, and the functional
features change slightly with every new build. The basic functionality does work cur-
rently and the API should be set in stone. However, it’'s dangerous to rely on a work
in progress.

XMMS2 was designed with a server/client model in mind. It has a relatively compli-
cated architecture, and it is NOT safe to assume there will only be one client running
at once. We will have to integrate well with the XMMS2 API, make sure we meet all
of its requirements, and update the GUI to show external changes to the Medialib.

External Dependencies: QT

QT is easy to use, very well documented, and prides itself in being quick to develop
with. It provides a robust callback-like communication system called signals and slots
which is perfect for dividing a project into several independent but connectable parts.
It will be a good toolkit to use for our GUI.

QT bindings for XMMS?2 are planned and in development, but are not yet ready for
use. This means we will have to interface through the standard C++ XMMS2 API. If
we want to use signals and slots for XMMS2 generated callbacks, we’ll have to do it
on our own.

13

	The XMMS2 Client Project
	Project Description
	Target Audience
	Goals

	Requirements
	Features
	Critical Features
	Important Features
	Highly Desirable Features
	Nice to Have Features
	Future Plans

	Other Requirements

	System Components
	Interactions Diagram
	Component Descriptions
	Main GUI
	Search Bar
	Collection List
	Song Table
	Current Playlist
	Current Song
	Playlist Manager
	Collection Manager
	Query Manager
	XMMS2 API
	Stable Storage

	User Interface
	GUI Mockup
	Prominent Features
	The Search Bar
	The Collection List
	The Song Table
	The Current Playlist
	Current Song

	Discussion

	Risks, Challenges, and Dependencies
	The Learning Curve
	Required Installation
	External Dependencies: XMMS2
	External Dependencies: QT

