LEVELIZATION TECHNIQUES:

INCREMENTAL INSULATION TECHNIQUES:

. TOTAL INSULATION TECHNIQUES:

*» Escalation Moving mutually dependent functionality higher in the physical hierarchy. (p. 215)

* Demotion Moving common functionality lower in the physical hierarchy. (p. 229)

* Opaque Pointers Having an object use another in name only. (p. 247)

* Dumb Data Using data that indicates a dependency on a peer object, but only in the context of
a separate, higher-level object. (p. 257)

* Redundancy Deliberately avoiding reuse by repeating small amounts of code or data to avoid
coupling. (p. 269)

* Callbacks Using client-supplied functions that enable lower-level subsystems to perform . f

specific tasks in a more global context. (p. 275)
* Manager Class Establishing a class that owns and coordinates lower-level objects. (p. 288) g
*» Factoring Moving independently testable subbehavior out of the implementation of complex ,
: ~ components involved in excessive physical coupling. (p. 294)

* Escalating Moving the point at which implementation details are hidden from clients
Encapsulation to a higher level in the physical hierarchy. (p. 312)

* Removing private inheritance by converting WasA to HoldsA. (p. 349)

* Removing embedded data members by converting HasA to HoldsA. (p. 352)

* Removing private member functions by making them static at file scope and moving them to the .c ;
file. (p. 353)

* Removing protected member functions by creating a separate utility component and/or extracting a_
protocol. (p. 363)

* Removing private member data by extracting a protocol and/or moving static data to the .c¢ file at file "
scope. (p. 375)

* Removing compiler-generated functions by explicitly defining these functions. (p. 378)

* Removing include directives by removing unnecessary include directives or replacing them with
(forward) class declarations. (p. 379)

* Removing default arguments by replacing valid default values with invalid default values or employing
multiple function declarations. (p. 381)

* Removing enumerations by relocating them to the .c file, replacing them with const static class
member data, or redistributing them among the classes that use them. (p. 382)

* Protocol Class: Creating an abstract “protocol” class is a general insulation technique for factoring the
interface and implementation of an abstract base class. Not only are clients insulated from changes
to the implementation at compile time, but even link-time dependency on a specific implementation
is eliminated. (p. 386)

* Fully Insulating Concrete Class: A “fully insulating” concrete class holds a single opaque pointer to a
private structure defined entirely in the .c file. This struct contains all of the implementation
details that were formerly in the private section of the original class. (p. 398)

* Insulating Wrapper Component: The concept of an encapsulating wrapper component (from Chapter 5)
can be extended to a fully insulating wrapper component. Wrappers are typically used to insulate
several other components or even an entire subsystem. Unlike a procedural interface, a wrapper
layer requires considerable up-front planning and top-down design. In particular, care must be taken
in the design of a multi-component wrapper to avoid the need for long-distance friendships. (p. 405)

DEFINITION:
NOTATION

MEANING

o
N
~J

A

BO— Uses-In-The-Interface A

B .Eses-In—The-Implementatlon

X is a logical entity (e.g., class).

x is a physical entity (e.g., file).
B is a kind of A.
B uses A in B’s interface.

A B uses A in B’s implementation.

car.c

C ar IsA

—={ Vehicle)

Uses-In-The-Interface
Car

Car Uses-In—'Ihe-Imylementau@

class Car |
/...
s

// car.c
#include "car.h"
/...

class Car :
Y

public Vehicle {
);

class Car {
/7 ...
public:
void addFuel(Gas *);
/7 ...
bs

class Car {
Engine d_motor;

/7 ...
)3
Our Notation Booch Notation p. 250
o Uses In The Interface Uses In The Interface
o- - Uses In The Interface _ _
(In Name Only)
Py Uses In The Implementation HasA/HoldsA
: (Unspecified)
HoldsA
(By Reference)
HasA
(By Value)

DEFINITIONS:

A type is used in the interface of a function if the type is referred to when declaring
that function. (p. 50)

A type is used in the (public) interface of a class if the type is used in the interface of
any (public) member function of that class. (p. 51)

A type is used in the implementation of a function if the type is referred to in the
definition of that function. (p. 53)

A type is used in the implementation of a class if that type (1) is used in a member
function of the class, (2) is referred to in the declaration of a data member of the class,
or (3) is a private base class of the class. (p. 55)

Specific kinds of the Uses-In-The-Implementation Relationship: (p. 55)
Name Meaning
Uses The class has a member function that names the type.
HasA The class embeds an instance of the type.
HoldsA The class embeds a pointer (or reference) to the type.
WasA The class privately inherits from the type. '

A class is layered on a type if the class uses that type substantively in its imblementation.
(p. 58)

A component y DependsOn a component x if x is needed in order to compile or link y.
(p. 121)

A component c uses a type T in size if compiling ¢ requires having first seen the
definition of T. (p. 248)

A component ¢ uses a type T in name only if compiling ¢ and any of the components
on which ¢ may depend does not require having first seen the definition of T. (p. 249)

