
CS 190 Levelization Assignment

For problems one through six, levelize (i.e., assign level numbers to the
components and write them on the original diagram) the original diagram
and then consider how to “improve” it by removing cyclic dependencies,
making it shorter, making it wider, or a combination of the three. Your
solutions should be new levelized diagrams (once again, with level numbers
written on them). Hand-written solutions are fine!

Improve the following design using escalation.

GUI

Database DB Entry Interpreter

bool insert(String key, String value)

bool formatEntry(String toFormat)String query(String key)

This diagram represents a simple database application. The GUI is, well,
a GUI. It sends information from the user to the DBEntryInterpreter with
a formatEntry() function (which returns true on success and false on
failure). The DBEntryInterpreter then formats this data to insert into
Database and calls Database’s insert() function. The GUI can also per-
form queries on Database by calling its query() function.

1



Improve the following design using demotion.

Audio Bookstore Print Bookstore

Store Checkout

Customer Relations

void provideRecommendations(ShoppingCart purchases) 

void checkoutWithShipping(ShoppingCart items)
void checkout(ShoppingCart items)

This diagram represents a very simple online store. The AudioBookstore
component manages sales of ”podcast” books – audio downloads – whereas
the PrintBookstore component sells physical books from a warehouse stock.
Both of these components call the StoreCheckout component (with the
checkout() and checkoutWithoutShipping() functions) when a user de-
cides to make a purchase. StoreCheckout handles both shipping and credit
card transactions. When these transactions are done, StoreCheckout calls
the the provideRecommendations() function on CustomerRelations, pro-
viding the user with a list of suggested future purchases based on their trans-
action.

2



Improve the following design using redundancy.

Absolute Value

Compressor

Flanger Distorter

Effect Manager
Sound compress(Sound toCompress)

Sound flange(Sound toFlange)
Sound distort(Sound toDistort)

double abs(double arg)double abs(double arg)

This diagram represents the portion of a wave file editor that applies
various effects to a sound wave. The EffectManager takes the choices the
user makes and performs the appropriate effect on the sound by passing the
selected audio to Flanger, Compressor, or Distorter. Two of the three
effects require absolute value, so it’s been placed in a separate component
(aptly named AbsoluteValue), which has an abs() call.

Improve the following design with a manager class.

Game Engine Event Queue

Graphics Display

void handleEvent(Event e)

void addEventToQueue(Event e)

void addExplosion(int x, int y)void paintScreen(Vector pixels)

This is a diagram for part of a game. The GameEngine is a continuous loop
that regularly updates the display (using GraphicsDisplay’s paintScreen()

3



function), controls enemy movement, etc. Meanwhile, the EventQueue han-
dles collisions between player and enemy characters and thus occasionally
needs to draw an explosion on the screen (also using the GraphicsDisplay.
Occasionally, an event occuring in the EventQueue will have an effect on the
GameEngine’s operations, and the game engine will occasionally have to add
an event to the queue, so they must communicate with each other as shown
in the diagram.

Improve the following design by refactoring.

Sound Editing Math

Filter Delay Echo

bool pos(double arg)

Sound waveInverter(Sound sound) Sound waveInverter(Sound sound)

Consider the effects-application portion of a wave file editor again. Now
we have three different effects (Filter, Delay, Echo) that use a variety of
mathematical algorithms to manipulate the sound, all of which are per-
formed by a Math component (SoundEditingMath) by calling pos() or
waveInverter().

4



Improve the following design by escalating encapsula-

tion.

AudioData receiveAudio()

Visual Gatherer Audio Gatherer

Sensor TwoSensor One
AudioData receiveAudio()

VisualData receiveVisual()

VisualData receiveVisual()

Consider a sensor network with three different types of sensors; each type
of sensor is controlled by a software component written specifically for that
sensor (SensorOne, SensorTwo). There are two separate components that
grab and analyze data from the sensors independently: AudioGatherer and
VisualGatherer.

Improve the .h file using an opaque pointer.

For this problem, you need not provide a diagram; provide a modified .h file
for this odd software system that uses an opaque pointer. Explain briefly
how it makes the design more independently testable.

class RobotMaid {

MaidController controller;

MotherBrain mother;

// ...

public:

Maid(MaidController control, MotherBrain mother);

int getControllerID(); // extracts info from this Maid’s controller

// and returns it. Usually called by a

// MotherBrain.

// ...

};

5


