Chapter 16
Writing Larger Sysems

As software systems get larger, the methods and techniques used to organize,
develop, and implement them change. The problems surrounding the develop-
ment of large software systems are inherently different from those of smaller
systems. The solutions to these problems, the approaches necessary to ensure
success, and the overall philosophy of software development have all evolved
to deal with large-scale development.

Larger software systems are inherently more complex than smaller sys-
tems. This has several implications:

e Large software systems are more prone to failure than smaller ones.
There are more places in the design and code where errors can creep in.
Problems are more difficult to find and fix correctly. Testing, because of
the sheer number of different options, alternatives, and program states,
is much more difficult to do comprehensively. Design and implementa-
tion techniques must take into account and mitigate these problems.

* Large software systems require multiple programmers. Even the most
productive programmers do not write much more than 50,000 lines of
code a year. At this rate, a million-line system would take twenty years
to write and would be out of date before it started working. Large sys-
tems must be designed and managed to let teams of programmers work
on them.

e Large software systems are difficult to understand. The overall gestalt
of how the system works is buried under multiple levels of detail and is
typically invisible to the individual programmer. No one programmer
can be expected to understand all aspects of the system. The system
must be designed and developed in a compartmentalized manner on a
need-to-know basis that minimizes the amount of detail any one person
must learn.

In this chapter we look at some of the issues arising in the development of
larger systems. The techniques we emphasize are applicable to at least moder-
ate-sized systems of up to several hundreds of thousands of lines, and work
well for smaller systems of tens of thousands of lines. Larger systems, with
millions or tens of millions of lines of code, require more emphasis on manage-
ment issues and additional design and coding techniques.

425



426

Chapter 16: Writing Larger Systems

The chapter is broken into three main parts. We start with a brief overview
of larger problems and how to get started, and then cover techniques for devel-
oping practical designs for larger systems. This is followed by a discussion of
management issues for larger projects.

GETTING STARTED

The first steps in developing a large-scale project are much the same as for a
small-scale project. However, the overall success of a large-scale project is
much more dependent on doing a good job here than in a small-scale project.
Errors in identifying the problem or its potential solution or errors at the top
level of design will be magnified by the scale of the problem and can prove
ruinous to the overall software effort.

Requirements Analysis and Specifications

The first step in undertaking a software project, then, is thoroughly to under-
stand the problem and its potential solution. The methodologies for doing this
were covered in “Requirements Analysis” on page 405 and “Specifications” on
page 406. This understanding is gained in two phases. The first involves
understanding the problem from the user’s perspective. Here the developer
must work closely with potential users to understand the needs the software
system is planned to meet. This can involve interviewing users, distributing
guestionnaires, working with users to understand how things are currently
done, and analyzing the problems of current techniques or systems.

The second phase in understanding the software system involves looking at
the potential solution from the programmer’s point of view. Here one attempts
to detail exactly what the eventual system will do, describing the various
interfaces it will provide as well as particulars on the actions it will perform. A
multipronged approach is used to derive this specification. The principal tech-
nique is to develop a model of the proposed solution and then describe that
model in detail. The model is typically based on data- and control-flow dia-
grams, as discussed in the previous chapter. The important point here is not
how the system works, but what it does. These diagrams are augmented with
detailed explanations of the function each box or arc performs.

The second part of the specifications includes a tentative design of the sys-
tem’s various user interfaces. This design can be described either through
appropriate sketches or through a user-interface prototype that lets the
designer and perhaps even potential users test whether the system will meet
its requirements. In principle, the description should provide enough detail
that a user manual could be written for the proposed system.

The final part of the specifications puts these two items together, along
with any additional information such as system and portability requirements,



Design

Getting Started 427

to produce a specification document. This document is the foundation for the
subsequent design and implementation of the software system. Just as in a
building, it is the strength of this foundation that determines whether the sys-
tem will stand up or collapse. Attempting to build a large system that is poorly
defined or understood before one starts is a sure step toward failure.

In Chapter 15 we introduced a simple spacewar problem as an example for
large-scale software development. We illustrated there how to develop
requirements from the user’s point of view and showed part of the result in
Figure 15-1. Then we developed a system model, showing the data flow in
Figure 15-2, user interfaces in Figure 15-3, and control flow in Figure 15-4.
Samples from the overall specification were shown in Figure 15-5. We use this
problem and these specifications as the starting point for our discussions here.

An object-oriented design for a large system is developed in much the same
way as for a small system. The differences are a much stronger emphasis on
hierarchy in design, an emphasis on interfaces and interface definition, and a
variety of techniques for selecting and organizing the implementation classes
so as to minimize risk and make it easier for multiple programmers to work
on the system simultaneously.

The design process starts by looking for candidate classes. This process is
much the same as for a smaller program, except that the starting point here is
the specifications document that completely describes the target system. The
data-flow diagrams in this document provide one set of candidate classes,
since each data element here can correspond to a class, as can each of the
action boxes. The user-interface diagrams provide a second set of classes, with
one top-level class corresponding to each interface and separate classes under-
neath this for each component of the interface. Another set of candidate
classes can be derived from the textual specifications; if this is broken down
into subsystems, there should be a class for each subsystem. A part-of-speech
analysis of this specification text can produce more candidate classes. A final
set of classes can be obtained by understanding the solution and how it works
under one or more scenarios. These could be written either as part of the spec-
ification (say as the basis for the user-interface diagrams) or by the designer
in order to understand the software better.

The difficulty with a large-scale system is that the number of potential
classes is so enormous that it is impractical to list them all. The designer has
to begin using hierarchy and eliminating classes from consideration even
before the design begins. The initial goal here should be to develop 20 to 30
high-level classes from which the overall design of the system can evolve.

Figure 16-1 shows the initial set of candidate classes for the spacewar pro-
gram. This set has been pruned from the overall set of classes we could have
identified. For example, rather than listing all the different types of entities in
the game such as spaceships, missiles, stars, and explosions, we include only



428

Chapter 16: Writing Larger Systems

Player Client
InputManager DisplayManager
UserState Display DisplayEntity
SezsionManager
Session
GameContral Server
GameState UserDBE
Entity Space

Figure 16-1 Candidate top-level objects for the spacewar program.

the candidate class Entity. We also exclude some obviously lower-level classes
such as thrusters on the spaceship and gravity for doing computation.

The other thing we have done, as suggested in “Top-Level Design” on
page 140, is to cluster the candidate classes. Here we formed three clusters.
The top cluster contains information on each individual player. The Player
class represents the player; the Client class represents a connection to the
server. The InputManager and DisplayManager classes handle input from and
output to the user respectively, and the UserState class represents information
about the state of the game as seen by the user. Finally, the Display and Dis-
playEntity classes represent the actual display and the items on the display.

The second cluster, at the bottom, represents information needed or used
by the server. The GameControl class handles the game logic while the
GamesState class stores and manages the current state of the game. The Server
class represents the connection between the server and each client and the
UserDB class represents the database of information on how often each user
has won a round. The Entity and Space classes represent information in the
game state.

The final cluster has a class representing a session and another class for
managing sessions in some way. These are needed to implement some of the
connection logic brought out in Chapter 15.

The next step in small-scale object-oriented design would be to select a sub-
set of these classes to represent the top-level design. Here we would select a



Design By Subsystem 429

set of five to 10 classes encompassing everything else in the design. These
classes would then be characterized by defining their obvious data fields and
interconnections as well as any top-level methods. We would proceed from
there to provide pseudocode for these methods, introducing new methods and
secondary classes as needed.

In large-scale design the approach is similar but much more compartmen-
talized. We first identify the set of top-level classes. In doing this, we look not
for the most logical set but instead for the set that breaks the problem up into
the most plausible set of independent pieces and maximizes our chances of
building a successful system. Next we try to define the interfaces among these
pieces without referring to the implementations underlying them. Once
proper interfaces are designed, each component can be treated as an indepen-
dent system on its own and can be designed and implemented using object-ori-
ented techniques. All this is described in more detail in the next sections.

The essential idea in large-scale design is to break the program up into
well-defined and independent components. This lets different programmers
tackle each component without having to interact excessively with other pro-
grammers. Complete interfaces ensure each component is well defined and let
the programmers work on their own component without needing to know the
details of other components. A high degree of independence ensures that com-
ponents can be implemented, tested, upgraded, and even replaced without
adversely affecting the rest of the system.

Achieving such a design takes practice and understanding. Experienced
designers can generally look at a problem, understand it, and then suggest a
workable overall design, using their experience with similar systems and
their understanding of what types of designs work and which ones don’t. They
also use methodologies that minimize potential problems and let the design be
flexible enough to allow future changes.

DESIGN BY SUBSYSTEM

There are a variety of techniques for selecting and organizing the small set of
top-level classes in a large-scale design. These techniques focus on providing
independent components with well-defined interfaces and on ensuring that
the system built from these components ultimately works.

The simplest technique is that outlined in the previous section. Here the
designer identifies a set of candidate classes, clusters them, and then uses the
clusters to select a small final set of top-level classes. While this technique is
always helpful, it is not in general sufficient for most problems: the set of can-
didate classes is sometimes incomplete or wrong, the groupings are based on
too little information, and the result is often not the best design. This
approach is thus often augmented with other techniques.



430

Chapter 16: Writing Larger Systems

One of the most powerful such techniques involves adding rather than
removing classes. Here we apply a facade design pattern, as described in
“Facade” on page 339, to create a new class to be a front end for a set of related
classes. The top-level design can then use the facade class and ignore the
classes it is a facade for.

This is an instance of design by subsystem. The facade class identifies a
high-level component or subsystem of the overall program. It replaces a clus-
ter of classes in the initial design with a single class and thereby simplifies the
overall design. The actual classes represented by the facade can be defined at
a lower level of detail and can be ignored at the top level of the design.

Thus design by subsystem offers advantages in terms of both simplicity
and information hiding. It also lets the designer concentrate on the external
interfaces needed by the set of classes the facade represents without having to
worry about the interfaces among the implementations of these classes. Since
these external interfaces both are the important details at the top level and
are essential for getting the remainder of the system working, this generally
leads to a better and easier-to-understand overall design.

Care must be taken in defining subsystems using facades: if the subsystem
is not correctly identified, the overall design is generally more complex and
weaker, not simpler and stronger. The essential element is choosing the right
set of initial classes as the underlying subsystem. These classes should have a
common purpose so that the facade class is cohesive: it should be possible to
state the function of the facade class in a simple, nhon-compound clause. The
grouped classes should also exhibit some coupling: most of the communication
these classes do should be among themselves, not with other components of
the system. This ensures that the facade is a gateway and not a hindrance to
the eventual implementation. Finally, the classes should be chosen so that
classes outside of the identified subsystem do not need detailed access to indi-
vidual elements within the facade.

Subsystems that can be defined naturally will greatly simplify the design
and generally lead to a better system. Thus we recommend:

Design a large system with subsystems in mind.

RISK-BASED DESIGN

Another technique useful in selecting a good set of top-level classes is to mini-
mize the risk that the design may be bad or the system may fail. A large sys-
tem has no “correct” design. Instead, there is a wide range of acceptable
designs, some better than others. But while a number of designs will work,
there is also a broad range of designs that will yield a marginal or nonfunc-
tional system. A first step in the design process is to ensure that a system
based on the design one is developing will work.



Risk-Based Design 431

One way to do this is to identify the critical issues of the problem and
design either for or around these. A novice designer has trouble identifying
which aspects of the design are fundamental. A good starting point, however,
is to determine the portions of a potential solution that seem to be the most
difficult.

There are several ways of identifying the difficult issues in a system. One
can start with the specifications as they are presented. While the specification
model describes what the system does, it is not a big jump for the designer to
attempt to determine how each of the actions described could be undertaken.
Any actions whose potential implementation is not clear should be identified
as potential problems. The designer should list the potential problems and
then order them by difficulty.

Building a Design Model

While this is a starting point, it is unlikely to be sufficient to identify all the
potential difficulties or even the most crucial ones. Many of the thorniest
design problems arise because the implementations of several different
actions are inconsistent with one another. Locating these problems is difficult.
The best approach is actually to build a model of a potential solution using the
set of candidate classes and go through the specifications to ensure that all
actions can be done within the model. Where different actions conflict, one can
either change the model and try again or just note the potential problem.

An initial design model can be most easily derived by starting with the
data-flow diagram contained in the specifications, which shows the basic com-
ponents and data structures. In an object-oriented implementation, both the
components and data structures will be viewed as classes, so the diagram can
readily be mapped into an object-oriented framework. Of course, the diagram
should be augmented with any additional assumptions and should attempt to
show object communication rather than simple data flow.

Figure 16-2, an initial design model for the spacewar program, shows boxes
representing classes and arcs representing connections among them. Note
that the connections here indicate that one class needs to interact with
another — they are not the more constrained associations typical of a static
structure diagram. If we ultimately accept this design, the relationships will
be refined in a future step. This diagram breaks the design into three compo-
nents. The first, represented by the five classes in the upper left, is the code for
each user. The second, represented by the five classes in the upper right, is the
server. The remaining component, the session manager, contains the two
classes at the bottom.

An essential component of such a model is a description of how each compo-
nent works. The Player class is the manager for the user code. It uses the Client
class for all communication with the server or with the session manager at
start-up. It creates a model of what should be displayed and the state of the
game in the UserState class. The InputManager class uses this to determine



432

Chapter 16: Writing Larger Systems

Player Client Server GameControl
UserState GameState UserDE
Space

InputhManager DisplayManager

SezsionManager

Segzion

Figure 16-2 Design model for the spacewar program.

what inputs are valid before passing them onto the Player object to send to the
server. The DisplayManager class reads the game state and continually puts up
the corresponding display.

The server component is centered around the GameControl and GameState
classes. The former manages the overall server, determining when to connect,
who is playing, and when to start a game. The latter manages each actual
game, keeping track of all the objects and their positions and using the Space
class to store the objects. The UserDB class manages the set of users and their
cumulative scores. Finally, the Server class manages all communication with
the users and with the session manager.

The class design of the session manager itself is fairly simple. The Session-
Manager class keeps track of currently active sessions and starts a new session
when appropriate. The Session class represents a single session and the infor-
mation about that session.

Identifying Difficult Problems

Once a design model is developed, the designer should ensure that each action
in the specifications can be accomplished within the framework the model pro-
vides. Again, any actions difficult to describe within the framework should be
added to the list of potential problems. Finally, the set of potential problems
should be sorted by order of difficulty.

Several potential problems in the spacewar program can be identified by
this process:

* How to convey the game state from the server to the client in a timely
fashion. The client display must update at least 10 times per second for
smooth animation. Can the server send the game state to the client this



Risk-Based Design 433

fast, can the server send several frames at once, or should the client
handle some object movement?

* How to identify the active sessions when a new user wants to connect to
the system. The session manager needs to know what is currently run-
ning; moreover, the client and server both need to talk to the session
manager.

* How to achieve smooth animation on the client display. Should we use
xor, as in the bouncing balls example? Should we use a fixed background
display and just update the moving objects? Should we do double buffer-
ing? Or are overlay planes available for moving objects?

* When to update the display. Should the display be updated automati-
cally to achieve a constant frame rate, or only when new information
comes to the client from the server? In the former case, what assump-
tions can be made about moving objects? In the latter, should we assume
a fixed delay between frames or should we update immediately?

Solving the Difficult Problems

Once the difficult problems are identified, the next step is to focus the
design to solve or isolate those problems. For each problem, the designer
should determine whether a solution in the current framework is possible.
This can be done either analytically or, where necessary, by implementing a
prototype to test possible alternatives.

Consider the first problem above. This is crucial to the overall program. If
the server can't provide the information fast enough to the client, then we
must restructure the solution completely so that the game is actually played
independently at each client, with the server simply coordinating input and
ensuring that the various clients remain consistent. This is a much more diffi-
cult design to implement, but it can be done. Here we could run a few experi-
ments to determine the number of messages per second the server can send to
the client to determine if a problem will arise. It turns out that hundreds of
messages per second can be sent without putting too great a load on either the
server or the client. Since this is much greater than the ten-message-per-sec-
ond target, we should be okay. However, we will have to take care in designing
the server to ensure that messages are sent frequently, and in designing the
client to ensure that messages are read frequently.

Next consider the second problem. Determining the active sessions is not
as easy as it sounds. Ideally we want to put the session manager in the client.
If we use files to store the different server sockets’ address, then we can go
through whatever directory these are stored in and identify the different ses-
sions, since each server corresponds to a session. However, if a server crashes
or doesn’'t remove its address file, this solution will make spurious sessions be
reported. This could be alleviated by having the server lock the file using sys-
tem-wide locking and having the session manager in the client check to see if



434

Chapter 16: Writing Larger Systems

the file is locked. A little experimentation here shows that this almost works,
but locks are not reliable and can still exist for an extra five or ten minutes if a
server crashes.

The preferred alternative solution is to view the session manager as a sep-
arate process in the design. Both the server and the client connect to the ses-
sion manager when they start up. The session manager keeps track of the
servers currently connected and reports that information to the client when
asked. It also detects when a server disappears through the loss of the connec-
tion and can update its database accordingly. Here, then, the solution has a
strong effect on the eventual system design.

The third problem involves the best way to handle the display. Here we
know that different solutions are possible and that at least one of the solutions
will work. We may want to experiment with the different solutions to see what
works best, but this is really an implementation detail and need not be consid-
ered at the top level of the design. What we want to do for problems like this is
to ensure that the top-level design isolates the problem within a class. The dis-
play manager class should be the only class affected by the technique eventu-
ally used here. Moreover, the interface to this class should not reflect the
solution but should be independent of it. Here we are using information hiding
to isolate the potential problem from the rest of the design. Doing this lets us
change the implementation of the display manager as needed without affect-
ing the rest of the system.

The last problem again involves the display. The mechanism used to trigger
updates will depend to some extent on how animation is done. It will also
depend on how fast the server is and on aesthetics, which are difficult to deter-
mine without actually using the system. Our design should again isolate this
decision within the display class so that the rest of the system is not affected.
The one difficult aspect of this is giving a way to guess an interim position for
an entity if no new information is obtained from the server. To avoid this, we
assume that the server provides updates at least as fast as the frame rate,
possibly faster. Otherwise, we would have to do linear interpolation within the
display component itself, with each display entity keeping track of its current
velocity (as the change of position between frames) and possibly its current
acceleration (as the change of velocity between frames). Note that here we are
changing the specifications by putting an additional constraint on one of the
other components to ensure that the problem can be solved.

This approach of identifying and either solving or isolating the difficult
problems attempts to reduce the risks in the solution. It provides a good start-
ing point for the design, offering points to focus on and identifying classes and
interface requirements. The spiral model of software development, introduced
in “Prototypes and the Spiral Model” on page 419, formalizes this and incorpo-
rates it into industrial practice. For most moderate-sized systems, however,
just identifying the potential problems and using them as the focus for the



Core-Plus-Extensions Design 435

Figure 16-3 Core-plus-extensions design.

design model and the eventual design should be sufficient. Thus we recom-
mend:

Design a system with the difficult problems and their solu-
tions in mind.

CORE-PLUS-EXTENSIONS DESIGN

Another technique for large-scale design focuses on organizing the system so
that it consists of a small core and various extensions that plug into the core,
as shown in Figure 16-3. This is called a core-plus-extensions design.

The core of a core-plus-extensions design is a small set of interface classes,
classes that other components can see. They are publicly available, generally
by being defined in public header files. There should be no more than 10 such
classes. The core also includes whatever support classes are needed to imple-
ment these public classes, and represents the heart of the system, providing
the basic functionality needed by all the other components.

The extensions are designed to plug into the core and interact with the rest
of the system only through the interface classes of the core; they do not inter-



436

Chapter 16: Writing Larger Systems

act with one another. Extensions can give other extensions such basic services
as input and output, but they do so through methods provided by the core.
However, most extensions provide optional functionality that expands the
basic system to meet the specifications better. Such functionalities are some-
times viewed as features, so that the core-plus-extensions approach boils down
to a core system onto which any number of features can be grafted.

The primary objective in a core-plus-extensions design is to keep the core
as small as possible, using the independent extensions for most of the system’s
actual functionality. All programmers on a project need to understand thor-
oughly the interface to the core, since all extensions must fit neatly and pre-
cisely into the framework the core provides. The core must be designed and
implemented before any of the extensions.

A logically simple core consisting of a small set of classes is easy for pro-
grammers to understand completely. It provides more flexibility and a better
interface for attaching the extensions, and it should be easier to design, imple-
ment, test, and debug so that it should be ready earlier. Putting most of the
system’s functionality into extensions makes the system inherently more flex-
ible and easier to evolve. It also gives the various programmers more indepen-
dence, leading to fewer misunderstandings and higher productivity.

Pros and Cons

The core-plus-extensions design methodology has several advantages:

* A basic working system is available early in the development cycle. This
is good for the programmers psychologically since they have something
tangible to show for their efforts. It is also good for the system since it
can help programmers understand the strengths and weaknesses of the
design and correct any flaws early on.

e Communications among programmers are minimized. Once the core of
the system is written, programmers working on separate extensions
need only minimal communication with other programmers, since
extensions do not interact directly. This should enhance productivity in
a multiple-person project. Also, the overall system is less dependent on
any one programmer. If an extension is incomplete because a program-
mer was ill or incompetent, the other extensions and the rest of the sys-
tem can still be developed and tested.

* The framework provides a good basis for testing. The core, as the most
important part of the system, is generally tested first using drivers. It is
then tested again and again as new extensions are added, thereby
ensuring that the heart of the system is the part most tested. Extensions
can be tested one at a time as they are added to the core.

* The overall system should be easy to extend and evolve. If the core is
specified correctly, it should be simple to extend the system by adding
new functionality, whether by replacing existing extensions or adding



Core-Plus-Extensions Design 437

new ones. Porting to a new operating system or to new hardware can be
done by upgrading the core.

These benefits, however, do not come without cost: the designer here must
be aware of the problems and pitfalls associated with a core-plus-extensions
design. These include:

The success of the overall system is highly dependent on a well-designed
and well-implemented core: this approach can only amplify problems in
the design of the core.

Changes to the core, especially its interfaces, can necessitate changes in
a large part of the system. This can make evolving the core itself very
difficult and means it is very important to get the design of the core
right the first time.

Attempting to bundle the core functionality of a system inside a small
set of classes can be artificial: the resultant classes may not be cohesive
and the methods they provide may be quite complex.

The resultant implementation may not be as efficient or direct as with
another design. Extensions may very well need to interact with one
another. A core-plus-extensions design forces these interactions to go
through the classes of the core, thus adding several unnecessary levels
of indirection.

Because extensions interact with each other, the system is also prone to
the feature interaction problem: while each extension or feature is con-
sidered independent, they actually interact with one another through
the core in weird and wondrous ways whose results are not always pre-
dictable. This problem has been particularly vexing in the digital tele-
phone-switching systems in which new features interact to cause
problems with existing features.

In general, however, the benefits of a core-plus-extensions approach out-
weigh the drawbacks if a core can be naturally defined. When a system is
large enough to require a sizeable team of programmers, it is worthwhile to
try to cast the design into this framework by identifying core classes and then
forcing all the interactions among the non-core classes to go through the core.

Defining the Core

The difficult part in a core-plus-extensions approach is determining what is in
the core. This requires a careful analysis of the communications among the
proposed classes. It requires modifying the interaction paths to minimize the
interaction among potential extensions. It also requires some analysis of how
the system might evolve in the future so that the design of the initial core can
take these changes into account.



438

Chapter 16: Writing Larger Systems

InputManager DisplayManager Space UserDB
|
GameState
UserState
GameContral
Player

Client Server
SessionServer
SessionManager

Session

Figure 16-4 Core-plus-extensions overview of the spacewar program.

In designing a complex system, it is best to do a top-level system design
with all the extensions and features one can possibly identify. This large
design can then be pruned down to include only those features needed in the
initial implementation. This approach tends to make the resultant system
easier to modify and evolve, especially for previously identified functionality.
This is helpful in a core-plus-extensions design where it is important to mini-
mize the changes needed in the core as the system evolves.

While the spacewar program is a bit too simple to benefit greatly from a full
core-plus-extensions approach, it can still serve as an example. At a trivial
level, it already exhibits some of the characteristics of this approach. Because
we have tacitly assumed that the client, server, and session manager are dis-
tinct entities, we can recast the design to use the communications classes as
the core, as in Figure 16-4. Here the core is the three classes Client, Server, and
SessionServer; the three extensions are the client program, the server pro-
gram, and the session manager program. All interactions among these compo-
nents must go through the core classes.

The design of the server for the game provides a more instructive example.
Figure 16-5 shows a more detailed design for the spacewar server. Here we



Core-Plus-Extensions Design 439

SetupFile

$ Server
GameSetup /

GameControl UzserDh Uzerlnfo
PlayGame Space
roid nextFrame!)

S ]

EntityFactory Entity
I I I 1
Star SpaceShip Missile Explosion
RobotShip

Figure 16-5 Detailed design of the spacewar server.

have added the entity hierarchy; a factory class for creating entities; a class
for setting up a new game, possibly based on one or more setup files; a class to
actually play the game; and classes containing the per-user information in the
user database.

We can do a core-plus-extensions version of this design by focusing on the
communications paths and identifying the central system components. A first
approximation to such a design focuses on the classes GameControl, Space, and
EntityFactory as the core. These form five extensions, one for the entities, one
for the user database, one for playing the game, one for setting up the game,
and one for the server. While this is a viable design, it has the drawback that
the entity factory probably should be associated with the entity extension, not
with the core. To get around this, we can add a method to the Space class to
serve as an entry to the factory. We thus recast this design in the core-plus-
extensions form shown in Figure 16-6. Here the core is the two classes Game-
Control and Space and the diagram shows that none of the five extensions com-
municates with anything other than the core.



440

Chapter 16: Writing Larger Systems

SetupFile Server
GameSetup
UzerDhb Uszerinfao
GameContral

I
Space
roid nextFrame()

Entity createEntity{ConstText description)

PlayGame

EntityFactory Entity
[ I I |
Star SpaceShip Missile Explosion
RobatShip

Figure 16-6 Core-plus-extensions version of spacewar server design.

One difficulty with this approach in this case is that the core must call the
extensions; in particular, the game control module needs to invoke methods in
the GameSetup, Server, UserDb and PlayGame classes. The best way to accom-
plish this is to view the calls from the core to the extensions as callbacks. The
core should include a set of callback classes defining its interface to the exten-
sions. These classes are designed to be inherited (as noted in “Inheritance for
Callbacks” on page 123) and the callback methods are redefined by the exten-
sions. The core can then be self-contained, making calls on the abstract call-
back objects as needed. Extensions can be plugged into the core by simply
defining their implementation of the callback class.

Exactly how callbacks are used here depends on the situation. The easiest
but least extensible approach is to define a separate callback class for each
extension needing to be invoked from the core, so that there will be a single,
well-defined object the core needs to use for each particular set of callbacks.



Interface Definition 441

This simplifies both the core and the particular extension. It has the disadvan-
tage, however, of forcing one to understand the extension fairly completely
while developing the core: it is difficult to change the extension’s interface or
functionality or later to divide the extension into separate extensions. This
approach should be used where an extension can be well defined early in the
design process and the interface to that extension from the core is specialized
and well understood.

An alternative is to use some sort of observer design pattern (see
“Observer” on page 353). Here the core defines a generic callback interface for
multiple extensions. For example, if the core maintains a data structure, it
might provide a callback to inform arbitrary extensions whenever a portion of
the structure changes. Alternatively, it might provide an interface to let exten-
sions specify portions of the data structure they are interested in and then
provide callbacks only when those portions change. This approach can support
a wide range of different extensions using a single interface to the core. If it
can be achieved, it can make developing both the core and the extensions eas-
ier and can yield a more robust and flexible system.

This alternative does, however, have its drawbacks. It is often difficult at
best to identify the “right” generic callbacks in a given situation. A general
mechanism like this can also be inefficient in having to do too much checking
or making too many unnecessary callbacks, and can also lead to extensions
that are over-complex or have unnatural designs. Still, where a generic call-
back facility can be identified, it is generally better to implement it in the core
than to provide a set of more targeted interfaces.

INTERFACE DEFINITION

Once an object structure has been determined for the system, the next tasks
are to separate the system into components and to define the interfaces
between these components as precisely as possible. The number of compo-
nents should be kept relatively small and the interfaces between them should
be kept as simple as possible.

If a core-plus-extensions approach is used, the first relevant classes are the
public classes of the core, including any abstract or callback classes represent-
ing functionality to be invoked in extensions from the core. In a more tradi-
tional approach, the relevant classes are those included in the top-level
design. Note that the design of Figure 16-6 can be simplified into the tradi-
tional high-level design seen in Figure 16-7. Here we have changed the names
for consistency with what follows: the standard prefix Space indicates the pro-
gram; the class previously named Space is now SpaceArena, Since “Space-
Space” didn’t sound good, and some of the other classes have shortened names
as well.



442

Chapter 16: Writing Larger Systems

SpaceServer

SpaceDatabase

SpaceSetup / SpacePlay

—————| SpaceControl [ ———

|

SpaceArena

N

SpaceEntityFactory SpaceEntity

Figure 16-7 Top-level design of spacewar server.

Finding Initial Methods

In our previous designs we arrived at the set of methods by starting with a
known method and adding methods as needed. This involved writing
pseudocode for each method in turn to determine what information or func-
tionality it needed from its or some other class. This approach is not feasible
in a large-scale system, since it is important to determine the interface meth-
ods for the top-level design without having to fully specify how the compo-
nents of this design actually work.

What is used here is an iterative approach. We first derive an initial set of
interfaces by using high-level algorithms for the various components and intu-
ition about what might be needed. Then, with this set of interfaces, the differ-
ent components are designed in more detail. As these designs proceed, the
interface is forced to change. Some components require additional information
or functionality from the interface. Other components find it difficult to pro-
vide the desired functionality and propose instead to provide something close
but not exact. Some of the interface functionality will be found to be superflu-
ous. Negotiations among those responsible for the various components, moder-
ated by those overseeing the whole project, then evolve the candidate interface
into a stable and workable solution.

The first step in this process is to provide a good set of candidate interfaces.
Here one looks at each class in turn and provides a detailed description of the
class with respect to the overall design. From this description one can list the
methods the class should provide as part of its interface. For example, the
SpaceControl class could be described as:



Interface Definition 443

The SpaceControl class is responsible for the overall control of the game. It
takes control when the server starts and waits until a user is ready to play. It
manages the set of currently active users, adding or removing from this set as
needed. It also manages when to play a round. It uses the SpaceSetup class to
set up a new round and then uses the SpacePlay class to play the round. When
a round is over, it sets up for a new round. It also handles requests from the
clients to display the high scores.

This description implies aspects of the SpacePlay, SpaceSetup, and SpaceData-
base classes that are discussed below. It also indicates that we must be more
specific about the interface between the client and the server, probably indi-
cating the possible messages in terms of methods of the SpaceServer object.
Finally, since it indicates that this class is invoked when the server starts, we
should add a method to it:

void play();

that is called by the main program and sets everything up.

The communication between the client and the server is embodied in the
SpaceServer class. The calls from the client to the server, obtained from a
detailed understanding of the client and the workings of the overall system,
include:

voi d newCl i ent(Spaced ient id, ConstText usernane);
voi d renoved ient(SpaceCient id);
voi d readyToPl ay(Spaced ient id);

These should correspond to methods in the SpaceControl class that are
invoked by the SpaceServer object. Note that clients are identified by an item
of type SpaceClient that might be an integer or a structure (we can defer this
decision until the actual implementation). The server should also provide com-
munication back to the client. Here the messages include:

voi d highScores(...);
voi d objectPositions(...);

where the first returns the set of high scores for possible display by the client
and the second returns the current game state as a set of objects and their
positions. These we place as methods of SpaceServer.

We can continue with the SpacePlay class, whose description might be:

The SpacePlay class is responsible for conducting a round of Spacewar. It
assumes that the game has already been set up and that the SpaceArena class
holds the proper entities at the proper locations. It cycles continually, possibly
with some time delay (to cause the cycles to be at a constant time interval). In
each cycle it uses the SpaceArena class methods to update the position of each
object. It then must check for collisions among the objects, again using meth-
ods in the SpaceArena class. The SpacePlay class should check after each cycle
whether the game is over (i.e. whether there is at most one ship left and no
missiles). If an end of game is detected, it should set a timer for some number
of seconds. When this time period elapses, it should determine if any ships are



444

Chapter 16: Writing Larger Systems

left in the system and, if so, should indicate that the corresponding player has
won the round.

From this description we can define the one method needed in the abstract
SpacePlay class:

virtual SpaceUser pl ayRound(SpaceArena, SpaceServer);

This method returns the user who won the round (or NULL if there is no win-
ner). Rather than assuming that the object knows of the arena object, we pass
in the current SpaceArena object as a parameter. Similarly, we pass in the
server object for it to call the obj ect Posi t i ons method as needed.

In addition, this description suggests the following methods for SpaceArena:

virtual void noveEntities();

virtual void handl eCol |isions();

virtual void reportPositions(SpaceServer);
virtual Bool ean checkEndOf Gane( SpaceUser &) ;

The last one here checks if there is at most one spaceship and no bullets cur-
rently active. If so, it returns TRUE; otherwise it returns FALSE. The parameter
here is used to return the owner of the remaining ship.

A description of the SpaceSetup class might be:

The SpaceSetup class is responsible for setting up the game board for a new
game. It does this by first clearing the SpaceArena and then using the factory
method this class provides to create the necessary entities, including ships of
varying kinds (one for each user) and possibly robot ships and stars. It can get
the game information from a file or from a static game or can generate it ran-
domly.

This implies an abstract interface with the method:
voi d set upRound( SpaceArena, | nt eger nunuser, SpaceUser * users);

where the arena to set up is passed in as well as the number and names of the
users. The description also requires at least two new methods for SpaceArena:

void clear();
SpaceEntity createEntity(ConstText);

The latter method is actually the sole responsibility of the SpaceEntityFactory
class and should also be a method in that class.

A brief description of the SpaceDatabase class might include:

The SpaceDatabase class is responsible for maintaining the scores of all users
of the system. When a round is over, the class should be told of all the partici-
pants and the winner. The class should also provide information about the
people with the top scores so far.

This could be implemented by an interface offering the three methods:

SpaceUser findUser (Const Text nane);
voi d recordRound( SpaceUser w nner, | nteger num SpaceUser *);
I nteger topScores(lnteger max, SpaceUser *);



Interface Definition 445

SpaceServer SpaceDatabase
[eoid highScores(,..) woid recordRound(Spacelser, int, Bpacellser *)
[void objectPositions(,..) int topScores(int, Spacelser *)
Spacelser findUser{ConstText)

SpacePlay

SpaceContral BpacelUser playR.ound(SpaceArena, SpaceServer)
—_

void plasi)

woid newClient(BpaceClient, ConstText)
void removeClientSpaceClient)

void readyToPlagSpaceClient)

\ SpaceArena

void clear()

SpaceSetup SpaceEntity createEntity{ConstText)
void moveEntities()
woid setupRound(Bpacefrena, int, Bpacelser *) void handleCollisions()

void reportPositions{SpaceServer)
/ Boolean checkEndOfGamelSpacelUseré:)

SpaceBntity createEntitn{ConstText)

SpaceEntityFactory

SpaceEntity

SpacePos getPosition)
SpacePos getVelocitn)
SpaceCoord gethdass()
BpaceCoord getSize()

void setPosition(SpacePos)
void setielocitySpacePos)

Figure 16-8 Interface definitions for the spacewar program.

where the scoring information is retained and thus returned within the Space-
User class.

Finally, we consider the SpaceArena class. We know it must maintain the
set of entities. It also must move the entities and check for collisions. This
means it must be able to get the position, velocity, size, and mass of each of the
entities; remove and add new entities (explosions); and change the position
and velocity of the entities. We thus add the corresponding methods to the
SpaceEntity class.

The result of all this can be seen in the initial interfaces in the static struc-
ture diagram in Figure 16-8. This interface is by no means complete: we still
need to determine what the classes SpaceUser and SpaceClient contain and
how they are accessed. We need to determine how the SpaceControl object gets
handles to the other objects. We need to determine the contents of the hi gh-
Scor es and obj ect Posi t i ons messages sent to the clients. Most importantly,
we must evaluate the design to ensure it is both high-quality and workable.



446

Chapter 16: Writing Larger Systems

Evolving the Interface

The next step in the design process is to take each class in turn and begin to
design its implementation. This will help us resolve some of the design issues.
For example, the design of the SpaceServer and SpaceControl classes will help
us resolve what the SpaceClient object should consist of; the design of the
SpaceDatabase class will help refine what is expected from a SpaceUser object,
although the SpaceServer class may need to understand this as well to commu-
nicate information back to a client.

Furthermore, we will undoubtedly find additional methods needed in the
interface. For example, the above description assumes that we can tell who
the user is for a given spaceship, but that information is not currently avail-
able. Depending on how the SpaceEntityFactory and SpaceEntity classes are
implemented, we may want to augment the creat eEnti ty method to take an
optional SpaceUser and then augment the SpaceEntity class to return the cur-
rent user. The SpaceArena class may also want to handle different types of
entities separately. For example, it may want to compute gravity only between
Sun objects and movable objects, and this information can be encoded in the
mass or be available separately. The choices will depend on the design of the
SpaceArena class.

The various classes are designed with the given interface in mind. They
each define their own subclasses and their methods and data. Whatever
changes they require in the interface must be resolved by the overall project
team. While some changes, such as adding a data field to the entity to hold the
corresponding user, are simple, others can be quite complex. Suppose, for
example, that the designer of the SpaceArena class decides that each entity
should be responsible for computing its own next position. Not only does this
require additional methods in the interface, it also shifts a possibly significant
part of the application burden to the SpaceEntity class, which might not be
appreciated by the designers in charge of that class. Resolution of these con-
flicts requires both introspection by the designers and some arbitrators who
have a good overall view of the project.

Finally, during the creation of the initial set of interfaces one must continu-
ally evaluate the design and be prepared to make it better. At this point, the
goals of the design process are to ensure that one can achieve a working sys-
tem, to minimize the inherent risks, and to make the remainder of design and
implementation as simple as possible. To a large extent, this implies develop-
ing simple interface descriptions, and a reasonable question here is whether
the proposed interfaces can be simplified in a meaningful way.

Because the interfaces drive the rest of the design and thus control the
implementation, testing, and maintenance of the whole system, one must put
great emphasis on this part of the development process. In essence:

A project lives or dies on its interfaces.




Other Design Issues 447

OTHER DESIGN ISSUES

Portability

A number of other issues can become important in the design of a large, long-
lived system. These issues are best understood and taken care of during sys-
tem design even if their effects are not apparent until later in the develop-
ment cycle.

The first such issue is portability. Portability can have multiple dimensions.
Multiple platforms exist today, including Windows, UNIX, and the Macintosh.
It might be desirable to have one's system work on all or some of these plat-
forms. The effort involved in moving a system among these platforms can
range from a small amount of work done only once for a variety of systems, to
a huge amount of work for each system. The effort required is generally deter-
mined by whether or not the system was designed to be portable in the first
place.

Portability is also an issue within a given platform. Programs written for
Windows 3.1 can have difficulty running under Windows 98 or Windows NT.
Programs written for SunOS 4.X on the Suns are generally not compatible
with Solaris 2.X, even though both run on the same hardware and are consid-
ered UNIX. Operating systems and environments tend to change over time.
While most strive to provide backward compatibility, this doesn’'t always
happen and old programs often cannot take full advantage of any new fea-
tures the system might provide.

Portability can also be an issue even with the same operating system on the
same architecture, as the hardware options change. The most notable such
change involves display architectures, although features such as the availabil-
ity of a CD-ROM can also make a difference. A program designed solely for a
black-and-white monitor is not going to look good on a color system. A pro-
gram designed to make extensive use of 3D graphics is going to perform poorly
on a system lacking the necessary support hardware. A program that can't
take advantage of a large window will be frowned upon by users who have
spent more to buy a large display.

In each of these cases, the difficulty of modifying the system to accommo-
date the new software or hardware is strongly dependent on how the system
was originally designed. Better designs try to anticipate and then encapsulate
potential portability issues. They try to arrange the system so that the
changes needed to achieve portability are restricted to a small set of classes
that can easily be replaced without affecting the rest of the system. This
allows the programmer porting the software simply to rewrite or modify those
classes while ignoring the bulk of the system.

For this type of simplification, one must try to anticipate how the system
might be ported during its lifetime. Then, any functionality the designer



448

Chapter 16: Writing Larger Systems

thinks might change in the future should be encapsulated within a class so as
to provide an abstract interface to that functionality.

Consider what one must do to let a program handle multiple operating sys-
tems, say UNIX and Windows. The key here is to define a set of classes repre-
senting an abstraction of the operating-system functionality needed by the
program and to use these classes exclusively throughout. Then these classes
can be implemented separately for each operating system. To some extent,
C++ has already done this for you, since its standard 1/O library provides
operating-system-independent input and output calls (although even here file-
name conventions may have to change from one system to the next). The Sim-
pleSocket and SimpleThread classes we defined in Chapter 14 are other exam-
ples, encapsulating sockets and threads respectively. Other classes can be
designed to handle other operating-system issues such as dates and times,
shared memory, file names and permissions, and process execution.

A similar approach can be taken to support multiple display environments,
whether these are display technologies on the same operating system or dif-
ferent approaches to windows in different operating systems. Here the system
should be designed with an abstract interface to the display that has its own
notion of windows, menus, dialogs and drawing commands. The remainder of
the system is coded to this interface and then the interface itself is imple-
mented separately for each different display environment. Some commercial
systems provide this type of functionality in general terms. For many applica-
tions in which the display demands are not excessive, this design can even
simplify the overall application. For example, a specialized interface can pro-
vide a method to draw a box of a certain style or to draw a menu given a sim-
ple tabular specification. For both of these, the interface might have to issue
dozens of drawing commands to achieve the result, while, with the interface,
the application itself has to issue only one method call.

Extensibility

This approach to portability can also be applied to other aspects of the design.
Another issue arising in design is extensibility, the need eventually to add
new features to a system. In general, any system that is used extensively will
find new applications and users who want additional functionality. Moreover,
in today’s world of shrink-wrapped software, such new functionality must be
added merely to remain competitive.

The best way to handle extensions is to try to anticipate in the initial
design what or at least where changes might be needed in the future. When
planning a system, one should plan it with all the possible bells and whistles
imaginable. One can even do a top-level design incorporating all these exten-
sions. The initial implementation, however, should then be simplified to
include only what is necessary for the first version of the system. Designing a
system larger than one needs to build makes any planned extensions much
easier to add. If the extension is represented as a class with little or no initial



Other Design Issues 449

functionality, adding it to the overall system can entail merely adding to or
replacing the designated class.

Design can also help with unplanned extensions. Designing a larger system
forces the designer to use more abstraction and to make the system more
generic, and this makes it more amenable to extension. A good core-plus-
extensions design, one where the core is correctly identified and makes it easy
to plug in additional functionality, can also make adding unplanned exten-
sions easier. In general, however, extensions anticipated during the design
phase are much easier to add than ones that were not, and we recommend:

Design a system with all possible extensions in mind.

This approach is taken to its logical conclusion by systems with a generic
external interface to accept a wide range of plug-in extensions. Adobe Photo-
shop, for example, achieves much of its power and popularity by providing a
standard interface to support arbitrary plug-ins. It is often difficult to identify
such an all-purpose interface and even harder to define it to accommodate all
possible extensions. However, if this approach can be used, it generally pro-
duces a much more powerful and flexible design that is easy to evolve.

Existing Frameworks

A third issue that can be handled by encapsulation in the design phase and
can profoundly influence system design is the use of existing frameworks.
Existing frameworks can arise in a variety of ways that must be anticipated
throughout the design process.

Consider the design of a user interface. In developing a program for Win-
dows, one wants its user interface to conform to the conventions and stan-
dards used by other Windows applications. Similarly, in developing for the
Macintosh, one wants the application to look and act like a standard Macin-
tosh application. This use of existing conventions affects the design and imple-
mentation of the user interface. It constrains the designer’s options in setting
up window formats and menus and might also make the designer add new
options and buttons. Windows, for example, assumes a view and document
model in which all applications can save and load their views from a file, in
which files are typed, and in which the File menu offers the set of recently
used files as options. The designer must take all this into account in develop-
ing both the user interface and the overall structure of the application.

Library packages are another example of the use of existing frameworks.
The current C++ standard includes the template library we have described as
well as many functions from the standard C library. These libraries, however,
cover only some of the necessary functionality. A large application might want
to use a library for 3D graphics, libraries for statistical computations, libraries



450

Chapter 16: Writing Larger Systems

for graph drawing, etc. The choice of such libraries can significantly affect the
design of the system.

Consider, for example, an application that needs 3D graphics. Various
libraries are available to accomplish this, each with its own strengths and
weaknesses. OpenGL is a C-based library now available on a broad range of
different platforms. Openlnventor, a C++ library built on top of OpenGL,
offers much additional functionality and is generally easier to use; however, it
is a bit slower, more geared to modeling than interactive applications, and is
not freely available on all platforms. DirectX is a high-performance library
directed toward game applications available only on the Windows platform.
XGL is Sun’s low-level library. The choice among these alternatives will affect
the design and implementation of the application. For example, if Openlnven-
tor is used, the application might be developed in part by subclassing from the
Openlnventor classes. If the application will use OpenGL and have any type of
animation, it must implement its own main drawing loop to refresh the
screen.

If the application is not too complex, it might be possible to write a wrapper
class embodying the 3D functionality the application uses, code the rest of the
application so that it uses only this class, and then implement this class using
any of the target packages. A more sophisticated use of 3D graphics, however,
would probably make this difficult or impossible, since the definition and
drawing would pervade the system. Here one must evaluate the different
libraries early on, choose one, and then take the conventions and functionality
of this library into account throughout the design.

Libraries are one type of functionality available to an application. Other
functionality is available through separate systems and interfaces. For exam-
ple, a database server is generally available on most platforms. This is a sepa-
rate application to manage relational (or other) databases. Generally, the
server provides an interface through which the application can send SQL-
based commands to access or modify the database. (SQL is a standard high-
level database query language.) If such a server is available, one can simplify
the design and implementation of the overall system by using it rather than
implementing one’s own database system.

Just as with libraries, however, care must be taken in using an external
system. Different systems have different interfaces, different functionalities,
and different availabilities. Designers can commit to a single system and
design for its features. Alternatively, they can attempt to find a common sub-
set of features and restrict the design to using these, so that it would be possi-
ble to move from one external system to another. A third choice would be to
use encapsulation to hide the external system with an interface class.

Finally, a new system is generally designed not in isolation, but to cooper-
ate with existing tools and systems. This can be as simple as sharing files or
as complex as actively communicating with existing systems. In the past few
years a number of somewhat standard frameworks have evolved to support
such communications, including DCOM and ActiveX under Windows and



Managing a Software Project 451

CORBA and the Common Desktop Environment under UNIX. If a system
must send commands to other systems or handle requests from other systems
dynamically using one of these frameworks, then it must be designed to make
this possible. This interoperation requirement will have an impact throughout
the design process and must be taken into account early in design.

MANAGING A SOFTWARE PROJECT

As noted in the previous chapter, a significant part of software engineering
concerns techniques and skills for managing a software project. While most of
this work has been geared to large projects with tens or hundreds of software
developers attempting to work together, some of it is applicable to smaller
projects with ten or fewer programmers. In this section we briefly cover some
of the issues arising in these smaller projects, with an emphasis on manage-
ment techniques for student projects.

Personnel Management

The primary reason that programmers working as a team are not as produc-
tive as programmers working alone is the need for communication. Program-
mers all want to have input on the design, and they all need to convey their
interfaces to those who need them. As the system is coded and the interfaces
change, the programmers must understand and negotiate on the changes. As
bugs are found, they need to be attributed to one or another programmer’s
components so that they can be found and fixed. Misunderstandings among
programmers regarding functionality or interfaces must be resolved, and
ideas for extensions or changes must be discussed.

The time spent on communication increases with the number of program-
mers involved. Moreover, once there are more than around four developers,
design and organization are effectively being managed by committee, since
most groups attempt to reach a consensus and spend a lot of time doing so. As
the team size reaches ten or so, however, design by committee no longer yields
a useful result, and the time spent in meetings and waiting for other program-
mers significantly reduces everyone’s productivity. This is reflected in the
number of potential communication paths among programmers. In a four-per-
son project, there are only six combinations; in a ten-person project, there are
forty-five paths, as illustrated at the top of Figure 16-9.

A common solution here is to create a personnel hierarchy. An organized
chief programmer team or programmer team generally consists of a project
manager or chief programmer, a project librarian, and a core of programmers.
The communications paths here are only between the project manager and
librarian and the rest of the programmers, as shown at the bottom of



452

Chapter 16: Writing Larger Systems

Figure 16-9 Communication paths in a ten-person project.

Figure 16-9. The programmers do not, in theory at least, need to communicate
among themselves.

The programmer team is run as a benevolent dictatorship by the project
manager. This provides a single focal point for design decisions and arbitrat-
ing among the different programmers when changes are required. It also lets
one person define the overall program schedule, assign different programmers
to work on the parts for which they are best suited, and ensure a better
project.

The most experienced or most advanced programmer in the team is usually
chosen as project manager. She is the one who must have a good overall
understanding of the whole system. She must be able to assess the complexity
of the different components so as to assign the proper personnel to that section
and determine how long each section should take to get working. She is the
one who assumes overall responsibility for the whole project. Whether the
project manager does any actual coding depends on the size and complexity of
the project. In a student project, the manager typically gets involved with
some of the more important aspects of the system but has less code responsi-
bility than the other programmers.



Managing a Software Project 453

The project librarian acts as the repository of all the information about the
system under development. He is in charge of maintaining system documenta-
tion and of ensuring that changes made to the design by one person are com-
municated to all the others. Any changes needed in an interface must be
cleared by the project librarian: he ensures that the change is adequately doc-
umented, that appropriate changes are made to the design and specifications
documents, and that the change is communicated to the remaining program-
mers. The librarian should be able to answer any questions on any aspect of
the system by using the accumulated and maintained documentation. The
librarian may or may not also do programming, again depending on the size
and complexity of the project. If he has programming and design tasks, they
are typically smaller to allow him time for his other duties.

The remainder of the programmer team, the programmers, are each given
responsibility for one or more compartmented pieces of the system. They
should design and code their portions so that they conform to the agreed-upon
interface specifications. They should test their portions as much as possible
before attempting to integrate them into the system. They should also be
available to make prompt fixes to problems in their code as others start using
it in the integrated system.

Good team programmers know how to fit into a group. They understand the
costs involved in changing interfaces and the need for conformity to group
standards and procedures. They provide input on proposed interfaces as
needed, understand their component of the system, and attempt to make their
interfaces both fair and functional. Most importantly, they code accurately
and defensively and get their parts of the system done on time.

Design Management

The design of a larger software system is generally broken into two parts. The
top-level design, where an overview and component breakdown of the system
is achieved, is typically done by a few designers (possibly only one) who have a
good overall understanding of the problem at hand and can evaluate potential
solutions. The detailed design of each of the components is typically done by
the programmer who is to implement that component. Along the way, both
designs must be checked and be given room to evolve.

The best way to check a design is to present it to a team of critical review-
ers whose job is to find the potential problems. This is called a design review. A
typical design review starts when the designer hands out a complete design
document to the reviewers in advance, so they can get a good overall sense of
the design. At the actual review, the designer presents the design, emphasiz-
ing why critical design decisions were made, and then illustrates the design
by showing how it will work under various circumstances that represent both
normal operation and unusual conditions.

A successful design review identifies actual or potential problems with the
design at an early stage, when they can be corrected easily and cheaply. The



454 Chapter 16: Writing Larger Systems

job of the panel of reviewers is thus to question the design, attempting to find
such problems. They should identify possible alternatives and ask the pre-
senter to justify the design presented in their light. They should attempt to
bring up scenarios for which the design may fail. When the presenter gives a
scenario, the reviewers should be thinking of “what if” questions to identify
circumstances under which the design may fail. Finally, the reviewers should
be attempting to determine if the design proposed is as simple as it can be.

The design review process is also a constructive one. As design problems
are diagnosed, it is the task of both the presenter and the reviewers to identify
potential solutions to these problems. Where the design is overly complex,
simpler alternatives should be proposed and evaluated.

Design reviews are one critical component in managing the design aspects
of a larger system. The other component is managing the interface specifica-
tions among the different programmers. This is typically the job of the project
manager, often in conjunction with the project librarian, but can also be dis-
cussed in group meetings. As designs of the individual components are com-
pleted and reviewed, the interfaces these components provide or the interfaces
they use often must be changed. When this happens, everyone involved with
those interfaces must be notified of the change.

Managing the evolving interfaces is difficult because of the care necessary
to maintain the overall integrity of the design. While one minor change proba-
bly will not hurt the design, a large number of such changes actually might.
Changes tend to make the design more complex and to create additional
dependencies among the components, and they also tend to create components
that are no longer balanced. This can make future modifications and evolution
of the system more difficult. It is the task of all the designers, and the project
manager in particular, to evaluate the proposed interface changes in the light
of the overall design and to propose alternatives where appropriate.

Code Management

Once the design has been completed, coding can begin. Managing the coding of
a large project is probably more complex than managing the design. Code
management requires developing an implementation plan, evaluating or
reviewing code, ensuring that code meets project standards, and providing
appropriate strategies for integration and system testing.

The first task here is to develop an implementation plan. This plan should
designate who is in charge of each component and the deadline for its comple-
tion. The resultant schedule should take into account dependencies among the
components so that a component can be tested and used when it is completed.
For example, in a core-plus-extensions design, it is a good idea to complete the
core before the extensions. This may involve putting the faster programmers
on the core or splitting the core into subcomponents so that it can be devel-
oped by multiple programmers before they go off and work on the extension
components for which they are responsible.



Managing a Software Project 455

The best way of achieving a reasonable implementation plan is to identify
milestones, dates by which a particular piece of functionality of the overall sys-
tem must be achieved. For example, one might state: “By the last Thursday of
this month, components A, B, and C will be tested individually and ready for
integration into a base system.” Such milestones, especially ones involving the
whole or a substantial part of the team, provide incentives (in the form of
achievements and peer pressure) for the different team members to get things
done on time. They let the different programmers work at their own pace, tak-
ing their other commitments into account as necessary, and knowing when a
task needs to be accomplished. They also provide the project manager with a
whip of sorts to keep the team members in line and to identify how far behind
the project might be. Because of this we recommend:

Use milestones to guide a project’s implementation.

The overall implementation plan should also take into account the unfore-
seen. Software development typically takes longer than one anticipates. This
is especially true in a multiple-person project in which the actions of the dif-
ferent team members are somewhat independent. People will get sick, have
outside commitments, or just sleep through meetings. Some parts of the sys-
tem turn out to be more difficult than anticipated and some turn out to be eas-
ier (but try to get the programmers in charge of the latter to admit it). The
operating system will crash or the hardware will be unavailable on a critical
date. A reasonable schedule will try to take some of these factors into account
by introducing some slack into the schedule and revising it as needed.

The second task in code management for a larger software system is to
ensure consistency among the different designs and implementations. To some
extent this involves developing and enforcing a common set of guidelines that
are contained in comprehensive coding standards to be followed by all mem-
bers of the team. The coding standards should cover code presentation includ-
ing formatting and inline documentation conventions, naming conventions, as
well as guidelines on parameter order, use of inheritance, callback methods,
use of libraries, etc. A simple such set is shown in the course standards shown
in Appendix A. The more the code developed by the different programmers
can be made to look and feel the same, the easier it will be for them to read
and understand others’ code to facilitate debugging and testing, and the fewer
problems there will be in integrating the different aspects.

One way to check this and to test code without a fully integrated system is
to undertake selective code reviews. A code review is the implementation ana-
log of a design review. Here the project manager selects one or more portions
of the code that are complex enough or interrelated enough that problems are
likely in the code or in how people use it. The programmers responsible for
these portions then produce a set of handouts, generally the code listing along
with the design information describing what the code should be doing, and



456

Chapter 16: Writing Larger Systems

distribute them to a panel of reviewers before the code review. In the actual
code review, the programmer goes over the code in front of the reviewers, justi-
fying why it is written as it is and demonstrating that it works. The reviewers’
job, again as in a design review, is to find faults in the code so that they can be
corrected early in the development process.

Code reviews can take two forms. The programmer can either simply go
through the code line by line to ensure that all the reviewers understand the
purpose of each line, or can take one or more scenarios and run the code on
paper through those scenarios. In either case, it is the reviewers’ job to iden-
tify other scenarios under which the code might fail and to indicate any poten-
tial problems with the code and ways in which it might be simplified. The
review should also check that the programmer followed the coding standards
adopted in the project and that other components needing to use or be used by
the code integrate correctly.

Configuration Management

Another aspect of code management is managing the files of the project. This
is the task of configuration management. There are two aspects to this task.
Version management involves organizing, controlling, and sharing the source
files among the programmers. System modeling entails directing how the
source files are used to build the resultant system.

The first step in configuration management is to organize the project. This
is generally done by identifying the various components of the overall project
and putting them in a hierarchical structure. This is often represented first as
a directory structure, with the top-level directory representing the project and
its subdirectories representing the various components. Each subdirectory can
be further subdivided either to separate source and binary files or to identify
different subprojects. Note that for projects of the size we are addressing, one
level of hierarchy is generally sufficient. The different directories provide a
context for the corresponding component, supporting both version manage-
ment and system modeling for that component.

Version management is supported by a variety of tools. The older tools,
such as sccs and rcs on UNIX, assume that the single copy of the source is to
be shared among the different programmers. Here a programmer checks out a
source file, i.e. requests the right to be the current owner of that file so as to
make changes to it. While this programmer has it checked out, no other user
can modify it. When he or she is finished with the modifications, the file is
checked in and other programmers can again access it. This works in small
projects in which each component is almost the exclusive domain of a single
programmer.

Newer version-management systems take a different approach in which
each programmer has a full copy of the system to work on. Programmers can
make changes to whatever files they want. When they go to commit or check
in their changes, the system attempts to resolve any conflicts or asks the pro-



Managing a Software Project 457

grammer to do so. This approach allows more cooperation among program-
mers, but also requires more coordination to avoid conflicts where two
programmers make incompatible changes to the same piece of code.

Either form of version management accomplishes the primary purpose: let-
ting multiple programmers work on a common set of files without stepping on
each other’s toes too often. Version management offers the developer other
benefits as well. Version systems keep track of all past versions of the soft-
ware, letting programmers easily go back to a working version if a set of
changes they are trying does not work out. The systems support experimental
development by letting multiple versions be developed in parallel. Finally, the
systems support maintenance by letting the developer maintain a copy of the
software as it was provided to the users so that user problems can be
debugged.

Many tools support system modeling as well. In the UNIX environment,
the common tool is a form of the make utility originally developed at Bell Lab-
oratories. Here the system model is given as a text file listing the dependen-
cies between the generated and source files and providing the necessary rules
and commands for creating the generated files. Make lets the programmer
define a variety of different targets in a single directory. It both supports the
construction of arbitrary types of targets and lets the programmer define new
commands such as “make cl ean” to remove all object files or “nmake print” to
get an ordered listing of all the source files.

Modern environments try to integrate make-like facilities into the environ-
ment. Microsoft Visual C++, for example, uses the notion of a project that is
targeted at building a single binary or library. The user merely tells the sys-
tem (via a series of dialog boxes) what source files and libraries compose the
project, and the environment then defines the appropriate system model for
building the project.

System-modeling tools are very convenient because they provide a simple
way of defining all the options and conventions that go into constructing a
complex piece of software. They let the programmer easily change the com-
piler flags or libraries for a system. They also have the intelligence to recom-
pile only those portions of the system that have been modified, allowing
guicker turnaround on small changes.

Testing Management

The most complex and time-consuming part of a multiple person project is
integrating the components written by separate programmers into a single
working system. No matter how much work has been put into development,
the individual pieces of the system will not fit together perfectly and bug-free.
Finding and fixing the problems can become a frustrating and costly team
effort: the cause of the problems is often difficult to pin down to one particular
component, and (for a large project at least) the person whose code actually
contains a particular bug is unlikely to be present to fix it when it arises.



458

Chapter 16: Writing Larger Systems

The best way to deal with these problems is to avoid them as much as pos-
sible. This is where solid, well-understood interfaces, design reviews, code
reviews, module testing, and all the other topics cited throughout this text
come in. One of the more important aspects of group software, however, is
defensive programming. The individual’'s goal during integration testing
should be to prove that his or her code is not at fault when a problem arises.
Programmers want to demonstrate that a problem, even if exhibited in their
code, was actually caused by someone else. The easiest way to do this is to put
lots of defensive code in those portions of the program dealing with the inter-
faces to other components. This was covered in depth in “Defensive Program-
ming” on page 191, and has been emphasized throughout the text.

Defensive code should generally remain in the system even after it is com-
pleted. Such code will be very useful in tracking down errors that occur while
the system is being used and in identifying problems as the system evolves.
Using assertions is okay if the error is fatal and would cause a crash anyway,
but the error message generated by an assertion is generally meaningless to
the user. Print statements are usually worse: their output tends either to be a
annoyance to the user or to be ignored. However, for an error condition that
can easily be recovered from, they might be the preferred alternative. In gen-
eral, however, exceptions give the best protection. They can return the system
to a known state and possibly recover from whatever error caused the prob-
lem. At worst, they can trigger an automatic save and a clean abort so the
user doesn't lose any work. Exceptions can also be easily changed to have dif-
ferent behaviors while the system is being tested (where they abort the sys-
tem) than when the system is being used in production (where they provide
error recovery and possibly send information about the error back to the
developers).

Another helpful technique here is for programmers to maintain three ver-
sions of their components. The first version is the working version. This is the
code the programmer is currently editing; it can change frequently and no
other programmer is immediately dependent on it. The second version is the
experimental version. When the programmer feels the working version is sta-
ble, i.e. is a clean build that incorporates the latest set of changes and has
passed module testing, it can be upgraded to experimental. The experimental
version is meant to be used by other programmers who need the component
and contains code that should be better than before but has not been fully
tested. As other components try to use it, it will become better tested and
more stable.

When all the interested components have verified that an experimental
version works for them, the version is upgraded to a stable version. The stable
version is a non-changing implementation of the component. Other compo-
nents are free to use it with the knowledge that the functionality there is sta-
ble and working, and that any bugs or features there will remain. This
isolates them from the local changes to the module and from experimental
changes that have not been completely tested.



Managing a Software Project 459

This approach should be augmented with communications whereby all pro-
grammers are notified when new versions of components become available. It
can also be synchronized by using milestones. For instance, a particular mile-
stone might ensure that all components in experimental form have been
bound together and passed some set of tests. When this occurs, all the experi-
mental versions are converted into stable versions at one time and further
development proceeds with the construction of new experimental versions.

Another approach to aid in system testing is to attempt to develop mini-
versions of the system as milestones. Here one creates a very simple version of
the system with only limited functionality early in the development cycle — a
shell containing only the user interfaces, for example. This version of the sys-
tem is then slowly augmented with additional functionality one step at a time.
At each step, if the old system worked and the new one fails, the cause of the
failure lies in the newly added code, either directly or indirectly (through
using some feature of the previous code that hadn’'t been used before). Note
that this approach not only aids testing but also gives the developers a sense
of accomplishment in actually having a running system throughout most of
the development process. This tends to increase programmer motivation and
get the overall system completed more quickly.

While individual programmers are responsible for testing their own compo-
nents, responsibility for system testing must lie with the whole team. To orga-
nize this, however, one of the team members, generally the project librarian,
should be in charge of collecting and documenting system test cases. A set of
standard test cases should check both the normal operations and error check-
ing of the system, and these should be applied whenever a new version of the
system is built. This is regression testing, as discussed in Chapter 8. When
possible, it is often helpful to designate one person in the group as the “tester”
whose job is to find successful test cases, i.e. those causing the system to fail.
As noted, it is much easier to test other people’s code or at least code in whose
correctness one doesn’t have a stake.

Documentation

Keeping a large project on time and organized depends, to a large extent, on
documentation. Moreover, if the project is going to continue to be used and
evolve, documentation will play a key role. Writing a software system involves
not just writing the code but also writing all the documentation that goes
along with the code. We thus note:

Without documentation, a system is incomplete and useless.

System documentation serves a variety of purposes. During development,
its most important use is as a reference for the programmers. Programmers
should be able to look up details of an interface they need to use, browse



460

Chapter 16: Writing Larger Systems

through the available system libraries to find the method or classes required,
understand what exactly is expected from their component, see why a certain
feature is designed or implemented as it is from a specifications point of view,
understand what the user wants out of the system, and know the current
state of development and the current schedule. Once development is complete,
documentation is even more important. Maintenance programmers need to
know all the above information. In addition, since the maintainers are often a
completely different set of programmers, they need information on the motiva-
tions and reasoning that went into the actual system design by the original
developers.

In order to achieve these goals, the documentation must be accurate, com-
plete, and up to date. If these criteria are not met, the documentation will be
useless. If the documentation is not accurate, the programmers and develop-
ers learn it cannot be relied upon and resort to reading the appropriate code
and header files instead. If the documentation is not complete, programmers
either become frustrated with the missing information or simply do not use
the undocumented features. If the documentation is not up to date, it will be
considered inaccurate and again won'’t be used. Worse, it might be relied upon
and cause misunderstandings and errors to be inserted into the system.

It is important therefore to maintain an up-to-date and complete repository
of information about the system. This can be organized in a variety of ways,
either electronically or in notebooks, and should contain at least the following
information:

* Requirements documents stating what the users originally wanted. As
additional input is obtained from the prospective users, these docu-
ments should be updated accordingly.

* Specifications documents describing the user interfaces and commands
and what the system will do. As the requirements change or as the
design imposes additional constraints or provides additional functional-
ity, these should be updated.

* User-interface documentation defining the interfaces, how they look, and
what they do. This can be derived originally from the specifications, but
should be replaced with the design diagrams showing the user interface.
This documentation should be updated as the user interface evolves,
and should eventually be replaced by one or more user manuals for it.

* Design documentation describing the top-level design and providing a
breakdown into components. This should include the top-level static
structure diagram and its explanations as well as a detailed description
of the purpose and function of each component. It should be kept cur-
rent, with both the diagram and the descriptions changing as the sys-
tem evolves.

* Interface specifications that precisely define the top-level interfaces pro-
vided by the components. These should provide both the syntax (the call-



Managing a Software Project 461

ing sequence with parameters and return types) and the semantics of
both normal and error operation of all the public methods the various
top-level components provide. Such documentation should be easy to
access and search and must be kept up to date as the interfaces evolve.

* Design documentation for each component, showing the detailed design
of that component. This includes static structure diagrams, descriptions,
message-trace diagrams, and any other information generated by the
individual programmers as they develop the various components. The
individual programmers should maintain this documentation and keep
it up to date.

e Code documentation contained in the source files detailing what the
code actually does. Comments should be used wherever a reader might
not immediately understand the function or workings of a particular
piece of code. Assertions and suitably noted defensive checks should also
be thought of as code documentation and should be broadly used. These
are particularly valuable since they become part of the code and cannot
get out of date.

* Test-case documentation describing the various system tests a new ver-
sion of the system must pass before it can be accepted. This should
include a description of each test case, how to run it, and what the
expected output is. If the program can be tested mechanically (this is
difficult for a program with a graphics interface), the test cases should
be automated with an appropriate shell script or testing program. Oth-
erwise, the documentation should be sufficient for someone to sit down
with the system, run it according to directions, and check off the success
or failure of each test case.

e Current status and plans describing the overall project. These should
include all the project milestones, the expected start and end date for
each top-level component, and a schedule showing when and how the
various components will be integrated to form a working system. Ideally
this should show a series of system versions, starting with a user-inter-
face shell and ending with the completed system.

Another sort of information that can be helpful to both the individual pro-
grammers and the project manager is the time spent on the project by each
programmer. This can be kept as time logs in which programmers log how
much time they spend on what task each time they work on the system. These
time logs help programmers see how to better use their time and let the man-
ager more evenly distribute the workload of the overall development effort.

The overall responsibility for maintaining project documentation lies with
the project librarian in conjunction with the rest of the project team. The
librarian provides the means for organizing and accessing the documentation,
but the actual documentation must be written and maintained by those most
closely involved with the particular designs, interfaces, and code. Before



462

Chapter 16: Writing Larger Systems

accepting code to integrate into the rest of the system or letting a programmer
install a new stable or experimental library, the librarian (with the assistance
of the project manager) should insist on revised documentation to match the
changes. Before code is written, the librarian should receive detailed design
documentation from the programmer. Before an interface can be changed, the
documentation for that change must be submitted and circulated to the
affected programmers.

Finally, we emphasize once more that the code itself is a form of documen-
tation. It is the source of last resort and the only thing guaranteed accurately
to describe the actual workings of the system. Even when the documentation
is complete and accurate, the code is still used to address fine details and must
be understood on a line-by-line basis when making changes or debugging. As
such, it is essential (as we have noted throughout this text) to:

Write your code to be read by others.

CONCLUSION

The problems involved in designing large systems and the benefits of the vari-
ous solutions can only be truly appreciated through experience. Similarly, the
complexity and challenge of software design can only be understood by actu-
ally doing many designs for many different systems.

We have attempted to show how to go about building a software system.
While we have concentrated on design, we have also covered both high-level
issues of software engineering and a lot of low-level issues involving how the
actual code gets written. However, even the best text is no substitute for expe-
rience. Many of the methods and strategies discussed here can be appreciated
only after you have suffered through the consequences of not using them.
Many of the statements about what works and what doesn’'t will not be com-
pelling until you try different approaches and experience the results yourself.

Building a large software system is generally a valuable and rewarding
experience. There is a thrill in demonstrating a system you or your team cre-
ated that now performs some useful purpose and that other people might
actually want to use. While the work can be great, the rewards are even
greater. Thus:

Design and build a software system.




Summary 463

SUMMARY

Software complexity tends to grow much faster than software size. Thus large
software systems are much more difficult to design, implement, test, debug,
and maintain than smaller systems.

The first step in building a large software system is to understand thor-
oughly what it is you want to build. This is where requirements and specifica-
tions, discussed primarily in the previous chapter, come into play. Once this is
accomplished, design can proceed. In addition to the standard design tech-
niques covered previously, we introduced four techniques aimed specifically at
large-scale software development. These were:

* Clustering: Here the designer identifies a rich set of candidate classes
and then forms clusters of these classes on the basis of the relationships
among them. The clustering lets the designer remove classes from the
candidate set and eventually settle on five to 10 top-level classes.

* Design by subsystem: Here the designer groups related classes together
into subsystems, creating a single new class (a facade) as the interface
to that subsystem.

* Risk-based design: Here the designer attacks a problem by identifying
the difficulties that are potential risks to a successful system. Each of
these problems is then either solved or isolated, leading to a less risky
design that is more likely to work.

* Core-plus-extensions design: This design scheme organizes a large sys-
tem so communication paths are minimized, it is easier for multiple pro-
grammers to interact, and the system is easier to change over time. A
core set of classes is identified as the heart of the system. All other
classes and subsystems are designed as extensions that communicate
only with the core.

Other factors come into play in designing a large-scale system, including
portability, extensibility, and interaction with existing systems and frame-
works. These need to be understood as part of the specifications and taken
into account throughout the design process.

These design techniques are generally applied to develop a top-level design
for the proposed system. This design is then reflected in a set of interfaces
defining how the various classes interact with one another. The key to a suc-
cessful large-scale design is that its interfaces are well thought out, well
developed, simple, and complete. A project lives or dies on its interfaces.

Finally, while a good design is necessary for a project, appropriate manage-
ment techniques are required to convert the design successfully into an actual
system. These include developing an appropriate personnel hierarchy; using
design and code reviews to insure a workable and high-quality system; devel-
oping a project timetable with appropriate milestones; using appropriate tools



464 Chapter 16: Writing Larger Systems

for configuration management, coding, testing, and debugging; and, perhaps
most important of all, documenting what is being done as it is done.

EXERCISES

16.1 Finish the top-level design for the spacewar program.

16.2 Suppose you have a four-person team to develop the spacewar program.
Devise a timetable with milestones that assigns these people to compo-
nents and specifies the order in which the components should be built. If
you had six people, how would your plans change?

16.3 One of the best ways of learning about something is trying to develop a
system to implement it. Suppose you are developing a program to facili-
tate defining, organizing, and accessing program documentation.

a) Draw up a list of requirements for such a system.
b) Draw up specifications for the requirements.
c) Draw up a top-level design meeting the specifications.

16.4 Design an XML browser that can read and display XML documents and
follow links to other documents. Look into what libraries are available to
build such a browser as part of the design process.

16.5 Implement the spacewar program designed in this chapter. What
changes in the design were required during the implementation and
testing of your system?

16.6 Fully design and implement the solar system example described in
Chapter 1. Once the system is working, augment it with a graphical
user interface. Be sure that the original system design can accommodate
such an interface.

16.7 Design and implement the garden designer of Exercise 15.7.

16.8 Design and implement the race-car system of Exercise 15.8.

16.9 Design and implement the menu-planning system of Exercise 15.9.



	Chapter�16
	Writing Larger Systems
	Getting Started
	Requirements Analysis and Specifications
	Design
	Figure 16�1 Candidate top-level objects for the spacewar program.


	Design By Subsystem
	Risk-Based Design
	Building a Design Model
	Figure 16�2 Design model for the spacewar program.

	Identifying Difficult Problems
	Solving the Difficult Problems

	Core-Plus-Extensions Design
	Figure 16�3 Core-plus-extensions design.
	Pros and Cons
	Defining the Core
	Figure 16�4 Core-plus-extensions overview of the spacewar program.
	Figure 16�5 Detailed design of the spacewar server.
	Figure 16�6 Core-plus-extensions version of spacewar server design.


	Interface Definition
	Figure 16�7 Top-level design of spacewar server.
	Finding Initial Methods
	Figure 16�8 Interface definitions for the spacewar program.

	Evolving the Interface

	Other Design Issues
	Portability
	Extensibility
	Existing Frameworks

	Managing a Software Project
	Personnel Management
	Figure 16�9 Communication paths in a ten-person project.

	Design Management
	Code Management
	Configuration Management
	Testing Management
	Documentation

	Conclusion
	Summary
	Exercises
	16.1 Finish the top-level design for the spacewar program.
	16.2 Suppose you have a four-person team to develop the spacewar program. Devise a timetable with...
	16.3 One of the best ways of learning about something is trying to develop a system to implement ...
	16.4 Design an XML browser that can read and display XML documents and follow links to other docu...
	16.5 Implement the spacewar program designed in this chapter. What changes in the design were req...
	16.6 Fully design and implement the solar system example described in Chapter�1. Once the system ...
	16.7 Design and implement the garden designer of Exercise�15.7.
	16.8 Design and implement the race-car system of Exercise�15.8.
	16.9 Design and implement the menu-planning system of Exercise�15.9.




