SafeRide onCall AT System Design Overview

Michael Benisch, Joshua Butler, Dan Fox, Eden Hochbaum, Victor Naroditskiy
Department of Computer Science
Brown University, Box 1910
Providence, RI 02912
{mbenisch, jtbutler,dmfox, ehochbau,vnarodit}@cs .brown.edu

1 Overview

The most important (and obvious) goal of the AI team is to design and return a shuttle routing schedule
that optimizes an objective function which will be described later. This schedule will produce estimated
wait times. Less obviously, the Al component needs to be fairly robust in allowing dispatchers to override
specific parts of schedules without affecting the overall dispatching structure more than is necessary and the
AT component needs to be extensible in allowing for tweaked objective functions that conform to a specific
structure, i.e., the objective function would only be improved if average waiting times were decreased with
all other variables remaining constant.

The AI system will direct each shuttle at each step of its progression where a step is defined as either
dropping a rider off or picking rider up. In other words, the Al system will recommend that a particular
shuttle drive to (for example) 40 Brown Street and pick up rider John Smith. Once the driver has sig-
nalled arrival and pick-up (or lack of pick-up) the AI system will recommend the next action for that van.
Dispatchers (human) will be asked to approve recommendations before drivers are ever alerted.

2 Architecture

A high-level description of our architecture is shown in Figure 2. The basic flow of information begins with
communication between the server and the communication package. The communication package will include
a Communicator class which will open a dedicated socket. Messages will invoke a call back method on the
socket, and trigger the optimization algorithm to begin running. The algorithm will produce a schedule and
the information in the schedule (i.e. which actions each van must undertake next) will be entered into the
server’s SQL database and a message will be sent to the server to indicate the update.

3 Search Space

The search space in our problem is defined as follows (for example see Figure 3):

e Each node contains the following state information:

— Which passengers are in each van

— Which passengers are unassigned

e Branches represent an action that a particular van will take. Actions can be one of the following:

— Pick up a caller waiting for a ride

— Drop off a rider

SafeRide Al System Overview

map
communication parser g
<. —_— = 4
server Communicator -
I MapParser || Dijkstra
ServerSocket =
Node
XMLMessage
Segment props
[\} T
[f I JDSL Rider
I
L v NonRider
testing scheduler .
Location
CallSimulator Heuristic || SrchNode Van Streetinfo
DataBase Tree
Tester A*/Beam
Evaluator

Figure 2: Search Space Example

e The depth of our search space = O(m), where m is the total number of people waiting for rides and
riding in vans. In worst case the depth is exactly 2m when everyone is waiting for a ride. In this case
we need to pick up each person and then drop him off. At each level of the tree we make a decision
about picking up or dropping off one person.

e End nodes of the tree contain schedules for each van. The schedules specify pick-up and drop-off order
for each of the m people.

4 Objective Function

The algorithm tries to minimize two measures for each ride. First is the error in the wait time estimate,
the amount by which the van’s pickup time p; for a ride is later than the projected pickup time ep; given
to the caller. The second is the total trip time, the difference between the time d; the rider arrives at her
destination and the the time c¢; she requested the ride.

> amax(0,p; — epi)? + B (d; — c;)"

5 Heuristic Function

The heuristic function finishes potential schedules in the following way:
e First drop off everyone in each car in the quickest order.
e For each unassigned user, ¢, ordered by estimated (absolute) waiting time

— Assign user i to the earliest available van.
— Calculate the group associated with that user as anyone within r = % where: d; is the length of
user i’s trip.
e Remove all the users in the group from further consideration.

e Pick up that group in any order and drop them off in any order.

