Vivek Kothari

CS 190

Top Level Design

CS CONTRA
Component Diagram and Descriptions

Components
MAIN LOGIC
The main logic class is the central component. Its tasks will involve keeping track of the gamestate, and notifying the other components when they are needed to do something. It will also contain the main game loop, and is therefore responsible for all timing involved in the program.

It stores the state of all game objects (players, bullets, enemies, platforms and background). These would all be stored in vectors and iterated through during the main loop in order to update them. The platforms and backgrounds would be stored in an array or map, so that speedy access of them for collision purposes is possible. (It allows easy, free elimination of far off platforms and backgrounds.) It tells the display the current positions of all the objects and also the sound when it should take an action. For a networked game, the logic will have to communicate with the networking in order to keep track of the player’s positions. The logic uses information from the scripting (set behavior parameters at the load of an enemy) and 3d math (in order to check whether such events as collisions have occurred). The input communicates with the logic in order to tell it the player’s moves etc. and with the networking which tells it about the state of the other player.
DISPLAY
The display component is responsible for using OPENGL to display the action. GLUT will be used to easily create a window in which to draw to, since no GUI Widgets are required. Requirements of the Display include:

Drawing objects where/when requested by logic.
Keeping track of animation frames/loops for characters and enemies.
Creating and Managing textures for all created objects.
Using Frustrum Culling to avoid drawing all objects.

The Display should have a mirror object for each object created by the logic, such that each object shares a "unique ID" with its counterpart in the other component. This allows for syncing of the graphical object, with its logical equivalent. Thus when reporting the position of an object, the logic need only specify this ID value.

NETWORKING
The networking component will take care of sending and receiving information with a second player. The client will simply operate by receiving all of the positions from the server, as well as notifications about new object creations, and other events. The server will then receive the client users input, and will then treat it just as it does the input of the local user. In this way, the client will not have its own logic at all, but rather mirror the game-state of the server, and the server will not treat the client any differently than another input device.

SOUND
The sound component should simply do 2 things. It should be able to play a background MIDI or MP3 as music, and it should be able to play .WAVs specified by the logic. The Logic will pass the sound component and event, such as 'BULLET_HITS_WALL" and the Sound component will look it up in a map, and play the appropriate sound effect.

Note: This could be quickly implemented using an existing sound library.

3D MATH
Another smaller component, this would allow the logic to simply ask for collisions between spheres, planes and lines. This lets the Logic make decisions about the next "state" of an object. (i.e. testing if a bullet hits the player)

Note: This is a VERY small component that could be done easily by anyone with 123 experience in just a few days, if that.

INPUT
The input component would allow for reading keyboard and mouse input. It would simply report to the Logic when an input is made, and the logic will act accordingly on the next "update."

SCRIPTING
The scripting component would have small base requirements, with a large possibility for expansion. Upon creation of an enemy object, the Logic will be able to ask the scripting component about any special attributes the enemy has, which will set flags inside the logic's representation. Then when updating the enemy, the logic will be able to make choices depending on the flags set. (i.e. SHOOTS, CAN_JUMP etc...) These flags can be edited via Notepad for each enemy type.

LEVEL EDITOR
The purpose of the level editor is a quick and easy way to create levels for the game. The user would be able to place platforms and backdrop "planes" and select their texture. Additionally, the user can place enemies and powerups, as well as place simple camera commands throughout the level. Levels could then be saved, where they could be opened by the game itself for use.

The menus involved would be simple and rendered in GL and/or GLUT, avoiding the use of a complicated GUI and the required library.
External dependencies
There are none, but several external, stable libraries will be used (i.e. STL and OPENGL).

Task Breakdown
Project Manager: The project manager is the ultimate authority in the project. Their main responsibilities include

· Communication between group members, setting meetings, and arranging the agenda

· Keeping group members on task and the project on schedule

· Dispute resolution/disaster management: It is their responsibility to make sure that everything is progressing smoothly and to ensure that all disasters are taken care of.

Program Architect/Lead Coder: Responsible for design and must understand every part of the program and how they interact with each other. Must be able to answer other’s questions and fix the inevitable design problems that arise. Responsible for Makefiles and source control.
Support Coders (4): Along with the lead coder will implement the various parts of the design. As I see it, there are 4 main parts: Logic (containing the logic, 3dMath, input), Display, Networking, Miscellaneous (editor, scripting, sound). The lead coder along with the support coders will split up these parts as they see fit to implement.

Librarian: Will be responsible for the documentation which will include updated specifications and requirements documents as well as user documentation. Also, this project will require documentation covering how to work the level editor etc. Furthermore, the librarian will be in charge of maintaining an online forum where group members can communicate with the others.

Testing Coordinator: In charge of designing test code to stress test the program and make sure that all the bugs are identified. Responsible for designing and implementing a testing strategy

Testers(2): Work in conjunction with the testing coordinator in implementing the testing strategy in order to identify all the bugs.

Week 1:

Finalize specification

Assign jobs
Finalize top-level design
Finalize schedule
Week 2:

Component designs (architect and coders)

Source control and makefile is setup (architect)

Week 3:

Finalize Component designs (architect)
Learn as much as possible the necessary algorithms and libraries needed for this project, including writing small programs to test out ideas. (coders)

Maintain Specification. (Librarian)

Week 4:

Code the interface between modules (architect and coders)
Dummy display must be functional
First Integration. Does not have functionality, but the program should run as expected and the flow of control is clear (through print statements in the code)

Adjustment of schedule if necessary. (manager)

Week 5:

Code functionalities (coders)

2nd Integration, the basic functionalities should now be there.

Outside user tests need to be conducted. (tester)

Progress review, final readjustment of the specification and required functionality. (manager)

Week 6:

Code all functionalities (coders)

User manual should be completed. (librarian)

3rd Integration, most of the functionalities should be there.

Outside user tests need to be conducted. (tester)

Week 7:
Final testing

All the bugs need to be fixed. (coders, architect)

Final integration and code freeze.
Presentation prepared. (librarian, manager)

Week 8: (presentation week)

fix remaining bugs

Cleanup

Package product

Presentation

