
Teaching Tools

 Top-Level Design

February 21, 2003
Emma Boroson (eboroson)

Introduction

This top-level design document is based on the Teaching Tools specifications
document of lmolinar, which can be found at
http://www.cs.brown.edu/courses/cs190/asgns/2-7/tmp/lmolinar.pdf

The main chance in functionality of this particular program is the deletion of
the direct E-mail capabilities of the original specifications. (More details can
be found in the component description section following.)

Please see the following page for component diagram.

Levelized High-Level Component Diagram

Level 4: User Interface

Level 3: Logic Manager

Level 2:

Level 1: Templates Data Storage

Component Descriptions

User Interface:
The main GUI will essentially be the main button panel, which gives the
option to directly get to any one of the five “subdirectories” (Grade Book,

User Interface

Logic Manager

Grade
Book

Document
Creation

Student/TA
Information

Rubric
Manager

 Notes

Templates Data Storage

Document Creation, etc) plus the subscreen, which will show either the login
or the chosen “subdirectory”. (please see original Specifications Document
for clarification)

• Subscreens:
Login
Grade Book
Document Creation
Student/TA Info
Rubric Creator
Notes

The main GUI (Level 4) should know which subscreen is being used at any
given time, and know how to handle user input from any screen (know which
part of the main logic to call)

Logic Manager:
This is called by the User Interface and is handed data/instructions to give to
one of the five Level 2 modules – sort of acts as an interface between the
GUI and all the “subdirectory” parts of the program.

Document Creation:
An editor-type function in which to create lessons, lecture notes, etc – as per
Specifications Document. This module may call upon the Templates module
– may receive a pre-set-up modifiable file that the user may add to and
modify.

Rubric Manager:
Also similar to Document Creation – may call upon Templates in a similar manner.
The user has the option of setting up a connection between the Rubric Manager
and the Grade Book, where grades instantiated in the Rubric will be automatically
entered into the Grade Book.

Student/TA Info:
Similar to Grade Book layout – takes information from the user (through the
User Interface and then through the Logic Manager) and stores given info.

Grade Book:
A grid-like layout in which to store, add, and modify grades – as per
Specifications Document. This will take information from the Logic
Manager and add or modify grades accordingly.

Notes:
An editor-type set-up in which to create notifications for some or all users.
This differs from the initial Specifications Document in that there is no direct
way to E-mail from this program. It is possible to set up E-mail lists and
contacts, and also possible to write E-mails. However, sending the mail must
be done through a separate mail client.

Templates:
These templates may be used by the Document Creation module (with given
lesson set-ups, etc) and may be modified by the user. There will also be
templates available specifically for creating a rubric (to be used by the Rubric
Manager.)

Data Storage:
This will be a database of information called upon by the Grade Book and
Student/TA Info. Information can be inputted to storage through these two
given modules.

External Dependencies
There are no external dependencies in this program.

Task Breakdown and Group Organization

Manager: This person is in charge of everything having to do with
organization of the group – scheduling meetings, checking up on everyone’s
progress, encouraging, punishing (hopefully that won’t be necessary!),
making final decisions if disuptes arise – this person, in the end, is
responsible for getting the project completed on time.

Documentation/Librarian: This person must know the functionality of
every part of the program at any given time – must keep records of each
aspect of the project and must update the records as progress and changes are
made – is responsible for writing the online user documentation, so should
know the ins and outs of the program.

Head Architect: This person is in charge of the final design of the program.
While all group members will help in the design, the head architect makes
final design decisions if disagreements occur. The head architect must know
all interfaces and interactions in the program and must be able to answer
questions from all programmers at any time throughout the implementation
process.

Head Tester: This person is, in the end, responsible for making sure all parts
of the program have been thoroughly tested (including integration testing) –
this may mean that the head tester comes up with and implements all the
testing, or it may mean that the head tester simply makes sure that each
programmer has sufficiently tested their part of the program.

Programmers: To be split up as follows:
 GUIs
 Logic Manager/Interfaces
 Templates/DataStorage database stuff
 GradeBook/ Student/TA info
 Document creation
 Rubric Manager some combination of 2 and 1 of these
 Notes

Proposed Schedule

2/28: group positions selected, top-level design selected

3/9: Final top-level design – revisions completed -

3/12: Interface proposals by each person in charge of a programming
component – should be coordinated by group librarian

3/17: Interface comments and feedback by all group members – all have
reviewed and discussed proposed interfaces – Group manager, librarian,a nd
architect should decide on changes based on feedback

3/21: Final interface definition for each component – all must be approved by
project manager and architect to make be sure the interfaces are complete and
correct

4/4: detailed designs for each component – coding should have begun by this
point -- full design proposed to head architect/librarian

4/4 – 4/16: INTENSE CODING TIME – a week and a half for all
component programmers to get basic functionality up and running – this
includes component testing, overseen by head tester

4/16: initial system integration: specific functions need not all be completed –
but some aspect of all parts of program should be working together – basic
integration testing at this point

4/27: full system implementation: fully functional – may still be bugs – but
working enough to demo in class – Manager should make sure all is in order
for final demo to be completed

5/2: public demo

5/2 – 5/9: final bug-checking and fixing – only minor details should be
worked on at this point – Head tester doing final checks, Librarian putting
final touches on user documentation

5/9: System Submission – ALL IS COMPLETE!

Assumptions
The intial specifications document is rather clear in all aspects, so I didn’t
have to assume much. The change I did make to the Notes module is minor
and I chose to do this to simplify the breadth of this project – if E-mail were
involved, there would have to be an entirely new compenent involving a mail
client and networking. This way, I kept nearly all of the functionality of the
original program without complicating it.

