

ElectConnect

Interface Proposals
March 15, 2005

Mike Black
Xander Boutelle
Catherine Hill

Lars Johansson
Alex Kossey

Dan Silverman
Pawel Wrotek

1.0 Overview

This document provides an overview of the public interfaces for each of ElectConnect’s
modules. Also outlined are schedules for each component as well as a component level
testing plan.

The following .h and .php files are being submitted along with this document.

o Ballotdata.h
o FileManager.h
o DatabaseInterface.php
o XMLfileInterface.php
o Question.php
o Candidate.php
o Date.php

2.0 Ballot Creation

2.1 Interfaces

No other component depends on the GUI, so it has no associated interface file. The GUI
depends on the ballot data structure (ballotdata.h), and the FileManager.

2.2 Schedule

3/15: Empty GUI set up.
3/25: GUI visually complete (not fully functional)
4/8: Core functionality complete (crating new election, inputting general election

information, inserting new candidates and questions)
4/16: Functionality that interacts with the parser complete (loading, saving, and

uploading ballot to a server); initial integration
4/25: Secondary functionality complete (moving, deleting questions)
5/1: Full system integration

2.3 Testing Plan

As each piece of functionality is added, the GUI will be tested by hand to make sure that
it still looks/behaves as expected. When the functionality to interact with the parser is
written (loading, saving, uploading), a dummy parser will be written with the following
functionality for those three methods:

o load: Fill the ballot data structure with some known data and pass it to the GUI.
Make sure that the GUI behaves correctly.

o save: Print the contents of the data structure passed by the GUI to the screen, and
make sure that this corresponds to the actual data that the user tried to save.

o upload: Same as save, also print the name of the server to make sure that it is the
one that the user wanted to connect to.

The GUI will call the methods of this dummy parser, and the output will be used to judge
whether the GUI is handling its side of that functionality correctly

3.0 File Manager

3.1 Interfaces

The interface for the FileManager is provided by FileManager.h

3.2 Schedule
Note that here “testing” is used to mean finish testing.

Save/Load:

o Write save (4/8)
o Write load (4/8)
o Test save alone (4/10)
o Test load alone (4/12)
o Test load and save (4/16)

XML file:

o Do specifications for file format (3/16)
o Find a library to parse XML with: (3/16) (Behind schedule, looking for 3/18)

Uploading the file:

o Research how to create a connection to a server and run a PHP script (3/18)
o Write private zip method (4/2)
o Test private zip method (4/4)
o Write upload function (4/12)
o Test upload function (4/14)

3.3 Testing Plan

Component level testing for the file manager will be fairly straightforward. There are
three methods in the interface: save, load, and upload.

Save and load depend on each other quite heavily, that is, testing either would be much
easier with the other one already implemented. However, they can be tested separately.

Save: Take a simple ballot data structure and some filename to save it in, and save it, then
look at it manually.

Individually: check times and other basic data

o check that saving a single question with a single candidate works
o check that adding text and a link to the question works
o check that adding text and a more info link to a candidate works
o check that adding more candidates works
o check that adding more questions works
o check that using the other types of questions works

Load will be tested very similarly to save, writing an XML file from scratch with just
basic data, then a question, etc.

Upload is very, very tricky to test, because it depends on another component. Until the
script it will be calling is up, I won't be able to fully test it.

4.0 Web Election Administration

4.1 Interfaces

Public interfaces for the web portion of ElectConnect are found in the following .php
files:

o DatabaseInterface.php
o XMLfileInterface.php
o Question.php
o Candidate.php
o Date.php

The php v. c++ issue has not been completely resolved at this point, however we believe
that these files provide interfaces which are closely analogous to those we would write in
C++. Because these php files have been designed in a object oriented fashion, converting
them to C++ would be largely a question on converting syntax.

4.2 Schedule

4/3: database.php - class that implements the Database interface (in

DatabaseInterface.php)
4/4: Welcome page - welcome.php
4/6: xml.php - class that implements the XMLFile interface (in

XMLFileInterface.php)
4/8: Verifying info (security) - verify.php
 script to run when ballot creation has uploaded to the FTP server - reception.php
4/11: Generating questions - election.php
4/12: Question verification - questionverify.php
4/13: Vote information into database - submit.php
 script to initialize the database - dbinitialize.php

4.3 Testing Plan

Web-pages

Vote information into database - submit.php

o Done by: 4/13
o Tested by: 4/16
o Testing Plan: The plan will consist of giving the script valid vote data, and

allowing it to enter the data into the database. We will then retrieve the results
and make sure everything is in order (using our Database class). Only one vote
will happen initially, and then we will add more and more votes to ensure that
nothing happens when a large number of votes are submitted. To test that script is
fine with multiple people voting at once, bots will be used to submit several votes
simultaneously.

Welcome page - welcome.php

o Done By: 4/4
o Tested By: 4/5
o Testing Plan: Make sure that the appropriate text from the XML file is being

displayed, and that the voters are linked to an appropriate page if there is no
election in progress.links to: Pages

- No election
 Done by and tested by: 4/3
 Just plain HTML telling someone that there is no election.

Verifying info (security) - verify.php

o Done By: 4/8
o Tested By: 4/13
o Testing Plan: Having group members log in and simply hit a submit button on a

phony vote page to make sure that if they have not voted they can, and that after
they have voted once they are not allowed to again. Make sure that this works for
extended periods of time between voting and that it also works when they log out
and log back in and when they simply stay logged in and keep hitting back to get
to the submit page.

Generating questions - election.php

o Done by: 4/11
o Tested by: 4/15
o Testing Plan: Create various sets of Questions (different types, multiple numbers

etc...) and run the script on each set. View the resulting page and make sure
everything appears properly. Also, have a testing script which, when the user
clicks on submit, displays a page consisting of all of the answers selected and
make sure that everything is there. Initially use only one question of each type to
ensure that the Question's generateHTML method is working properly.

Question verification - questionverify.php

o Done by: 4/12
o Tested by: 4/15
o Testing Plan: Testing consists of throwing the script all kinds of possible

submissions (all valid, all invalid, a mix) with all the different question types.
Initially, one question of a given type (valid or invalid) will be used to make sure
that each subclass of Question has its verifyAnswers method working properly.

Database

database.php - class that implements the Database interface (in DatabaseInterface.php)

o Done by: 4/3
o Tested by: 4/6
o Testing plan: Make sure all of the methods correctly modify the database starting

with the creation/adding to database methods. Make sure mysql_query results are
correct

- these are library methods
- Then check the getting information from the database

XML File

xml.php - class that implements the XMLFile interface (in XMLFileInterface.php)

o Done by: 4/6
o Tested by: 4/10
o Testing plan: Make sure all methods correctly get information from various XML

files Start with simple files without a lot of candidates, questions etc and make
sure simple parsing (date etc...) things work Build up to more complicated files
that are more like actual ballot files that would be used. To test, output the results
of the various get methods in the class to make sure the right data is returned.
Check the information in the Question classes that are created as well to make
sure the correct instances are created for the appropriate questions in the ballot.

Class Question and class Candidate (done), Question is abstract and needs classes
implementing it for various question types. Both are used by xml.php

o Done by: 4/5
o Tested by: 4/8
o Testing plan:

o First test Candidate to make sure that it doesn't mangle any data (it is just a
storage class really, so nothing too complicated).

o Second test Question (this is weird as it only is part of Question that really
needs to be thoroughly tested right now)

 a lot of methods are merely gets in the abstract class, so easily
testable. The only part that needs to be tested for the XMLFile are
the non-abstract methods in Question and the constructors for the
subclass questions as well as the method getNumberChoices

 The other two abstract methods are needed for the pre-submit
(verification) and generation of the HTML ballot. However, the

testing for these two methods should be underway at this point.
Fine tuning of the HTML generated and other small things will be
more extensively later.

Initialization

script to run when ballot creation has uploaded to the FTP server - reception.php. Unzips
the election file and puts it somewhere meaningful

o finished 4/8
o tested by 4/11: use any zip file containing a directory structure and check to see if

the script can take the file and unpack it to the appropriate place with the
appropriate structure intact.

script to initialize the database - dbinitialize.php

o finished 4/13
o tested by 4/15: use DatabaseInterface.php to test (it's supposed to be tested by

4/6). Use a dummy XML file to see if it can extract the question information
(using question.php and XMLFileInterface.php, both of which are scheduled for
completion before this point) from the file to create the appropriate tables in the
database. Then use database.php to see if data can be inserted into and queried
from these tables.

5.0 Web Data Visualization

5.1 Interfaces

The admin and data sections rely heavily on the mysql database and php (c++) server
being up and running. I can implement my sections without them, but it will be very
difficult to test and even further difficult to have a final integration without them
working.

The other major dependency is determining the best way to secure the admin portion of
the website, which I am currently doing research into.

No other component of the software depends on the data visualizer, so it does not have a
public interface.

5.2 Schedule

3/25: Admin login page up and running

Admin users can log in and choose from elections already in database
Admin users can change password

Initial progress on exporting election data to Excel spreadsheet

4/11: Data exportation to Excel is done

4/17: Data visualization is done
4/25: Admin website is complete from top to bottom

5.3 Testing Plan

Admin Security:

A variety of tests will be performed to ensure Admin security. Mock users and passwords
will be entered to ensure its stability.

Data Visualization

For data vis testing, a hardcoded election can be entered in the database. The data
visualizer will then try displaying that data. A variety of hardcoded defective data will
also be entered and the data visualizer will display the appropriate error.

Excel Exporting

To test Excel exportation, again, hardcoded election data can be entered in the database.
User feedback will guide how the Excel exportation works (i.e. how data is organized and
displayed in excel).

