
Futures, Scheduling, and Work Distribution

Maurice Herlihy

Brown University

Lecture 21

22 November 2022

Multiprocessor

Synchronization

CSCI 176

Art of Multiprocessor Programming 22

How to write Parallel Apps?

Split a program into parallel parts

Thread management

In an effective way

Art of Multiprocessor Programming 33

Matrix Multiplication

ὅ ὃɇὄ

Art of Multiprocessor Programming 4

ὧ ὥ ɇὦ

Matrix Multiplication

No synchronization! Massive parallelism!

Art of Multiprocessor Programming 5

Matrix Multiplication
class Worker extends Thread {

int row, col ;
Worker(int row, int col) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for (int i = 0; i < n; i ++)

dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct ;

}}}

class Worker extends Thread {
int row, col ;
Worker(int row, int col) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for (int i = 0; i < n; i ++)

dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct ;

}}}

Art of Multiprocessor Programming 6

Matrix Multiplication

a subtype of thread

class Worker extends Thread {
int row, col ;
Worker(int row, int col) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for (int i = 0; i < n; i ++)

dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct ;

}}}

Art of Multiprocessor Programming 7

Matrix Multiplication

Which matrix entry to

compute

class Worker extends Thread {
int row, col ;
Worker(int row, int col) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for (int i = 0; i < n; i ++)

dotProduct += a[row][i] * b[i][col];
c[row][col] = dotProduct ;

}}}

Art of Multiprocessor Programming 8

Matrix Multiplication

Actual computation

Art of Multiprocessor Programming 9

Matrix Multiplication

void multiply () {
Worker[][] worker = new Worker[n][n];
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col] = new

Worker(row,col);
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col]. start ();

for (int ÒÏ× ƛƾ
for (int ÃÏÌ ƛƾ

worker[row][col]. join ();
}

void multiply () {
Worker[][] worker = new Worker[n][n];
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col] = new Worker(row,col);

for (int ÒÏ× ƛƾ
for (int ÃÏÌ ƛƾ

worker[row][col]. start ();
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col]. join ();

}
Art of Multiprocessor Programming 10

Matrix Multiplication

Create n x n

threads

void multiply () {
Worker[][] worker = new Worker[n][n];
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col] = new Worker(row,col);

for (int ÒÏ× ƛƾ
for (int ÃÏÌ ƛƾ

worker[row][col]. start ();
for (int ÒÏ× ƛƾ

for (int ÃÏÌ ƛƾ
worker[row][col]. join ();

}
Art of Multiprocessor Programming 11

Matrix Multiplication

Wait for

them to

finish

Start them

Whatôs wrong with this

picture?

Thread Overhead

Art of Multiprocessor Programming 12

Threads require resources

Memory for stacks

Setup, teardown

Scheduler overhead

Short-lived threads

Bad ratio of work versus overhead

Thread Pools

Art of Multiprocessor Programming 13

More sensible to keep a pool of long-lived threads

Thread:

Assigned a short-lived task

Run the task

Rejoin pool & wait for next assignment

Thread Pool = Abstraction

Art of Multiprocessor Programming 14

Insulate programmer from platform

Big machine, big pool

Small machine, small pool

Portable code

Works across platforms

Worry about algorithm, not platform

ExecutorService Interface

Art of Multiprocessor Programming 15

Package java.util.concurrent

Task = Runnable object

Call void run ().

Task = Callable <T> object

Call T call ()

No result value expected?

Type T result expected?

Art of Multiprocessor Programming 16

Future<T>
Callable <T> task ˮ ƛƘ
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get ();

Callable <T> task ˮ ƛƘ
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get ();

Art of Multiprocessor Programming 17

Future<T>

Submitting a Callable<T> task

returns a Future<T> object

Callable <T> task ˮ ƛƘ
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get ();

Art of Multiprocessor Programming 18

Future<T>

The Futureôs get() method blocks

until the value is available

Runnable task ˮ ƛƘ
ƛ
Future <?> future = executor . submit (task);
ƛ
future . get ();

Art of Multiprocessor Programming 19

Future<?>

Submitting a Runnable task
returns a Future<?> object

Art of Multiprocessor Programming 20

Future<?>
Runnable task ˮ ƛƘ
ƛ
Future <?> future = executor . submit (task);
ƛ
future . get ();

The Futureôs get() method blocks

until the computation is complete

(no return value)

Warning

Art of Multiprocessor Programming 2121

Executor Service requests é

Like New England traffic signs

Are purely advisory in nature

The executor

Like the Boston driver

Is free to ignore any such advice

And could execute tasks sequentially é

Art of Multiprocessor Programming 2222

Matrix Addition

ὅ ὅ
ὅ ὅ

=
ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ

4 parallel additions

Art of Multiprocessor Programming 2323

Matrix Addition Task
class AddTask implements Runnable {

Matrix a, b; // add this!
public void run () {

if (a. dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit (addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit (addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get ();
ƛ

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if (a. dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit (addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit (addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get ();
ƛ

Art of Multiprocessor Programming 24

Matrix Addition Task

Constant-time operation

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if (a. dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit (addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit (addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get ();
ƛ

Art of Multiprocessor Programming 25

Matrix Addition Task

Submit 4 tasks

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if (a. dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit (addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit (addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get ();
ƛ

Art of Multiprocessor Programming 26

Matrix Addition Task

Base case: add directly

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if (a. dim == 1) {
c[0][0] = a[0][0] + b[0][0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit (addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit (addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get ();
ƛ

Art of Multiprocessor Programming 27

Matrix Addition Task

Let them finish

Dependencies

Art of Multiprocessor Programming 28

Matrix example is not typical!

Tasks are independent

Donôt need results of one task é

To complete another

Often tasks are not independent

Art of Multiprocessor Programming 2929

Fibonacci

1 if n = 0 or 1
F(n)

F(n-1) + F(n-2) otherwise

Note

Potential parallelism

Dependencies

Disclaimer

Art of Multiprocessor Programming 3030

This Fibonacci implementation is egregiously inefficient

So donôt try this at home or job!

But illustrates our point

How to deal with dependencies

Exercise: Make this implementation efficient!

Art of Multiprocessor Programming 31

class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask (int n) {

arg = n;
}
public Integer call () {

if (arg > 2) {
Future <Integer > left

= exec. submit (new FibTask (arg - 1));
Future <Integer > right

= exec. submit (new FibTask (arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}

Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask (int n) {

arg = n;
}
public Integer call () {

if (arg > 2) {
Future <Integer > left

= exec. submit (new FibTask (arg - 1));
Future <Integer > right

= exec. submit (new FibTask (arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}
Art of Multiprocessor Programming 32

Multithreaded Fibonacci

Parallel calls

class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask (int n) {

arg = n;
}
public Integer call () {

if (arg > 2) {
Future <Integer > left

= exec. submit (new FibTask (arg - 1));
Future <Integer > right

= exec. submit (new FibTask (arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}
Art of Multiprocessor Programming 33

Multithreaded Fibonacci

Wait for & combine results

The Blumofe-Leiserson DAG

Model

Art of Multiprocessor Programming 3434

Multithreaded program is

A directed acyclic graph (DAG)

That unfolds dynamically

Each node is a single unit of work

Art of Multiprocessor Programming 3535

Fibonacci DAG
fib(4)

Art of Multiprocessor Programming 3636

Fibonacci DAG
fib(4)

fib(3)

Art of Multiprocessor Programming 3737

Fibonacci DAG
fib(4)

fib(3) fib(2)

fib(2)

Art of Multiprocessor Programming 3838

Fibonacci DAG
fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1)fib(1)

fib(1) fib(1)

Art of Multiprocessor Programming 3939

Fibonacci DAG
fib(4)

fib(3) fib(2)

call
get

fib(2) fib(1) fib(1)fib(1)

fib(1) fib(1)

How Parallel is That?

Art of Multiprocessor Programming 4040

Define work:

Total time on one processor

Define span (critical-path length):

Longest dependency path

Never faster than that!

Unfolded DAG

Art of Multiprocessor Programming 41

Parallelism?

Art of Multiprocessor Programming 42

Serial fraction = 3/18 = 1/6é

Amdahlôs Law says

speedup cannot exceed 6.

Work?

Art of Multiprocessor Programming 43

1

2

3

754

7 8 9 10

11 12 13 14

15 16

17

18

T1: time needed on one processor

Just count the nodes é.

T1 = 18

Critical Path?

Art of Multiprocessor Programming 44

TÐ: time needed on as many

processors as you like

Critical Path?

Art of Multiprocessor Programming 45

1

2

3

4

5

6

7

8

9

Longest path é.

TÐ= 9

TÐ: time needed on as many

processors as you like

Art of Multiprocessor Programming 4646

Notation Watch

TP = time on P processors

T1 = work (time on 1 processor)

TÐ= critical path length (time on Ð processors)

Art of Multiprocessor Programming 4747

Simple Laws

Work Law: TPÓ T1/P

In one step, canôt do more than P work

Critical Path Law: TPÓ TÐ

Canôt beat infinite resources

Art of Multiprocessor Programming 4848

Performance Measures

Ratio T1/TP

Speedup on P processors

Linear speedup

How much faster with P processors

T1/TP = Ū(P)

Max speedup (average parallelism)

T1/TÐ

Sequential Composition

Art of Multiprocessor Programming 49

A B

Work: T1(A) + T1(B)

Critical Path: TÐ(A) + TÐ(B)

Parallel Composition

Art of Multiprocessor Programming 50

Work: T1(A) + T1(B)

Critical Path: max{TÐ(A), TÐ(B)}

A

B

Art of Multiprocessor Programming 5151

Matrix Addition Review

ὅ ὅ
ὅ ὅ

=
ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ

4 parallel additions

Art of Multiprocessor Programming 5252

Addition

Let AP(n) be running time

For n x n matrix on P processors

For example

A1(n) is work

AÐ(n) is critical path length

Art of Multiprocessor Programming 5353

Addition Work

4 spawned additions

Partition, synch, etc

A1(n) = 4 A1(n/2) + Ū(1)

Art of Multiprocessor Programming 5454

Addition Work

Same as double-loop summation

ὃ(n) = 4 ὃ()+ɡρ

=ɡὲ

Art of Multiprocessor Programming 5555

Addition Span

ὃ (n) = ὃ ()+ɡρ

spawned additions in

parallel

Partition, synch, etc

Art of Multiprocessor Programming 5656

Addition Span

ὃ (n) = ὃ ()+ɡρ

=ɡÌÏÇὲ

Art of Multiprocessor Programming 5757

Matrix Multiplication

ὅ ὃɇὄ

Art of Multiprocessor Programming 5858

Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὃ
ὃ ὃ

ɇ
ὄ ὄ
ὄ ὄ

Art of Multiprocessor Programming 5959

Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ

Art of Multiprocessor Programming 6060

Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ

Phase 1: 8 multiplications

Art of Multiprocessor Programming 6161

Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ

Phase 2: 4 additions

Art of Multiprocessor Programming 6262

Multiplication Work

ὓ (n) = 8 ὓ ()+ὃ ὲ

8 parallel

multiplications

Final addition

Art of Multiprocessor Programming 6363

Multiplication Work

Same as serial triple-nested loop

ὓ (n) = 8 ὓ ()+ὃ ὲ

=ɡὲ

Art of Multiprocessor Programming 6464

Multiplication Span

ὓ (n) = ὓ ()+ὃ ὲ

Half-size parallel

multiplications

Final addition

Art of Multiprocessor Programming 6565

Multiplication Span

ὓ (n) = ὓ ()+ὃ ὲ

= ὓ ()+ɡÌÏÇὲ

= ɡὰέὫὲ

Parallelism

Art of Multiprocessor Programming 6666

M1(n)/ MÐ(n) = Ū(n3/log2 n)

To multiply two 1000 x 1000 matrices

10003/102=107

Much more than number of processors

on any real machine

Shared-Memory Multicores

Art of Multiprocessor Programming 6767

Parallel applications

No direct access to HW processors

Mix of other jobs

All run together

Come & go dynamically

Art of Multiprocessor Programming 6868

Ideal Scheduling Hierarchy

Tasks

Processors

User-level scheduler

Art of Multiprocessor Programming 6969

Realistic Scheduling Hierarchy

Tasks

Threads

Processors

User-level scheduler

Kernel-level scheduler

For Example

Art of Multiprocessor Programming 70

Initially,

All P processors available for application

Serial computation

Takes over one processor

Leaving P-1 for us

Waits for I/O

We get that processor back é.

Speedup

Art of Multiprocessor Programming 71

Map threads onto P processes

All P Cannot get P-fold speedup

What if the kernel doesnôt cooperate?

Can try for speedup proportional to P

Scheduling Hierarchy

Art of Multiprocessor Programming 7272

User-level scheduler

Tells kernel which threads are ready

Kernel-level scheduler

Synchronous (for analysis, not correctness!)

Picks pi threads to schedule at step i

