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How to write Parallel Apps?

Split a program into parallel parts

In an effective way

Thread management
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Matrix Multiplication
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Matrix Multiplication

No synchronization! Massive parallelism!
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Matrix Multiplication

class Worker extends Thread ({

int row, col;

Worker(int row, int col){
row = row; col = col;

}

public void run(){
double dotProduct = 0.0;
for (int 1 =0; 1 <n; |++)

dotProduct +=a[ row][ i]*b[ 1][ col];

c[ row][ col ] = dotProduct ;

1
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Matrix Multiplication

class Worker extends | Thread ({
int row, col;
Worker(int row, int col){

row = row; col = col

}

oublic  void run (){ a subtype of thread
double dotProduct = 0.0;
for (int 1T =0; 1 <n; I++)

dotProduct +=a[ row][ i]*b[ 1][ col];
c[ row][ col ] = dotProduct ;

1
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Matrix Multiplication

class Worker extends Thread ({
Int  row,_col ;
Worker(int row, int col){
row = row,; COl "=_COk,
}
public void run(){
double dotPrgeiuet——=—O0-0—
for (int i = MWhich matrix entry to

dotProduct
m
c[ row][ col | =—<cad .WEP ; pUte

1

Art of Multiprocessor Programming




Matrix Multiplication

class Worker extends Thread_{

int - row, col; Actual computation
Worker(int row, int col){

row = row; col = col;
}

public void run(){
double dotProduct = 0.0;

for (int 1 =0; I <n; |++)
dotProduct +=a[ row][ i]*b[ 1][ col];
a2l vewnd Il AAL T — AntDvAA i ~t .
LIU\IVJL \V V] | J - ULl 1TvvuuuwliL ]
1
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Matrix Multiplication

void multiply () {
Worker[][]  worker = new Worker[n][n];
for (int OT x A%
for (int AT 1T A%
worker[row][col] = new
Worker(row,col);
for (int OT x A%

for (int AT T A%
worker[row][col]. start ();
for (int O x A%
for (int AT 1T A%

worker[row][col]. join ();




Matrix Multiplication

void multiply () {
Worker[][] ~ worker = new Worker[n][n];
for (int Ol x A%

for (int AT 1T A%
worker[row][col] = new Worker(row,col);
for —(int— O x &S
for (int AT 1T A%
worker[row][col]. start ();
for (int OT x A%
for (int AT 1 A% Create n x n
worker[row][col].  joir threads
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Matrix Multiplication

void multiply () {
Worker[][] worker = new Wpskarlallnl:

for (int Ol x A% Start them
for (int AT 1 A%
worker[row][col] = newAWVorker (row,col);
for (int OT x A%
for (int AT 1 A%
51 What 0s wrongov'vith t hi s
picture? Wa.": fOI’
worker[row][col]. join (); them to

finish
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Thread Overhead

Threads require resources
Memory for stacks

Setup, teardown

Scheduler overhead

Short-lived threads

Bad ratio of work versus overhead
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Thread Pools

More sensible to keep a pool of long-lived threads

Assigned a short-lived task

Run the task

Rejoin pool & walit for next assignment
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Thread Pool = Abstraction

Insulate programmer from platform
Big machine, big pool

Small machine, small pool

Portable code
Works across platforms

Worry about algorithm, not platform
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ExecutorService Interface

No result value expected?

Task = Runnable object
Call void run ().

Type T result expected?
Task = Callable <T> object
Call T call ()
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Callable <T> task

A
Future <T> future

A
T value = future

Future<T>

A K

= executor .submit (task);

. get ();
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Future<T>

Callable <T> task * A K
A
Future <T> future = executor .submit (task);

X

/\

T value = future . get();

Submitting a Callable<T> task
returns a Future<T> object
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Future<T>

Callable <T> task * A K

A

Future <T> future = executor .submit (task);
A

T value = future . get();

The Fuget()r meéhod blocks
until the value is available
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Future<?>

Runnable task ” A K

A

Future <?> future = executor . submit (task);
A

future . get();

Submitting a Runnable task
returns a  Future<?> object
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Future<?>

Runnable task ” A K

A

Future <?> future = executor .submit (task);
A

future . get();

The Fuget()r meél®od blocks

until the computation is complete
(no return value)
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Warning
Executor Servijce reques!

Like New England traffic signs

Are purely advisory in nature
The executor

Like the Boston driver

Is free to ignore any such advice

And coul d execut e ] a <




Matrix Addition

4 parallel additions
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Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public  void run(){
if (a.dim == 1){
c[O][ O]=a] O] O]+Db[ O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,bll));
f0O.gets § K fLIK get ();
A
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Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public  void run(){
if (a.dim == 1){
c[O][ O]=a] O] O]+Db[ O] O]; // base case

L else f

(partition a, b into half - Size matrices aij and bij)
Fature—<?>—-100—=—execsunmic-(aadTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,b11));
f0O.gets § K fLIK get ();

A
Constant-time operation
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Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public  void run(){
if (a.dim == 1){
c[O][ O]=a] O] O]+Db[ O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,bll));
100.gers § K AIK ger(),
\

Submit 4 tasks
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Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public _void run(){
if (a.dim == 1){
c[O][ O]=a] O] O]+Db[ O] O]; // base case

P r

J CloT 1

(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit\( addTask(a00,b00));
A

Future <?> f11 = exec. submit (aadTask(all,bll));
f00.gets &t K fAIK get ()

A Base case: add directly
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Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public  void run(){
if (a.dim == 1){
c[O][ O]=a] O] O]+Db[ O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11_= exec. submit (addTask(all,b11));

f0O.gets § K fLIK get ();
A

Let them finish
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Dependencies

Matrix example Is not typical!

Tasks are independent
Donot need results of

To complete another

Often tasks are not independent
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Fibonacci

flifn:Oorl
(1)

_ F(n-1) + F(n-2) otherwise

Potential parallelism

Dependencies
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Disclaimer

This Fibonacci implementation is egregiously inefficient

So

donot

try tnhi

But illustrates our point

How to deal with dependencies

Exercise: Make this implementation efficient!
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Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static  ExecutorService exec
= Executors . newCachedThreadPool();

int arg;

public  FibTask (int n){
arg = n;

}

public Integer call (){
if (arg > 2){

Future <Integer > left
= exec. submit (new FibTask (arg-1));
Future <Integer > right
= exec. submit (new FibTask (arg - 2));
return left .get()+ right . get();
} else {
return 1;

3}




Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static  ExecutorService exec
= Executors . newCachedThreadPool();

int arg;

public  FibTask (int n) { Parallel calls
arg = n;

}

public Integer call (){
if_(ara_> 2){

Future <Integer > left

= exec. submit (new FibTask (arg-1));
Future <Integer > right

= exec. submit (new FibTask (arg - 2));

retarm el T get =+ Tngiit . get (),
} else {
return 1, Art of Multiprocessor Programming 32
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Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static  ExecutorService exec
= Executors . newCachedThreadPool();

int arg;
public  FibTask (int n){
arg = n;
b Wait for & combine results
public Integer eeer—cg—
if (arg > 2){

Future <Integer > left
= exec. submit (new FibTask (arg-1));
Future <Integer > right
=—exes—submit-fnew FibTask -arg—2));
return left .get()+ right . get();
} eise |
return 1

3}
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The Blumofe-Leiserson DAG
\Yi[e]e[=]

Multithreaded program Is
A directed acyclic graph (DAG)

That unfolds dynamically

Each node is a single unit of work
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Fibonacci DAG

Gl
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Fibonacci DAG

[ fib(4) ]

\

[ fih(3) ]
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Fibonacci DAG

[ fib(4) ]
-0

\

[fib(S) ] [ fib(2)

Gl
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Fibonacci DAG

[ fib(4) ]
-0

\

fih(3) [ fib(2)
-0 L -0

fo(2) (. fib(1) ib(1) fib(1)
Yo J(¢V) (&[]
iib(1) I [fib(l)]
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Fibonacci DAG

[ fib(4)

get
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How Parallel is That?

Total time on one processor

Define span (critical-path length):

Longest dependency path

Never faster than that!

Art of Multiprocessor Programming




3

Unfolded DAG
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Parallelism?

Serial fraction =3/18=1/6 é

Amdahl!| 6s Law
Speedup cannot exceed 6.
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Work?

T,: time needed on one processor

Just count t h

T, =18
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Critical Path?

TD: time needed on as many
processors as you like
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Critical Path?

TD: time needed on as many
processors as you like

Longest P ¢

TD:9
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Notation Watch

T, =time on P processors

T, =work (time on 1 processor)
Ty = critical path length (time on B processors)
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Simple Laws
Work Law: T, O ,/P
Il n one step, c B&wookt
Critical Path Law: T, O ;T

Canot beat I nfi ni te

Art of Multiprocessor Programming




Performance Measures
Speedup on P processors

Ratio T,/T;

How much faster with P processors

Linear speedup

T,/To = U(P)

Max speedup (average parallelism)

1
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Sequential Composition

SR E

Work: T,(A) + T{(B)

Critical Path: T (A) + Ty (B)
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Parallel Composition

Work: T,(A) + T{(B)

Critical Path: max{Tg(A), T5(B)}
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Matrix Addition Review

4 parallel additions
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Addition

Let A-(n) be running time

For n X n matrix on P processors
For example

A,(n) Is work

Ag(n) Is critical path length

Art of Multiprocessor Programming




Addition Work

Partition, synch, etc

A,(n) = 4 A, (n/2) ¥ 0(1)

4 spawned additions
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Addition Work

0 (n)=40 (H)+g p
=g e

Same as double-loop summation

Art of Multiprocessor Programming




Addition Span

Partition, synch, etc

o0 (n)=0 (H)*g p

spawned additions in
parallel
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Addition Span

0 (NN=0 (-)+g p
=g | 1¢C
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Matrix Multiplication




Matrix Multiplication Redux
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Matrix Multiplication Redux

0 0O O 0O O 0O O 0O O
0 0O O 0O O 0O O O O
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Matrix Multiplication Redux

O O 0O O O 0, |0 O 0O O
0O O D Q\] (006 ©/0 00

Phase 1: 8 multiplications
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Matrix Multiplication Redux

0 (66 O 0 /|0 O 0O O
0 O 0O O 0 (00 0O O

Phase 2: 4 additions
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Multiplication Work

Final addition
0 (n)=80 (H)¥0 ¢

8 parallel
multiplications
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Multiplication Work

0 (N)=80 )+ &
=y S
Same as serial triple-nested loop
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Multiplication Span

Final addition
0 (=D ()6 &

Half-size parallel
multiplications
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Multiplication Span

0 (N)=0 (H)+0 ¢
=0 (H)+g | 1&C
—g a ¢
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Parallelism

M, (n)/ Mg(n) = U(n3/log? n)

To multiply two 1000 x 1000 matrices

10003/10%=10/

Much more than number of processors
on any real machine
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Shared-Memory Multicores

Parallel applications

No direct access to HW processors
Mix of other jobs

All run together

Come & go dynamically
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ldeal Scheduling Hierarchy

User-level scheduler 1

Processors
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Realistic Scheduling Hierarchy

User-level scheduler 1

Kernel-level scheduler 1
Processors
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For Example
P

All P processors available for application

Serial computation

Takes over one processor

Leaving P-1 for us
Waits for I/O

We get that processo
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Speedup

Map threads onto P processes

All P Cannot get P-fold speedup

Wh at | f t hhe kernel doe

Can try for speedup proportional to P
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Scheduling Hierarchy

User-level scheduler

Tells kernel which threads are ready
Kernel-level scheduler

Synchronous (for analysis, not correctness!

|

Picks p; threads to schedule at step |
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