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How to write Parallel Apps?

Split a program into parallel parts

Thread management

In an effective way
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Matrix Multiplication

ὅ ὃɇὄ
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ὧ ὥ ɇὦ

Matrix Multiplication

No synchronization! Massive parallelism!
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Matrix Multiplication
class Worker extends Thread {

int row, col ;
Worker( int row, int col ) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for ( int i = 0; i < n; i ++)

dotProduct += a[ row][ i ] * b[ i ][ col ];
c[ row][ col ] = dotProduct ;

}}}



class Worker extends Thread {
int row, col ;
Worker( int row, int col ) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for ( int i = 0; i < n; i ++)

dotProduct += a[ row][ i ] * b[ i ][ col ];
c[ row][ col ] = dotProduct ;

}}}
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Matrix Multiplication

a subtype of thread



class Worker extends Thread {
int row, col ;
Worker( int row, int col ) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for ( int i = 0; i < n; i ++)

dotProduct += a[ row][ i ] * b[ i ][ col ];
c[ row][ col ] = dotProduct ;

}}}
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Matrix Multiplication

Which matrix entry to 

compute



class Worker extends Thread {
int row, col ;
Worker( int row, int col ) {

row = row; col = col ;
}
public void run () {

double dotProduct = 0.0 ;
for ( int i = 0; i < n; i ++)

dotProduct += a[ row][ i ] * b[ i ][ col ];
c[ row][ col ] = dotProduct ;

}}}
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Matrix Multiplication

Actual computation
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Matrix Multiplication

void multiply () {
Worker[][] worker = new Worker[n][n];
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col] = new

Worker(row,col);
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col]. start ();

for ( int ÒÏ× ƛƾ
for ( int ÃÏÌ ƛƾ

worker[row][col]. join ();
}



void multiply () {
Worker[][] worker = new Worker[n][n];
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col] = new Worker(row,col);

for ( int ÒÏ× ƛƾ
for ( int ÃÏÌ ƛƾ

worker[row][col]. start ();
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col]. join ();

}
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Matrix Multiplication

Create n x n

threads



void multiply () {
Worker[][] worker = new Worker[n][n];
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col] = new Worker(row,col);

for ( int ÒÏ× ƛƾ
for ( int ÃÏÌ ƛƾ

worker[row][col]. start ();
for ( int ÒÏ× ƛƾ

for ( int ÃÏÌ ƛƾ
worker[row][col]. join ();

}
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Matrix Multiplication

Wait for 

them to 

finish

Start them

Whatôs wrong with this 

picture?



Thread Overhead
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Threads require resources

Memory for stacks

Setup, teardown

Scheduler overhead

Short-lived threads

Bad ratio of work versus overhead 



Thread Pools
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More sensible to keep a pool of long-lived threads

Thread: 

Assigned a short-lived task

Run the task

Rejoin pool & wait for next assignment



Thread Pool = Abstraction
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Insulate programmer from platform

Big machine, big pool

Small machine, small pool

Portable code

Works across platforms

Worry about algorithm, not platform



ExecutorService Interface
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Package java.util.concurrent

Task = Runnable object

Call void run ().

Task = Callable <T> object

Call T call ()

No result value expected? 

Type T result expected? 
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Future<T>
Callable <T> task ˮ ƛƘ 
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get (); 



Callable <T> task ˮ ƛƘ 
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get (); 
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Future<T>

Submitting a Callable<T> task 

returns a Future<T> object 



Callable <T> task ˮ ƛƘ 
ƛ
Future <T> future = executor . submit (task);
ƛ
T value = future . get (); 
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Future<T>

The Futureôs get() method blocks 

until the value is available



Runnable task ˮ ƛƘ 
ƛ
Future <?> future = executor . submit (task);
ƛ
future . get (); 
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Future<?>

Submitting a Runnable task 
returns a Future<?> object 
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Future<?>
Runnable task ˮ ƛƘ 
ƛ
Future <?> future = executor . submit (task);
ƛ
future . get (); 

The Futureôs get() method blocks 

until the computation is complete 

(no return value)



Warning
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Executor Service requests é

Like New England traffic signs

Are purely advisory in nature

The executor

Like the Boston driver

Is free to ignore any such advice

And could execute tasks sequentially é
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Matrix Addition

ὅ ὅ
ὅ ὅ

=
ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ

4 parallel additions
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Matrix Addition Task
class AddTask implements Runnable {

Matrix a, b; // add this!
public void run () {

if ( a. dim == 1) {
c[ 0][ 0] = a[ 0][ 0] + b[ 0][ 0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit ( addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit ( addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get (); 
ƛ



class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if ( a. dim == 1) {
c[ 0][ 0] = a[ 0][ 0] + b[ 0][ 0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit ( addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit ( addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get (); 
ƛ
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Matrix Addition Task

Constant-time operation



class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if ( a. dim == 1) {
c[ 0][ 0] = a[ 0][ 0] + b[ 0][ 0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit ( addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit ( addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get (); 
ƛ
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Matrix Addition Task

Submit 4 tasks



class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if ( a. dim == 1) {
c[ 0][ 0] = a[ 0][ 0] + b[ 0][ 0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit ( addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit ( addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get (); 
ƛ
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Matrix Addition Task

Base case: add directly



class AddTask implements Runnable {
Matrix a, b; // add this!
public void run () {

if ( a. dim == 1) {
c[ 0][ 0] = a[ 0][ 0] + b[ 0][ 0]; // base case

} else {
(partition a, b into half - size matrices aij and bij)
Future <?> f00 = exec. submit ( addTask(a00,b00));
ƛ
Future <?> f11 = exec. submit ( addTask(a11,b11));
f00 . getƽƾƘ ƛƘ f11 . get (); 
ƛ
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Matrix Addition Task

Let them finish



Dependencies
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Matrix example is not typical!

Tasks are independent

Donôt need results of one task é

To complete another

Often tasks are not independent
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Fibonacci

1 if n = 0 or 1
F(n)

F(n-1) + F(n-2) otherwise

Note

Potential parallelism

Dependencies



Disclaimer
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This Fibonacci implementation is egregiously inefficient

So donôt try this at home or job!

But illustrates our point

How to deal with dependencies

Exercise: Make this implementation efficient!
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class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask ( int n) {

arg = n;
}
public Integer call () {

if ( arg > 2) {
Future <Integer > left

= exec. submit ( new FibTask ( arg - 1));
Future <Integer > right

= exec. submit ( new FibTask ( arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}

Multithreaded Fibonacci



class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask ( int n) {

arg = n;
}
public Integer call () {

if ( arg > 2) {
Future <Integer > left

= exec. submit ( new FibTask ( arg - 1));
Future <Integer > right

= exec. submit ( new FibTask ( arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}
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Multithreaded Fibonacci

Parallel calls



class FibTask implements Callable <Integer > {
static ExecutorService exec

= Executors . newCachedThreadPool();
int arg ;
public FibTask ( int n) {

arg = n;
}
public Integer call () {

if ( arg > 2) {
Future <Integer > left

= exec. submit ( new FibTask ( arg - 1));
Future <Integer > right

= exec. submit ( new FibTask ( arg - 2));
return left . get () + right . get ();

} else {
return 1;

}}}
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Multithreaded Fibonacci

Wait for & combine results



The Blumofe-Leiserson DAG 

Model
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Multithreaded program is

A directed acyclic graph (DAG)

That unfolds dynamically

Each node is a single unit of work
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Fibonacci DAG
fib(4)
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Fibonacci DAG
fib(4)

fib(3)
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Fibonacci DAG
fib(4)

fib(3) fib(2)

fib(2)
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Fibonacci DAG
fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1)fib(1)

fib(1) fib(1)
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Fibonacci DAG
fib(4)

fib(3) fib(2)

call
get

fib(2) fib(1) fib(1)fib(1)

fib(1) fib(1)



How Parallel is That?
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Define work:

Total time on one processor

Define span (critical-path length):

Longest dependency path

Never faster than that!



Unfolded DAG
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Parallelism?
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Serial fraction = 3/18 = 1/6é

Amdahlôs Law says 

speedup cannot exceed 6.



Work?
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1

2

3

754

7 8 9 10

11 12 13 14

15 16

17

18

T1: time needed on one processor

Just count the nodes é.

T1 = 18



Critical Path?
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TÐ: time needed on as many 

processors as you like



Critical Path?
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1

2

3

4

5

6

7

8

9

Longest path é.

TÐ= 9

TÐ: time needed on as many 

processors as you like
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Notation Watch

TP = time on P processors

T1 = work (time on 1 processor)

TÐ= critical path length (time on Ð processors)
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Simple Laws

Work Law: TPÓ T1/P

In one step, canôt do more than P work

Critical Path Law: TPÓ TÐ

Canôt beat infinite resources



Art of Multiprocessor Programming 4848

Performance Measures

Ratio T1/TP

Speedup on P processors

Linear speedup

How much faster with P processors

T1/TP = Ū(P)

Max speedup (average parallelism)

T1/TÐ



Sequential Composition
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A B

Work: T1(A) + T1(B)

Critical Path: TÐ(A) + TÐ(B)



Parallel Composition
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Work: T1(A) + T1(B)

Critical Path: max{TÐ(A), TÐ(B)}

A

B
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Matrix Addition Review

ὅ ὅ
ὅ ὅ

=
ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ

4 parallel additions
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Addition

Let AP(n) be running time 

For n x n matrix on P processors

For example

A1(n) is work

AÐ(n) is critical path length
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Addition Work

4 spawned additions

Partition, synch, etc

A1(n) = 4 A1(n/2) + Ū(1)
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Addition Work

Same as double-loop summation

ὃ(n) = 4 ὃ( )+ɡρ

=ɡὲ
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Addition Span

ὃ (n) = ὃ ( )+ɡρ

spawned additions in 

parallel

Partition, synch, etc
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Addition Span

ὃ (n) = ὃ ( )+ɡρ

=ɡÌÏÇὲ
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Matrix Multiplication

ὅ ὃɇὄ
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Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὃ
ὃ ὃ

ɇ
ὄ ὄ
ὄ ὄ
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Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
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Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ

Phase 1: 8 multiplications
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Matrix Multiplication Redux

ὅ ὅ
ὅ ὅ

ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ
ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ

Phase 2: 4 additions
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Multiplication Work

ὓ (n) = 8 ὓ ( )+ὃ ὲ

8 parallel 

multiplications

Final addition
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Multiplication Work

Same as serial triple-nested loop

ὓ (n) = 8 ὓ ( )+ὃ ὲ

=ɡὲ
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Multiplication Span

ὓ (n) = ὓ ( )+ὃ ὲ

Half-size parallel 

multiplications

Final addition
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Multiplication Span

ὓ (n) = ὓ ( )+ὃ ὲ

= ὓ ( )+ɡÌÏÇὲ

= ɡὰέὫὲ



Parallelism
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M1(n)/ MÐ(n) = Ū(n3/log2 n) 

To multiply two 1000 x 1000 matrices

10003/102=107

Much more than number of processors 

on any real machine



Shared-Memory Multicores

Art of Multiprocessor Programming 6767

Parallel applications

No direct access to HW processors

Mix of other jobs

All run together

Come & go dynamically
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Ideal Scheduling Hierarchy

Tasks

Processors

User-level scheduler
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Realistic Scheduling Hierarchy

Tasks

Threads

Processors

User-level scheduler

Kernel-level scheduler



For Example
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Initially,

All P processors available for application

Serial computation

Takes over one processor

Leaving P-1 for us

Waits for I/O

We get that processor back é.



Speedup
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Map threads onto P processes

All P Cannot get P-fold speedup

What if the kernel doesnôt cooperate?

Can try for speedup proportional to P



Scheduling Hierarchy
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User-level scheduler

Tells kernel which threads are ready

Kernel-level scheduler

Synchronous (for analysis, not correctness!)

Picks pi threads to schedule at step i


