Multiprocessor
Synchronization
CSCI 176

Lecture 21
22 November 2022

Maurice Herlihy
Brown University

How to write Parallel Apps?

Split a program into parallel parts

In an effective way

Thread management

Art of Multiprocessor Programming

Matrix Multiplication

(0) o0 ¢o

Art of Multiprocessor Programming

Matrix Multiplication

No synchronization! Massive parallelism!

Art of Multiprocessor Programming 4

Matrix Multiplication

class Worker extends Thread ({

int row, col;

Worker(int row, int col){
row = row; col = col;

}

public void run(){
double dotProduct = 0.0;
for (int 1 =0; 1 <n; |++)

dotProduct +=a[row][i]*b[1][col];

c[row][col] = dotProduct ;

1

Art of Multiprocessor Programming

Matrix Multiplication

class Worker extends | Thread ({
int row, col;
Worker(int row, int col){

row = row; col = col

}

oublic void run (){ a subtype of thread
double dotProduct = 0.0;
for (int 1T =0; 1 <n; I++)

dotProduct +=a[row][i]*b[1][col];
c[row][col] = dotProduct ;

1

Art of Multiprocessor Programming

Matrix Multiplication

class Worker extends Thread ({
Int row,_col ;
Worker(int row, int col){
row = row,; COl "=_COk,
}
public void run(){
double dotPrgeiuet——=—O0-0—
for (int i = MWhich matrix entry to

dotProduct
m
c[row][col | =—<cad .WEP ; pUte

1

Art of Multiprocessor Programming

Matrix Multiplication

class Worker extends Thread_{

int - row, col; Actual computation
Worker(int row, int col){

row = row; col = col;
}

public void run(){
double dotProduct = 0.0;

for (int 1 =0; I <n; |++)
dotProduct +=a[row][i]*b[1][col];
a2l vewnd Il AAL T — AntDvAA i ~t .
LIU\IVJL \V V] | J - ULl 1TvvuuuwliL]
1

Art of Multiprocessor Programming

Matrix Multiplication

void multiply () {
Worker[][] worker = new Worker[n][n];
for (int OT x A%
for (int AT 1T A%
worker[row][col] = new
Worker(row,col);
for (int OT x A%

for (int AT T A%
worker[row][col]. start ();
for (int O x A%
for (int AT 1T A%

worker[row][col]. join ();

Matrix Multiplication

void multiply () {
Worker[][] ~ worker = new Worker[n][n];
for (int Ol x A%

for (int AT 1T A%
worker[row][col] = new Worker(row,col);
for —(int— O x &S
for (int AT 1T A%
worker[row][col]. start ();
for (int OT x A%
for (int AT 1 A% Create n x n
worker[row][col]. joir threads

Art of Multiprocessor Programming 10

Matrix Multiplication

void multiply () {
Worker[][] worker = new Wpskarlallnl:

for (int Ol x A% Start them
for (int AT 1 A%
worker[row][col] = newAWVorker (row,col);
for (int OT x A%
for (int AT 1 A%
51 What 0s wrongov'vith t hi s
picture? Wa.": fOI’
worker[row][col]. join (); them to

finish

Art of Multiprocessor Programming 11

Thread Overhead

Threads require resources
Memory for stacks

Setup, teardown

Scheduler overhead

Short-lived threads

Bad ratio of work versus overhead

Art of Multiprocessor Programming 12

Thread Pools

More sensible to keep a pool of long-lived threads

Assigned a short-lived task

Run the task

Rejoin pool & walit for next assignment

Art of Multiprocessor Programming 13

Thread Pool = Abstraction

Insulate programmer from platform
Big machine, big pool

Small machine, small pool

Portable code
Works across platforms

Worry about algorithm, not platform

Art of Multiprocessor Programming

14

ExecutorService Interface

No result value expected?

Task = Runnable object
Call void run ().

Type T result expected?
Task = Callable <T> object
Call T call ()

Art of Multiprocessor Programming

15

Callable <T> task

A
Future <T> future

A
T value = future

Future<T>

A K

= executor .submit (task);

. get ();

Art of Multiprocessor Programming

16

Future<T>

Callable <T> task * A K
A
Future <T> future = executor .submit (task);

X

/\

T value = future . get();

Submitting a Callable<T> task
returns a Future<T> object

Art of Multiprocessor Programming

17

Future<T>

Callable <T> task * A K

A

Future <T> future = executor .submit (task);
A

T value = future . get();

The Fuget()r meéhod blocks
until the value is available

Art of Multiprocessor Programming

18

Future<?>

Runnable task ” A K

A

Future <?> future = executor . submit (task);
A

future . get();

Submitting a Runnable task
returns a Future<?> object

Art of Multiprocessor Programming

19

Future<?>

Runnable task ” A K

A

Future <?> future = executor .submit (task);
A

future . get();

The Fuget()r meél®od blocks

until the computation is complete
(no return value)

Art of Multiprocessor Programming

20

Warning
Executor Servijce reques!

Like New England traffic signs

Are purely advisory in nature
The executor

Like the Boston driver

Is free to ignore any such advice

And coul d execut e] a <

Matrix Addition

4 parallel additions

Art of Multiprocessor Programming

22

Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run(){
if (a.dim == 1){
c[O][O]=a] O] O]+Db[O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,bll));
f0O.gets § K fLIK get ();
A

Art of Multiprocessor Programming

Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run(){
if (a.dim == 1){
c[O][O]=a] O] O]+Db[O] O]; // base case

L else f

(partition a, b into half - Size matrices aij and bij)
Fature—<?>—-100—=—execsunmic-(aadTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,b11));
f0O.gets § K fLIK get ();

A
Constant-time operation

Art of Multiprocessor Programming 24

Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run(){
if (a.dim == 1){
c[O][O]=a] O] O]+Db[O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11 = exec. submit (addTask(all,bll));
100.gers § K AIK ger(),
\

Submit 4 tasks

Art of Multiprocessor Programming 25

Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public _void run(){
if (a.dim == 1){
c[O][O]=a] O] O]+Db[O] O]; // base case

P r

J CloT 1

(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit\(addTask(a00,b00));
A

Future <?> f11 = exec. submit (aadTask(all,bll));
f00.gets &t K fAIK get ()

A Base case: add directly

Art of Multiprocessor Programming 26

Matrix Addition Task

class AddTask implements Runnable {
Matrix a, b; // add this!
public void run(){
if (a.dim == 1){
c[O][O]=a] O] O]+Db[O] O]; // base case

} else {
(partition a, b into half - Size matrices aij and bij)
Future <?> fO0 = exec. submit (addTask(a00,b00));
A

Future <?> f11_= exec. submit (addTask(all,b11));

f0O.gets § K fLIK get ();
A

Let them finish

Art of Multiprocessor Programming 27

Dependencies

Matrix example Is not typical!

Tasks are independent
Donot need results of

To complete another

Often tasks are not independent

Art of Multiprocessor Programming 28

Fibonacci

flifn:Oorl
(1)

_ F(n-1) + F(n-2) otherwise

Potential parallelism

Dependencies

Art of Multiprocessor Programming 29

Disclaimer

This Fibonacci implementation is egregiously inefficient

So

donot

try tnhi

But illustrates our point

How to deal with dependencies

Exercise: Make this implementation efficient!

Art of Multiprocessor Programming

)

a t

home

Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static ExecutorService exec
= Executors . newCachedThreadPool();

int arg;

public FibTask (int n){
arg = n;

}

public Integer call (){
if (arg > 2){

Future <Integer > left
= exec. submit (new FibTask (arg-1));
Future <Integer > right
= exec. submit (new FibTask (arg - 2));
return left .get()+ right . get();
} else {
return 1;

3}

Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static ExecutorService exec
= Executors . newCachedThreadPool();

int arg;

public FibTask (int n) { Parallel calls
arg = n;

}

public Integer call (){
if_(ara_> 2){

Future <Integer > left

= exec. submit (new FibTask (arg-1));
Future <Integer > right

= exec. submit (new FibTask (arg - 2));

retarm el T get =+ Tngiit . get (),
} else {
return 1, Art of Multiprocessor Programming 32

3}

Multithreaded Fibonacci

class FibTask implements Callable <Integer > {
static ExecutorService exec
= Executors . newCachedThreadPool();

int arg;
public FibTask (int n){
arg = n;
b Wait for & combine results
public Integer eeer—cg—
if (arg > 2){

Future <Integer > left
= exec. submit (new FibTask (arg-1));
Future <Integer > right
=—exes—submit-fnew FibTask -arg—2));
return left .get()+ right . get();
} eise |
return 1

3}

' Art of Multiprocessor Programming 33

The Blumofe-Leiserson DAG
\Yi[e]e[=]

Multithreaded program Is
A directed acyclic graph (DAG)

That unfolds dynamically

Each node is a single unit of work

Art of Multiprocessor Programming

Fibonacci DAG

Gl

Art of Multiprocessor Programming

Fibonacci DAG

[fib(4)]

\

[fih(3)]

Art of Multiprocessor Programming

Fibonacci DAG

[fib(4)]
-0

\

[fib(S)] [fib(2)

Gl

Art of Multiprocessor Programming

Fibonacci DAG

[fib(4)]
-0

\

fih(3) [fib(2)
-0 L -0

fo(2) (. fib(1) ib(1) fib(1)
Yo J(¢V) (&[]
iib(1) I [fib(l)]

Art of Multiprocessor Programming

M

Fibonacci DAG

[fib(4)

get

Art of Multiprocessor Programming

How Parallel is That?

Total time on one processor

Define span (critical-path length):

Longest dependency path

Never faster than that!

Art of Multiprocessor Programming

3

Unfolded DAG

Art of Multiprocessor Programming

41

Parallelism?

Serial fraction =3/18=1/6 é

Amdahl!| 6s Law
Speedup cannot exceed 6.

Art of Multiprocessor Programming 42

Work?

T,: time needed on one processor

Just count t h

T, =18

Art of Multiprocessor Programming 43

Critical Path?

TD: time needed on as many
processors as you like

Art of Multiprocessor Programming 44

Critical Path?

TD: time needed on as many
processors as you like

Longest P ¢

TD:9

Art of Multiprocessor Programming 45

Notation Watch

T, =time on P processors

T, =work (time on 1 processor)
Ty = critical path length (time on B processors)

Art of Multiprocessor Programming

Simple Laws
Work Law: T, O ,/P
Il n one step, c B&wookt
Critical Path Law: T, O ;T

Canot beat I nfi ni te

Art of Multiprocessor Programming

Performance Measures
Speedup on P processors

Ratio T,/T;

How much faster with P processors

Linear speedup

T,/To = U(P)

Max speedup (average parallelism)

1

Art of Multiprocessor Programming

Sequential Composition

SR E

Work: T,(A) + T{(B)

Critical Path: T (A) + Ty (B)

Art of Multiprocessor Programming 49

Parallel Composition

Work: T,(A) + T{(B)

Critical Path: max{Tg(A), T5(B)}

Art of Multiprocessor Programming

50

Matrix Addition Review

4 parallel additions

Art of Multiprocessor Programming

51

Addition

Let A-(n) be running time

For n X n matrix on P processors
For example

A,(n) Is work

Ag(n) Is critical path length

Art of Multiprocessor Programming

Addition Work

Partition, synch, etc

A,(n) = 4 A, (n/2) ¥ 0(1)

4 spawned additions

Art of Multiprocessor Programming

Addition Work

0 (n)=40 (H)+g p
=g e

Same as double-loop summation

Art of Multiprocessor Programming

Addition Span

Partition, synch, etc

o0 (n)=0 (H)*g p

spawned additions in
parallel

Art of Multiprocessor Programming

Addition Span

0 (NN=0 (-)+g p
=g | 1¢C

Art of Multiprocessor Programming

Matrix Multiplication

Matrix Multiplication Redux

Art of Multiprocessor Programming

Matrix Multiplication Redux

0 0O O 0O O 0O O 0O O
0 0O O 0O O 0O O O O

Art of Multiprocessor Programming

59

Matrix Multiplication Redux

O O 0O O O 0, |0 O 0O O
0O O D Q\] (006 ©/0 00

Phase 1: 8 multiplications

Art of Multiprocessor Programming 60

Matrix Multiplication Redux

0 (66 O 0 /|0 O 0O O
0 O 0O O 0 (00 0O O

Phase 2: 4 additions

Art of Multiprocessor Programming

61

Multiplication Work

Final addition
0 (n)=80 (H)¥0 ¢

8 parallel
multiplications

Art of Multiprocessor Programming

Multiplication Work

0 (N)=80)+ &
=y S
Same as serial triple-nested loop

Art of Multiprocessor Programming

Multiplication Span

Final addition
0 (=D ()6 &

Half-size parallel
multiplications

Art of Multiprocessor Programming

Multiplication Span

0 (N)=0 (H)+0 ¢
=0 (H)+g | 1&C
—g a ¢

Art of Multiprocessor Programming

Parallelism

M, (n)/ Mg(n) = U(n3/log? n)

To multiply two 1000 x 1000 matrices

10003/10%=10/

Much more than number of processors
on any real machine

Art of Multiprocessor Programming

Shared-Memory Multicores

Parallel applications

No direct access to HW processors
Mix of other jobs

All run together

Come & go dynamically

Art of Multiprocessor Programming

ldeal Scheduling Hierarchy

User-level scheduler 1

Processors

Art of Multiprocessor Programming

Realistic Scheduling Hierarchy

User-level scheduler 1

Kernel-level scheduler 1
Processors

Art of Multiprocessor Programming

For Example
P

All P processors available for application

Serial computation

Takes over one processor

Leaving P-1 for us
Waits for I/O

We get that processo

Art of Multiprocessor Programming 70

Speedup

Map threads onto P processes

All P Cannot get P-fold speedup

Wh at | f t hhe kernel doe

Can try for speedup proportional to P

Art of Multiprocessor Programming 71

Scheduling Hierarchy

User-level scheduler

Tells kernel which threads are ready
Kernel-level scheduler

Synchronous (for analysis, not correctness!

|

Picks p; threads to schedule at step |

Art of Multiprocessor Programming

