
Chapter 4

An Introduction to Functions

Through the agency ofwith , we have added identifiers and the ability to name expressions to the language.
Much of the time, though, simply being able to name an expression isn’t enough: the expression’s value is
going to depend on the context of its use. That means the expression needs to be parameterized; that is, it
must be afunction.

Dissecting awith expression is a useful exercise in helping us design functions. Consider the program

{with {x 5} {+ x 3}}

In this program, the expression{+ x 3} is parameterized over the value ofx . In that sense, it’s just like a
function definition: in mathematical notation, we might write

f (x) = x+3

Having named and definedf , what do we do with it? TheWAE program introducesx and then immediately
binds it to5. The way we bind a function’s argument to a value is to apply it. Thus, it is as if we wrote

f (x) = x+3; f (5)

In general, functions are useful entities to have in programming langugaes, and it would be instructive to
model them.

4.1 Enriching the Language with Functions

We will initially model the DrScheme programming environment, which has separate windows for Defini-
tions and Interactions. The Interactions window is DrScheme’s “calculator”, and the part we are trying to
model with our calculators. The contents of the Definitions window are “taught” to this calculator by click-
ing the Run button. Our calculator should therefore consume an argument that reflects these definitions.

To add functions toWAE, we must define their concrete and abstract syntax. In particular, we must both
describe a function definition, and provide a means for its use. To do the latter, we must add a new kind of
expression, resulting in the languageF1WAE.1 We will presume, as a simplification, that functions consume
only one argument. This expression language has the followingBNF:

1The reason for the “1” will become clear in Section 6.

27



28 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

<F1WAE> ::= <num>
| {+ <F1WAE> <F1WAE>}
| {with {<id> <F1WAE>} <F1WAE>}
| <id>
| {<id> <F1WAE>}

(The expression representing the argument supplied to the function is known as theactual parameter.)
We have dropped subtraction from the language on the principle that it is similar enough to addition for

us to determine its implementation from that of addition. To capture this new language, we employ terms of
the following type:

(define-typeF1WAE
[num (n number?)]
[add (lhs F1WAE?) (rhs F1WAE?)]
[with (name symbol?) (named-expr F1WAE?) (body F1WAE?)]
[id (name symbol?)]
[app (fun-name symbol?) (arg F1WAE?)])

Convince yourself that this is an appropriate definition.
Now let’s study function definitions. A function definition has three parts: the name of the function,

the names of its arguments, known as theformal parameters, and the function’s body. (The function’s
parameters may have types, which we will discuss in Chapter X.) For now, we will presume that functions
consume only one argument. A simple data definition captures this:

(define-typeFunDef
[fundef (fun-name symbol?)

(arg-name symbol?)
(body F1WAE?)])

Using this definition, we can represent a standard function for doubling its argument as

(fundef ’double
’n
(add (id ’n) (id ’n)))

Now we’re ready to write the calculator, which we’ll callinterp—short for interpreter—rather than
calc to reflect the fact that our language has grown beyond arithmetic. The interpreter must consume two
arguments: the expression to evaluate, and the set of known function definitions. This corresponds to what
the Interactions window of DrScheme works with. The rules present in theWAE interpreter remain the
same, so we can focus on the one new rule.

;; interp :F1WAE listof(fundef)→ number
;; evaluatesF1WAE expressions by reducing them to their corresponding values

(define(interp expr fun-defs)
(type-caseF1WAE expr

[num (n) n]



4.2. THE SCOPE OF SUBSTITUTION 29

[add (l r ) (+ (interp l fun-defs) (interp r fun-defs))]
[with (bound-id named-expr bound-body)

(interp (subst bound-body
bound-id
(num (interp named-expr fun-defs)))

fun-defs)]
[id (v) (error ’ interp " free identifier" )]

[app (fun-name arg-expr)
(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])

(interp (subst(fundef-body the-fun-def)
(fundef-arg-name the-fun-def)
(num (interp arg-expr fun-defs)))

fun-defs))] ))

The rule for an application first looks up the named function. If this access succeeds, then interpretation
proceeds in the body of the function after first substituting its formal parameter with the (interpreted) value
of the actual parameter. We see the result in DrScheme:

> (interp (parse ’{double {double 5}})
(list (fundef ’double

’n
(add (id ’n) (id ’n)))))

20

To make this interpreter function correctly, we must make several changes. First, we must adapt the parser
to treat the relevant inputs (as identified by theBNF) as function applications. Second, we must modify the
interpreter itself, changing the recursive calls to take an extra argument, and adding the implementation of
app. Third, we must extendsubstto handle theF1WAE language. Finally, we must writelookup-fundef,
the helper routine that finds function definitions. The last two changes are shown in Figure 4.1.

Exercise 4.1.1Why is the argument expression of an application of typeF1WAE rather than of typeWAE?
Provide a sample program permitted by the former and rejected by the latter, and argue that it is reasonable.

Exercise 4.1.2Why is the body expression of a function definition of typeF1WAE rather than of typeWAE?
Provide a sample definition permitted by using the former rather than the latter, and argue that it is reason-
able.

4.2 The Scope of Substitution

Suppose we ask our interpreter to evaluate the expression

(app ’ f (num 10))

in the presence of the solitary function definition

(fundef ’ f



30 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

’n
(app ’n (id ’n)))

What should happen? Should the interpreter try to substitute then in the function position of the application
with the number10, then complain that no such function can be found (or even that function lookup funda-
mentally fails because the names of functions must be identifiers, not numbers)? Or should the interpreter
decide that function names and function arguments live in two separate “spaces”, and context determines in
which space to look up a name? Languages like Scheme take the former approach: the name of a function
can be bound to a value in a local scope, thereby rendering the function inaccessible through that name. This
latter strategy is known as employingnamespacesand languages such as Common Lisp adopt it.

4.3 The Scope of Function Definitions

Suppose our definition list contains multiple function definitions. How do these interact with one another?
For instance, suppose we evaluate the following input:

(interp (parse’{f 5})
(list (fundef ’ f ’n (app ’g (add (id ’n) (num 5))))

(fundef ’g ’m (sub (id ’m) (num 1)))))

What does this program do? The main expression appliesf to 5. The definition off , in turn, invokes
functiong. Shouldf be able to invokeg? Should the invocation fail becauseg is defined afterf in the list
of definitions? What if there are multiple bindings for a given function’s name?

We will expect this program to evaluate to9. We employ the natural interpretation that each function
can “see” every function’s definition, and the natural assumption that each name is bound at most once so
we needn’t disambiguate between definitions. Is is, however, possible to define more sophisticated scopes.

Exercise 4.3.1If a function can invoke every defined function, that means it can also invoke itself. This is
currently of limited value because the languageF1WAE lacks a harmonious way of terminating recursion.
Consider adding a simple conditional construct (such asif0 , which succeeds if the term in the first position
evaluates to0) and writing interesting programs in this language.



4.3. THE SCOPE OF FUNCTION DEFINITIONS 31

(define-typeF1WAE
[num (n number?)]
[add (lhs F1WAE?) (rhs F1WAE?)]
[with (name symbol?) (named-expr F1WAE?) (body F1WAE?)]
[id (name symbol?)]
[app (fun-name symbol?) (arg F1WAE?)])

(define-typeFunDef
[fundef (fun-name symbol?)

(arg-name symbol?)
(body F1WAE?)])

;; lookup-fundef : symbol listof(fundef)−→ fundef
(define(lookup-fundef fun-name fundefs)

(cond
[(empty? fundefs) (error fun-name" function not found" )]
[else(if (symbol=? fun-name(fundef-fun-name(first fundefs)))

(first fundefs)
(lookup-fundef fun-name(rest fundefs)))]))

;; subst :F1WAE symbolF1WAE→ F1WAE
(define(subst expr sub-id val)

(type-caseF1WAE expr
[num (n) expr]
[add (l r ) (add (subst l sub-id val)

(subst r sub-id val))]
[with (bound-id named-expr bound-body)

(if (symbol=? bound-id sub-id)
(with bound-id

(subst named-expr sub-id val)
bound-body)

(with bound-id
(subst named-expr sub-id val)
(subst bound-body sub-id val)))]

[id (v) (if (symbol=? v sub-id) val expr)]
[app (fun-name arg-expr)

(app fun-name(subst arg-expr sub-id val))]))

Figure 4.1: Implementation of Functions: Support Code



32 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

;; interp :F1WAE listof(fundef)→ number
(define(interp expr fun-defs)

(type-caseF1WAE expr
[num (n) n]
[add (l r ) (+ (interp l fun-defs) (interp r fun-defs))]
[with (bound-id named-expr bound-body)

(interp (subst bound-body
bound-id
(num (interp named-expr fun-defs)))

fun-defs)]
[id (v) (error ’ interp " free identifier" )]
[app (fun-name arg-expr)

(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])
(interp (subst(fundef-body the-fun-def)

(fundef-arg-name the-fun-def)
(num (interp arg-expr fun-defs)))

fun-defs))]))

Figure 4.2: Implementation of Functions: Interpreter


	An Introduction to Functions
	Enriching the Language with Functions
	The Scope of Substitution
	The Scope of Function Definitions


