Chapter 6

First-Class Functions

We began Sectidr] 4 by observing the similarity betweeitla expression and a function definition applied
immediately to a value. Specifically, we observed that

{with {x 5} {+ x 3}

is essentially the same as
f(x) =x+3;f(5)
Actually, that’'s notquiteright: in the math equation above, we give the function a ndmehereas there is
no identifier named anywhere in th&VAE program. We can, however, rewrite the mathematical formula-
tion as
f=A(x).x+3;f(5)
which we can then rewrite as
(A(X)x+3)(5)
to get rid of the unnecessary nanf.(

That is, with effectively creates a new anonymous function and immediately applies it to a value.
Because functions are useful in their own right, we may want to separate the act of fudextiarationor
definitionfrom invocationor application(indeed, we might want to apply the same function multiple times).
That is what we will study now.

6.1 A Taxonomy of Functions

The translation ofvith into mathematical notation exploits two features of functions: the ability to cre-

ate anonymous functions, and the ability to define functions anywhere in the program (in this case, in the
function position of an application). Not every programming language offers one or both of these capabili-
ties. There is, therefore, a standard taxonomy that governs these different features, which we can use when
discussing what kind of functions a language provides:

first-order Functions are not values in the language. They can only be defined in a designated portion of
the program, where they must be given names for use in the remainder of the program. The functions
in FIWAE are of this nature, which explains thén the name of the language.

39

40 CHAPTER 6. FIRST-CLASS FUNCTIONS

higher-order Functions can return other functions as values.

first-class Functions are values with all the rights of other values. In particular, they can be supplied as the
value of arguments to functions, returned by functions as answers, and stored in data structures.

We would like to extendr1WAE to have the full power of functions, to reflect the capability of Scheme. In
fact, it will be easier to return t&W/AE and extend it with first-class functions.

6.2 Enriching the Language with Functions

To add functions toNVAE, we must define their concrete and abstract syntax. First let's examine some
concrete programs:

{{ftun {x} {+ x 4}
5}

This program defines a function that adti$o its argument and immediately applies this functiorbto
resulting in the valu®. This one

{with {double {fun {x} {+ x x}}}
{+ {double 10}
{double 5}}}

evaluates t@0. The program defines a function, binds itdouble , then uses that name twice in slightly
different contexts (i.e., instantiates the formal parameter with different actual parameters).

From these examples, it should be clear that we must introduce two new kinds of expressions: function
applications (as before), as well as (anonymous) function definitions. Here’s the remisedrresponding
to these examples:

<FWAE> := <num>
| {+ <FWAE> <FWAE>}
| {- <FWAE> <FWAE>}
| {with {<id> <FWAE>} <FWAE>}
| <id>
| {fun {<id>} <FWAE>}
| {<FWAE> <FWAE>}

Note thatF1WAE did not have function definitions as part of the expression language, since the definitions
were assumed to reside outside the expression being evaluated. In addition, notice that the function position
of an application (the lastNF production) is now more general: instead of just the name of a function,
programmers can write an arbitrary expression that must be evaluated to obtain the function to apply. The
corresponding abstract syntax is:

(define-typeFWAE
[num(n numbery|
[add (Ihs FWAE?Y (rhs FWAE?]

6.2. ENRICHING THE LANGUAGE WITH FUNCTIONS 41

[sub(lhs FWAE? (rhs FWAE?Y]

[with (name symbolAnamed-expr FWAB3body FWAEY]
[id (name symbol?

[fun (param symbolP(body FWAEM

[app (fun-expr FWAEY (arg-expr FWAEY)

To define our interpreter, we must think a little about what kinds of values it consumes and produces.
Naturally, the interpreter consumes values of t¥y®AE. What does it produce? Clearly, a program that
meets theVAE description must yield numbers. As we have seen above, some program that use functions
and applications also evaluate to numbers. How about a program that consists solely of a function? That is,
what is the value of the program

{fun {x} x}

? It clearly doesn't represent a number. It may be a function thiagén appliedo a numeric argument,
produces a number, but it's not itself a number (if you think differently, you need to indicate which number
it will be: 0? 1? 17297?). We instead realize from this that functions are also values that may be the result of
a computation.

We could design an elaborate representation for function values, but for now, we’ll remain modest. We'll
let the function evaluate to its abstract syntax representation (ifen siructure). (We will soon get more
sophisticated than this.) For consistency, we’ll also let numbers evaluaterstructures. Thus, the result
of evaluating the program above would be

#(struct:fun x #(struct:id x))

Now we're ready to write the interpreter. We must pick a type for the valueitkerp returns. Since
we've decided to represent function and number answers using the abstract syntax, it make sense to use
FWAE, with the caveat that only two kinds 6¥VAE terms can appear in the output: numbers and functions.
Ouir first interpreter will use explicit substitution, to offer a direct comparison with the correspovig
andF1WAE interpreters.

;; interp : FWAE — FWAE
;; evaluatesWAE expressions by reducing them to their corresponding values
;; return values are eith@umor fun

(define (interp exp)
(type-caseFWAE expr

[num(n) expq

[add (I r) (num+ (interp I) (interp r))]

[sub(l r) (num- (interp I) (interp r))]

[with (bound-id named-expr bound-bgdy

(interp (subst bound-body

bound-id
(interp named-expi)]

[id (v) (error "interp " free identifier")]

42 CHAPTER 6. FIRST-CLASS FUNCTIONS

[fun (bound-id bound-body
expr
[app (fun-expr arg-expy
(local ([definefun-val(interp fun-expj])
(interp (subst(fun-body fun-val
(fun-param fun-val
(interp arg-exp})))])

(We made a small change to the rulesdoid andsulx they usenunyt- andnum- sinceinterp now returns
anFWAE. These auxilliary definitions are given in Sectjon|6.7.)

The rule for a function says, simply, to return the function itself. (Notice the similarity to the rule for
numbers!) That leaves only the rule for applications to study. This rule first evaluates the function position
of an application. This is because that position may itself contain a complex expression that needs to be
reduced to an actual function. For instance, in the expression

{{{fun {x} x}
{fun {x} {+ x 5}}}
3}

the outer function position consists of the application of the identity function to a function that adds five to
its argument.

When evaluated, the function position had better reduce to a function value, not a number (or anything
else). For now, we implicitly assume that the programs fed to the interpreter have no errors. (In[Section X,
we will expend a great deal of effort to identify programs that may contain such errors.) Given a function,
we need to evaluate its body after having substituted the formal argument with its value. That's what the rest
of the program does: evaluate the expression that will become the bound value, bind it using substitution,
and then interpet the resulting expression. The last few lines are very similar to the cedthfor

To understand this interpreter better, consider what it produces in response to evaluating the following
term:

{with {x 3}
{fun {y}
{+ x yii}

DrScheme prints the following:
#(struct:fun y #(struct:add #(struct:num 3) #(struct:id y)))

Notice that thex inside the function body has been replace®ls a result of substitution, so the function
has no references toleft in it.

Problem 6.2.1 What induced the small change in the rules for add and sub? Explain, with an example,
what would go wrong if we did not make this change.

Problem 6.2.2 Did you notice the small change in the interpretatiomdth ?

Problem 6.2.3 What goes wrong if the interpreter fails to evaluate the function position (by invoking the
interpreter on it)? Write a program and present the expected and actual results.

6.3. MAKING WITHREDUNDANT 43

6.3 Making with Redundant

Now that we have functions and function invocation as two distinct primitives, we can combine them to
recover the behavior afith as a special case. Every time we encounter an expression of the form

{with {var named} body}
we can replace it with

{{fun {var} body}
named}

and obtain the same effect. The result of this translation does natittse, so it can be evaluated by a

more primitive interpreter: one f&kE enriched with functions. A simple pre-processor that runs before the
interpreter can perform this translation. We will assume the existence of such a pre-processor, and use the
languagerAE as our basis for subsequent exploration.

6.4 Implementing Functions using a Substitution Cache

As Sectior] b described, our implementation will be more sprightly if we cache substitutions instead of
performing them greedily. Thus, let us study how to adapt our interpreter.

First, we must include a definition of a substitution cache. The substitution cache associates identifiers
with their values. Previously, the value had always been a number, but now our set of values is richer. We
therefore use the following type, with the understanding that the value will alwaysear fun:

(define-typeSubCache
[mtSub
[aSub(name symbolAvalue FAE?Y (sc SubCachép

Relative to this, the definition dbokupremains the same (only it now returns values of tfAg&).
Our first attempt at a resulting interpreter is

(define (interp expr s§
(type-caseFAE expr
[num(n) expq
[add (I r) (num+ (interp | sQ (interp r sQ)]
[sub(lI r) (num- (interp I sq (interp r sqQ)]
[id (v) (lookup v s§]
[fun (bound-id bound-body
expi]
[app (fun-expr arg-expyr
(local ([definefun-val (interp fun-expr sj)
(interp (fun-body fun-val
(aSub(fun-param fun-val
(interp arg-expr sg

so))

44 CHAPTER 6. FIRST-CLASS FUNCTIONS

When we run a battery of tests on this interpreter, we find that the expression

{with {x 3}
{with {f {fun {y} {+ x y}}}
{with {x 5}
{f 43}

evaluates t@®. This should be surprising, because we seem to again have introduced dynamic scope! (Notice
that the value ok depends on the context of the applicatiorf phot its definition.)

To understand the problem better, let's return to this example, which we examined in the context of the
substitution interpreter: the result of interpreting

{with {x 3}
{fun {y}
{+ x yii}

in the substitution interpreter is
#(struct:fun y #(struct:add #(struct:num 3) #(struct:id y)))

That is, it had substituted the with 3 in the procedure. But because we are deferring substitution, our
representation for the procedure is just its text. As a result, the interpreter that employs a substitution cache
instead evaluates the same term to

#(struct:fun y #(struct:add #(struct:id x) #(struct:iid y)))

What happened to the substitution for its body?

The moral here is that, to properly defer substitution, the value of a function should be not only its text,
but also the substitutions that were due to be performed on it. We therefore define a new datatype for the
interpreter’s return value that attaches the definition-time substitution cache to every function value:

(define-typeFAE-Value
[numV(n numbery|
[closureV(param symbol

(body FAE?Y
(sc SubCachép

Accordingly, we change the rule féunin the interpreter to

[fun (bound-id bound-body
(closureV bound-id bound-body)$c

We call this constructed valuecdosurebecause it “closes” the function body over the substitutions that are
waiting to occur.

When the interpreter encounters a function application, it must ensure that the function’s pending substi-
tutions aren’t forgotten. It must, however, ignore the substitutions pending at the locationimfdbation
for that is precisely what led us to dynamic instead of static scope. It must instead use the substitutions

6.5. SOME PERSPECTIVE ON SCOPE 45

of the invocation location to convert the function and argument into values, hope that the function expres-
sion evaluated to a closure, then proceed with evaluating the body employing the substitution cache in the
closure.

[app (fun-expr arg-expr
(local ([definefun-val (interp fun-expr sg)
(interp (closureV-body fun-val
(aSub(closureV-param fun-val
(interp arg-expr sg
| (closureV-sc fun-vai)))]

That is, having evaluatddn-exprto yield fun-val we obtain not only the actual function body frdum-vals

closure record but also the substitution cache stored within it. Crucially, while we evahgagxprin sc

the substitution cache active at the invocation location, we evaluate the function’mitsffremembered”
substitution cache Once again, the content of this boxed expression determines the difference between
static and dynamic scope. Figlire|6.1 presents the complete interpreter.

Problem 6.4.1 This interpreter does not check whether the function position evaluated to a closure value.
Modify the interpreter to check and, if the expression fails to yield a closure, report an error.

Problem 6.4.2 Suppose we explicitly implementedth in the interpreter. Given thatvith is just a
shorthand for creating and applying a closure, would the changes we made to closure creation and function
application have an effect amith too?

Problem 6.4.3 Define a caching interpreter for lazy language with first-class functions.

6.5 Some Perspective on Scope

The example above that demonstrated the problem with our caching interpreter might not be a very convinc-
ing demonstration of the value of static scope. Indeed, you might be tempted to say, “If yoxke@y

why not just use8 instead ofx inside the procedure declaration? That would avoid this problem entirely!”
That's a legitimate response for that particular example, which was however meant delpomstrate the
problem not tomotivate the need for the solutiobet’'s now consider two examples that do the latter.

6.5.1 Differentiation

First, let’s look at implementing (a simple version of) numeric differentiation in Scheme. The program is
(defineH 0.0001)

(define (d/dx f)
(lambda (X)
(/ (= (f (+xH) (f x)
H)))

46 CHAPTER 6. FIRST-CLASS FUNCTIONS

In this example, in the algebraic expression, the identifisrfree relative to the inner function. However,

we cannot do what we proposed earlier, namely to substitute the free variable with its value; this is because
we don't know what valueg will hold during execution, and in particul&rwill likely be bound to several
different values over the course of the program’s lifetime. If we run the inner procedure under dynamic
scope, one of two things will happen: either the identifigrill not be bound to any value in the context of

use, resulting in an unbound identifier error, or the procedure will use whdte&vbound to, which almost
certainly will not correspond to the value supplieddfolx That is, in a hypothetical dynamically-scoped
Scheme, you would get

> (definediff-of-square(d/dx (lambda (X) (x X X))))

> (diff-of-squarel0)

reference to undefined identifier: f

> (definef "greg)

> (diff-of-squarel0)

procedure application: expected procedugéven: greg arguments were: 10.0001
> (definef sqrt)

> (diff-of-squarel0)

0.15811348772487577

That is,f assumes whatever value it has at the poinusé ignoring the value given to it at the inner
procedure’definition In contrast, what we really get from Scheme is

> (diff-of-squarel0)
20.000099999890608 ;; approximately 16« 2 =20

6.5.2 Callbacks

Let’s consider another example, this one from Java. This program implemealiback which is a com-

mon programming pattern employed in programming GUIs. In this instance, the callback is an object in-
stalled in a button; when the user presses the button, the GUI system invokes the callback, which brings up
a message box displaying the number of times the user has pressed the button. This powerful paradigm lets
the designer of the GUI system provide a generic library of graphical objects independent of the behavior
each client wants to associate with that object.

/[GUI library code
public class JButton {
public void whenPressed(ActionEvent e) {
for (int i = O; i < listeners.length; ++i)
listeners[i].actionPerformed(e);

}

/I User customization
public class GUIApp {
private int count = 0;

6.5. SOME PERSPECTIVE ON SCOPE a7

public class ButtonCallback implements ActionListener {
public void actionPerformed(ActionEvent e) {
count = count + 1;
JOptionPane.showMessageDialog(null,
"Callback was invoked " +
count + " times!");

}

public Component createComponents() {
JButton button = new JButton("Click me!");
button.addActionListener(new ButtonCallback());
return button;

}

Stripped to its essence, the callback code is really no different from

;; GUI library code
(define (button callback
(local [(define (sleep-loop
(whenbutton-pressed
(begin
(callback
(sleep-loop)))]
(sleep-loop))

;; User customization
(local [(define count0)
(define (my-callback
(begin
(set! count(addl couny) ;; increment counter
(message-box
(string-append’ Callback was invoked "
(number—string counj

" times!"))))]
(button my-callback

That is, a callback is just a function passed to the GUI toolbox, which the toolbox invokes when it has an
argument. But note that in the definitionmofy-callback(or ButtonCallback), the identifiercountis not
bound within the function (or object) itself. That is, itfreein the function. Therefore, whether it is scoped
statically or dynamically makes a huge difference!

How do we want our callback to behave? Naturally, as the users of the GUI toolbox, we would be very
upset if, the first time the user clicked on the button, the system halted with the message

48 CHAPTER 6. FIRST-CLASS FUNCTIONS

error; identifier ‘count’ not bound

The bigger picture is this. As programmers, we hope that other people will use our functions, perhaps
even in fantastic contexts that we cannot even imagine. Unfortunately, that means we can't possibly know
what the values of identifiers will be at the location of use, or whether they will even be bound. If we must
rely on the locus of use, we will produce highly fragile programs: they will be useful only in very limited
contexts, and their behavior will be unpredictable everywhere else.

Static scoping avoids this fear. In a language with static scope, the programmer has full power over
choosing from the definition and use scopes. By default, free identifiers get their values from the definition
scope. If the programmer wants to rely on a value from the use scope, they simply make the corresponding
identifier a parameter. This has the added advantage of making very explicit in the function’s interface which
values from the use scope it relies on.

Dynamic scoping is primarily interesting as a historical mistake: it was in the earliest versions of Lisp,
and persisted for well over a decade. Scheme was created as an experimental language in part to experiment
with static scope. This was such a good idea that eventually, even Common Lisp adopted static scope.
Most modern languages are statically scoped, but sometimes they make the mistake of recapitulating this
phylogeny. So-called “scripting” languages, in particular, often make the mistake of implementing dynamic
scope (or the lesser mistake of just failing to create closures), and must go through multiple iterations before
they eventually implement static scope correctly.

6.6 Eagerness and Laziness

Recall that a lazy evaluator was one that did not reduce the named-expressiaitiof & a value at the
time of binding it to an identifier. What is the corresponding notion of laziness in the presence of functions?
Let's look at an example: in a lazy evaluator,

{with {x {+ 3 3}
{+ x x}}

would first reduce to
{+ {+ 3 3} {+ 3 3}}

But based on what we've just said in secfiorj 6.3 about redweitiy to procedure application, the treatment

of procedure arguments should match that of the named expressionitim a Therefore, a lazy language

with procedures is one that does not reduce its argument to a value until necessary in the body. The following
sequence of reduction rules illustrates this:

{{ffun {x} {+ x x}}
{+ 3 3}

{+ {+ 3 3} {+ 3 3}}
{+ 6 {+ 3 3}}

{+ 6 6}

12

6.7. HELPER FUNCTIONS 49

which is just an example of theith translation described above; a slightly more complex example is

{with {double {fun {x} {+ x x}}}
{double {double 5}}}
= {{fun {x} {+ x x}}
{{fun {x} {+ x x}}
St
{{fun {x} {+ x x}}
{+ 5 5}}
{+ {+ 5 5} {+ 5 5}}
{+ 10 {+ 5 5}}
{+ 10 10}
20

What do the corresponding reductions look like in an eager regime? Are there significant differences be-
tween the two?

6.7 Helper Functions

The auxiliary functionsiumy- and num— operate omuns (as opposed toumbes). We define them as
follows:

;; UM+ :NUM NUM— NuUM
(define(nuny- n1 n2
(num(+ (num-n n) (num-n n3)))

;; UM- :NUM NUM— NuUM
(define (num- n1 n2
(num(— (num-n n) (num-n n3)))

50 CHAPTER 6. FIRST-CLASS FUNCTIONS

(define-typeFAE
[num(n numbery|
[add (Ihs FAE?) (rhs FAE?)]
[sub(lhs FAE? (rhs FAE?)]
[id (name symbol?
[fun (param symbolP(body FAE?]
[app (fun-expr FAE? (arg-expr FAE?Y])

;onum+ :numV numV— numV

(define (hunyt- N1 n2
(numV(+ (numV-n n} (numV-n n2)))

;o num- :numV numV—: numV

(define (hum- nl n2
(numV(— (numV-n n} (numV-n n2)))

(define-typeFAE-Value
[numV(n numbery|
[closureV(param symbolp

(body FAE?Y
(sc SubCachép

(define-typeSubCache
[mtSub
[aSub(name symbolvalue FAE-ValueP(sc SubCachép)

;; lookup : symbolSubCache — FAE-Value

;; interp : FAE SubCache — FAE-Value
(define (interp expr s¢
(type-caseFAE expr
[num(n) (numV 1]
[add (I r) (numy (interp | s§ (interp r s@)]
[sub(lr) (num- (interp | sg (interp r sQ)]
[id (v) (lookup v sg]
[fun (bound-id bound-body
(closureV bound-id bound-body)$c
[app (fun-expr arg-expr
(local ([definefun-val(interp fun-expr sj)
(interp (closureV-body fun-val
(aSub(closureV-param fun-val
(interp arg-expr st
(closureV-sc fun-v)))]))

Figure 6.1: First-Class Functions with Cached Substitutions

	First-Class Functions
	A Taxonomy of Functions
	Enriching the Language with Functions
	Making with Redundant
	Implementing Functions using a Substitution Cache
	Some Perspective on Scope
	Differentiation
	Callbacks

	Eagerness and Laziness
	Helper Functions

