
CSCI-1680 
Transport Layer I 

Based	  partly	  on	  lecture	  notes	  by	  David	  Mazières,	  Phil	  Levis,	  John	  Janno<	  

Rodrigo Fonseca 



Administrivia 

•  Homework 2 out since Sunday 
–  Due Friday (hours !exible): you get graded before 

midterm 
–  No late days until Monday at 4pm (free extension) 
–  No grade aer that! (We release the solutions before 

the midterm) 
•  Studying for the midterm 

–  Similar questions to homeworks, end-of-chapter 
problems in the book 



Today 

•  IPv6 (see slides from previous class) 
•  Transport Layer 

–  UDP 
–  TCP Intro 



Transport Layer 

•  Transport protocols sit on top of network layer 
•  Problem solved: communication among 

processes 
–  Application-level multiplexing (“ports”) 
–  Error detection, reliability, etc. 

Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+ )*#, )*#!

-##$ ). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.



UDP – User Datagram Protocol 

•  Unreliable, unordered datagram service 
•  Adds multiplexing, checksum 
•  End points identi!ed by ports 

–  Scope is an IP address (interface) 
•  Checksum aids in error detection 



UDP Header 

SrcPort DstPort

ChecksumLength

Data

0 16 31



UDP Checksum 

•  Uses the same algorithm as the IP checksum 
–  Set Checksum #eld to 0 
–  Sum all 16-bit words, adding any carry bits to the LSB 
–  Flip bits to get checksum (except 0xffff->0xffff) 
–  To check: sum whole packet, including sum, should 

get 0xffff 
•  How many errors? 

–  Catches any 1-bit error 
–  Not all 2-bit errors 

•  Optional in IPv4: not checked if value is 0 



Pseudo Header 

•  UDP Checksum is computer over pseudo-
header prepended to the UDP header 
–  For IPv4: IP Source, IP Dest, Protocol (=17), plus 

UDP length 
•  What does this give us? 
•  What is a problem with this? 

–  Is UDP a layer on top of IP? 

 0      7 8     15 16    23 24    31 
+--------+--------+--------+--------+ 
|          source address           | 
+--------+--------+--------+--------+ 
|        destination address        |  
+--------+--------+--------+--------+ 
|  zero  |protocol|   UDP length    |   
+--------+--------+--------+--------+ 



Next Problem: Reliability 

•  Review: reliability on the link layer 

Problem	   Mechanism	  

Acknowledgments	  +	  Timeout	  Dropped	  Packets	  

Duplicate	  Packets	   Sequence	  Numbers	  

Packets	  out	  of	  order	   Receiver	  Window	  

Keeping	  the	  pipe	  full	   Sliding	  Window	  (Pipelining)	  

•  Single link: things were easy…  



Transport Layer Reliability 

•  Extra difficulties 
–  Multiple hosts 
–  Multiple hops 
–  Multiple potential paths 

•  Need for connection establishment, tear down 
–  Analogy: dialing a number versus a direct line 

•  Varying RTTs 
–  Both across connections and during a connection 
–  Why do they vary? What do they in!uence? 



Extra Difficulties (cont.) 

•  Out of order packets 
–  Not only because of drops/retransmissions 
–  Can get very old packets (up to 120s), must not get 

confused 
•  Unknown resources at other end 

–  Must be able to discover receiver buffer: !ow control 
•  Unknown resources in the network 

–  Should not overload the network 
–  But should use as much as safely possible 
–  Congestion Control (next class) 



TCP – Transmission Control Protocol 

•  Service model: “reliable, connection oriented, full 
duplex byte stream” 
–  Endpoints: <IP Address, Port> 

•  Flow control 
–  If one end stops reading, writes at other eventually stop/fail 

•  Congestion control 
–  Keeps sender from overloading the network (next lecture) 

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …



TCP 

•  Speci!cation 
–  RFC 793 (1981), RFC 1222 (1989, some corrections), 

RFC 5681 (2009, congestion control), … 
•  Was born coupled with IP, later factored out 

–  We talked about this, don’t always need everything! 
•  End-to-end protocol 

–  Minimal assumptions on the network 
–  All mechanisms run on the end points 

•  Alternative idea: 
–  Provide reliability, !ow control, etc, link-by-link 
–  Does it work? 



TCP Header 
 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|          Source Port          |       Destination Port        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        Sequence Number                        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Acknowledgment Number                      |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|  Data |           |U|A|P|R|S|F|                               |   
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |   
|       |           |G|K|H|T|N|N|                               |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Checksum            |         Urgent Pointer        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Options                    |    Padding    |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                             data                              |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



Header Fields 

•  Ports: multiplexing 
•  Sequence number 

–  Correspond to bytes, not packets! 
•  Acknowledgment Number 

–  Next expected sequence number 
•  Window: willing to receive 

–  Lets receiver limit SWS (even to 0) for !ow control 
•  Data Offset: # of 4 byte header + option bytes 
•  Flags, Checksum, Urgent Pointer 



Header Flags 

•  URG: whether there is urgent data  
•  ACK: ack no. valid (all but !rst segment) 
•  PSH: push data to the application immediately 
•  RST: reset connection 
•  SYN: synchronize, establishes connection 
•  FIN: close connection 



Establishing a Connection 

•  ree-way handshake 
–  Two sides agree on respective initial sequence nums 

•  If no one is listening on port: server sends RST 
•  If server is overloaded: ignore SYN 
•  If no SYN-ACK: retry, timeout 

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Listen,	  
Accept…	  

Accept	  
returns	  

Connect	  



Connection Termination 

•  FIN bit says no more data to send 
–  Caused by close or shutdown 
–  Both sides must send FIN to close a connection 

•  Typical close 
FIN	  

ACK	  

FIN	  

ACK	  

Close	  

Close	  

FIN_WAIT_1	  

CLOSE_WAIT	  

FIN_WAIT_2	  

LAST_ACK	  

TIME_WAIT	  

CLOSED	  

CLOSED	  

…

2M
SL
	  



Summary of TCP States 
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two 
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Passive	  close:	  
Can	  sWll	  send!	  AcWve	  close:	  

Can	  sWll	  receive	  

Co
nn

ec
Wo

n	  
Es
ta
bl
is
hm

en
t	  

Unsynchronized	  

Synchronized	  



TIME_WAIT 

•  Why do you have to wait for 2MSL in TIME_WAIT? 
–  What if last ack is severely delayed, AND 
–  Same port pair is immediately reused for a new connection? 

•  Solution: active closer goes into TIME_WAIT 
–  Waits for 2MSL (Maximum Segment Lifetime) 

•  Can be problematic for active servers 
–  OS has too many sockets in TIME_WAIT, can accept less 

connections 
•  Hack: send RST and delete socket, SO_LINGER = 0 

–  OS won’t let you re-start server because port in use 
•  SO_REUSEADDR lets you rebind 



How about some data? 

•  Next Class: sliding window revisited 
–  Used for reliability and in-order delivery (acks, 

timeouts, sequence numbers, buffers) 
–  New: !ow control, by means of receiver Window size 
–  New: congestion control, sender intelligently sets SWS 

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)



Coming Up 

•  IP handins: please pay attention to the issues 
we discussed today, good luck! 

•  Next week: Transport Layer 


