
CS168 Programming Assignment 1: Snowcast

Assignment Out: January 27, 2011
Milestone: February 4, 2011, 6pm
Assignment Due: February 11, 2011, 10pm

1 Introduction

You will be implementing a simple Internet Radio Station. The purpose of this assignment is to become
familiar with sockets and threads, and to get you used to thinking about network protocols.

If you’re unfamiliar with sockets or threads, you should read the pages about them linked from the course
webpage. As always, e-mail us at cs168tas@cs.brown.edu or to come to one of our office hours if
you have further questions.

2 Protocol

This assignment has two parts: the server, which streams songs, and a pair of clients for connecting to the
server and receiving songs.

There are two kinds of data being sent between the server and the client. One is the control data.
The client uses this data to specify which station to listen to and the server uses it to give the client song
information. The other kind is the song data, which the server reads from song files and streams to the client.
You will be using TCP for the control data and UDP for the song data.

2.1 Client to Server Commands

The client sends the server commands. There are two commands the client can send the server, in the
following format.

Hello:
uint8_t commandType = 0;
uint16_t udpPort;

SetStation:
uint8_t commandType = 1;
uint16_t stationNumber;

1



CS168 Snowcast

A uint8_t1 is an unsigned 8-bit integer. A uint16_t is an unsigned 16-bit integer. Your programs
should use network byte order.2 So, to send a Hello command, your client must send exactly three bytes
to the server.

The Hello command is sent when the client connects to the server. It tells the server what UDP port
the server should be streaming song data to.

The SetStation command is sent to pick an inital station or to change stations. stationNumber
identifies the station.

2.2 Server to Client Replies

There are three possible replies the server may send to the client:

Welcome:
uint8_t replyType = 0;
uint16_t numStations;

Announce:
uint8_t replyType = 1;
uint8_t songnameSize;
char songname[songnameSize];

InvalidCommand:
uint8_t replyType = 2;
uint8_t replyStringSize;
char replyString[replyStringSize];

A Welcome reply is sent in response to a Hello command. Stations are numbered sequentially from
0, so a numStations of 30 means 0 through 29 are valid. A Hello command, followed by a Welcome
reply, is called a handshake.

An Announce reply is sent on two occasions: after a client sends a SetStation command, or when
the station a client is listening to changes its song. songnameSize represents the length, in bytes, of the
filename, while songname contains the filename itself. The string must be formatted in ASCII and must
not be null-terminated. So, to announce a song called Beat It, your client must send the replyType
byte, followed by a byte whose value is 7, followed by the 7 bytes whose values are the ASCII character
values of Beat It.

An InvalidCommand reply is sent in response to any invalid command. replyString should
contain a brief error message explaining what went wrong. Give helpful strings stating the reason for
failure. If a SetStation command was sent with 1729 as the stationNumber, a bad replyString
is “Error, closing connection.”, while a good one is “Station 1729 does not exist.”. To simplify the protocol,
whenever the server receives an invalid command, it must reply with an InvalidCommand and then close
the connection to the client that sent it.

Invalid commands happen in the following situations:

• SetStation

1You can use these types from C if you #include <inttypes.h>.
2Use the functions htons, htonl, ntohs and ntohl to convert from network to host byte order and back.

2



CS168 Snowcast

– The station given does not exist.

– The command was sent before a Hello command was sent. The client must send a Hello
command before sending any other commands.

– If the command was sent before the server responded to a previous SetStation by sending
an Announce reply, then your server may reply to this with an InvalidCommand. This
means that your client should be careful and wait for an Announce before sending another
SetStation, but your server can be lax about this.

• Hello

– More than one Hello command was sent. Only one should be sent, at the very beginning.

• An unknown command was sent (one whose commandType was not 0 or 1).

3 Implementation Requirements

We recommend that you implement this project in C; we find it very straightforward to do so. If you are
unfamiliar or rusty with C, read through the documentation linked on the course web page or contact the
TAs for help. We will offer full language support and help with debugging tools.

If you decide you would like to implement this or future projects in a language other than C, please
contact us beforehand to seek approval. This project intends to familiarize you with the Berkeley sockets
API, so you must demonstrate that your language provides a sufficiently similar API. Linking to a web page
containing the relevant language documentation is sufficient. You must not use high-level socket wrappers
unless you write them yourself; we will tell you which libraries are and which are not acceptable. Thus far,
we have approved requests for C++ and Scheme (but still contact us if you want to use one of these). Note
that for the later projects, you will be responsible for finding or writing your own IP and TCP packet headers
(these can be included directly from the Linux kernel headers for C students), the TAs will offer limited
language support, and your partner for the project must approve of your choice of language.

3.1 Clients

You will write two separate clients.

3.1.1 UDP Client

The UDP client handles song data. The executable must be called snowcast_listener. Its command
line must be:

snowcast_listener udpport

The UDP client must print all data received on the specified UDP port to stdout3.

3There’s no need for the UDP client to play the data it receives itself, since you can just pipe its output into another program
which plays the music instead. More on this later.

3



CS168 Snowcast

3.1.2 TCP Client

The TCP client handles the control data. The executable must be called snowcast_control. Its com-
mand line must be:

snowcast_control servername serverport udpport

servername represents the IP address (e.g. 128.148.38.158) or hostname (e.g. localhost, cslab6c) which
the control client should connect to, and serverport is the port to connect to. udpport is the port on
which the local UDP client is watching for song data.

The control client should connect to the server and communicate with it according to the protocol. After
the handshake, it should show a prompt and wait for input from stdin. If the user types in ’q’ followed by a
newline, the client should quit. If the user types in a number followed by a newline, the control should send
a SetStation command with the user-provided station number.

If the client gets an invalid reply from the server (one whose replyType is not 0, 1, or 2), then it
should close the connection and exit.

The client must print whatever information the server sends it (e.g. the numStations in a Welcome).
It must print replies in real time.

3.2 Server

The server executable must be called snowcast_server. Its command line must be:

snowcast_server tcpport file1 [file2 [file3 [...]]]

That is, a port number on which the server will listen, followed by a list of files. To make things easy, each
station will contain just one song. Station 0 should play file1, Station 1 should play file2, etc... Each station
should loop its song indefinitely.

When the server starts, it should begin listening for connections. When a client connects, it should
interact with it as specified by the Protocol. Additionally, it should send an Announce whenever a song
repeats.

You want the server to stream music, not to send it as fast as possible. Assume that all mp3 files are
128kbps, meaning that the server should send data at a rate of 128kpbs (16 kilobytes/s).

The server must print out any commands it receives and any replies it sends to stdout. It should also
have a simple command-line interface: ‘p’ followed by a newline should cause the the server should print
out a list of its stations along with the clients that are connected to each one, and ‘q’ followed by a newline
should cause the server to close all connections, free any resources it’s using, and quit.

Additionally:

• The server has to support multiple clients simultaneously.

• There should be no hard-coded limit to the number of stations your server can support or to the number
of clients connected to a station.

• Remember to properly handle invalid commands (see the Protocol section above).

4



CS168 Snowcast

• The server should never crash, even when a misbehaving client connects to it. The connection to that
client might be terminated, however.

• If multiple clients are connected to one station, they should all be listening to the same part of the
song, even if they connected at different times.

• If no clients are connected to a station, the current position in the song should still progress, without
sending any data. The radio doesn’t stop when no one is listening.

• The server should not read the entire song file into memory.

4 Testing

We’ve provided a sample Makefile in /course/cs168/pub/snowcast/Makefile that you can use
as a stencil to get started.

A good way to test your code at the beginning is to stream text files instead of mp3s. Once you’re more
confident of your code, you can test your program using the mp3 files in
/course/cs168/pub/snowcast/mp3. You can pipe the output of your UDP client into mpg123 to
listen to the mp3:

./snowcast_listener port | mpg123 -

If you bring headphones to the sunlab, you should hear something.

4.1 Rate Monitor

Unfortunately, there are many details to streaming mp3s well that would require understanding the mp3 file
format in detail to do a really good job. Instead we ask only that you stream the mp3 at a constant bitrate.
We’ve created a rate monitoring program available in
/course/cs168/pub/snowcast/rate_monitor. This takes data from stdin, outputs it to stdout,
and prints statistics about the rate at which it is receiving data to stderr. We’ll be testing to see that your rate
is consistently 16 kilobytes/second. You can run it as follows:

./snowcast_listener port | /course/cs168/pub/snowcast/rate_monitor > /dev/null

You can also pipe the rate monitor’s output into mpg123.

4.2 Reference Implementations

For your convenience, we have provided binaries of reference implementations of the client and the server
that follow the protocol and meet all the requirements. They’re in
/course/cs168/pub/snowcast. Take advantage of these! You can test your adherence to the proto-
col based on how well your programs interact with them. This is why our protocol is specified so precisely.
Your programs are expected to interoperate with ours.

5



CS168 Snowcast

5 Handin

Hand in your project by typing

cs168_handin snowcast

from inside the directory where your work is located. To reduce clutter, the handin script removes .o files
and binary executable files, and runs make clean before handing in your assignment. You can handin
more than once - the new handin will replace the older one. We should be able to rebuild your programs by
running make.

6 Grading

6.1 Milestone - 20%

To make sure you’re on the right track, 20% of your grade will be a milestone.
You have to schedule an appointment with a TA by Friday the 4th at 6PM. 10% of the milestone is a

small demo. You must demo a client to us that successfully connects to a server, sends a Hello command,
then waits for and prints the Welcome reply.

The other 10% is for the design of your server, which is the hardest part of the assignment. You will be
graded based on how well you have thought your design through. Make sure you especially think through
your threading model. Will you spawn a new thread for every command you receive? How many threads
will you have per client? Will you have one thread to handle all the stations, or one or more threads for each
one? How will they communicate with each other? What mutexes will you need?

If you’re having trouble with the design, please come to our hours, or e-mail us with your question. We
also encourage appointments outside of our hours if you feel you need help in-person.

6.2 Program - 75%

Most of your grade will be based on how well your program conforms to the specification. This includes
how well it interacts with the reference implementations, as well as with each other’s projects. Furthermore:

• You must check return codes for all system calls you make. You can use perror to print error
messages.

• You can’t assume recv and send will read or write all the bytes you requested. You have to check
each return code and re-call them until the entire buffer is read or written.

• You must protect access to data shared by multiple threads, even integers.

6.3 README - 5%

Please include a README file with your program. Describe design decisions, such as how your server is
structured in terms of threading, how it handles announces, how it handles multiple clients, etc. List any
bugs that you know your program has. We’ll take off less points for any bugs you list than if we had to find
them ourselves =).

6



CS168 Snowcast

6.4 Grad Level Credit

Students that wish to receive grad level credit in cs168 must implement snowcast using select() or epoll() for
the client, and a single thread with non-blocking IO. This is a paradigm known as event driven programming
and more information can be found in the select and epoll manpages.

6.5 Extra Credit - up to 20%

The protocol we’ve defined is extremely limited. We’ll consider any addition to the protocol for extra credit.
You can also augment the server or client in a non-trivial way. Here are some ideas:

• Add a command which requests a listing of what each of the stations is currently playing (it is accept-
able for the TA binary to respond to this with InvalidCommand).

• Add support for multiple songs per station.

• Add a command to retrieve a station’s playlist (maybe the next 5 items or so).

• Add support for adding and removing stations while the server is running through the command line
interface. If you remove a station while a client is listening to it, send a StationShutdown packet,
or something along those lines, to inform him. If a new station is added, you can maybe send a
NewStation packet to all currently connected clients to inform them.

Feel free to ask what we think about your addition. Also note that we’ve awarded extra credit in the
past just for particularly innovative or elegant solutions, so feel motivated to do your best in your design and
implementation.

A Useful Hints/Tips

We recommend that you use #define or const ints (in C++) for protocol-type constants. Your code will
be much more readable - you won’t be checking to see whether replyType is 2, you’ll be checking to see
that it’s REPLY_INVALID_COMMAND.

For the TCP connection, use recv() and send() (or read() and write()). For the UDP connec-
tion, use sendto() and recvfrom(). Don’t send more than 1400 bytes with one call to sendto()4

You will want to permit the server to reuse its port, so that you can kill it and restart it without waiting
a few minutes. Look at the end of section 4.2 in the networking guide (off the course website). To handle
multiple connections on the server, you should have a thread which calls accept() in a loop. When
it accepts a connection, it should start one or more threads to handle that connection, and then continue
accept()ing. To control the rate that the server sends song data at, use the the nanosleep() and
gettimeofday() functions.

4This is because the MTU of Ethernet is 1440 bytes, and we don’t want our UDP packets to be fragmented. You’ll learn more
about this later.

7



CS168 Snowcast

The TCP client has to read input from two sources at the same time - stdin, and the server. You might
do this with a thread for the server and a thread for standard input, or you might use select()5 to handle
both tasks in a single thread without blocking. To implement hostname lookup (e.g. localhost to 127.0.0.1
or cslab6e to 128.148.31.38), use gethostbyname().

5See http://www.lowtek.com/sockets/select.html for a guide on select()

8


