CSCI-1680 Network Layer: Wrapup

Rodrigo Fonseca

Administrivia

• HW2 Due tonight

- 1 late day max, 0 after that
- Solutions posted tomorrow at the latest, so you can study ☺

Midterm on Monday, 6pm, CIT368

Up to what is covered TODAY

Today: IP Wrap-up

- IP Service models
 - Unicast, Broadcast, Anycast, Multicast
- **IPv6**
 - Tunnels

Different IP Service Models

- Broadcast: send a packet to *all* nodes in some subnet. "One to all"
 - 255.255.255.255 : all hosts within a subnet, *never* forwarded by a router
 - "All ones host part": broadcast address
 - Host address | (255.255.255.255 & ~subnet mask)
 - E.g.: 128.148.32.143 mask 255.255.255.128
 - \sim mask = 0.0.0.127 => Bcast = 128.148.32.255
- Example use: DHCP
- Not present in IPv6
 - Use multicast to link local all nodes group

Anycast

- Multiple hosts may share the same IP address
- "One to one of many" routing
- Example uses: load balancing, nearby servers
 - DNS Root Servers (e.g. f.root-servers.net)
 - Google Public DNS (8.8.8.8)
 - IPv6 6-to-4 Gateway (192.88.99.1)

Anycast Implementation

- Anycast addresses are /32s
- At the BGP level
 - Multiple ASs can advertise the same prefixes
 - Normal BGP rules choose one route
- At the Router level
 - Router can have multiple entries for the same prefix
 - Can choose among many
- Each packet can go to a different server
 - Best for services that are fine with that (connectionless, stateless)

Multicast

- Send messages to many nodes: "one to many"
- Why do that?
 - Snowcast, Internet Radio, IPTV
 - Stock quote information
 - Multi-way chat / video conferencing
 - Multi-player games
- What's wrong with sending data to each recipient?
 - Link stress
 - Have to know address of all destinations

Multicast Service Model

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)

224.x.x.x to 229.x.x.x

28 bits left for group address

LAN Multicast

- Easy on a shared medium
- Ethernet multicast address range:
 - 01:00:5E:00:00:00 to 01:00:5E:7f:ff:ff
- Set low 23 bits of Ethernet address to low bits of IP address
 - (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?

Wide Area: Distribution Trees

• Source-specific trees:

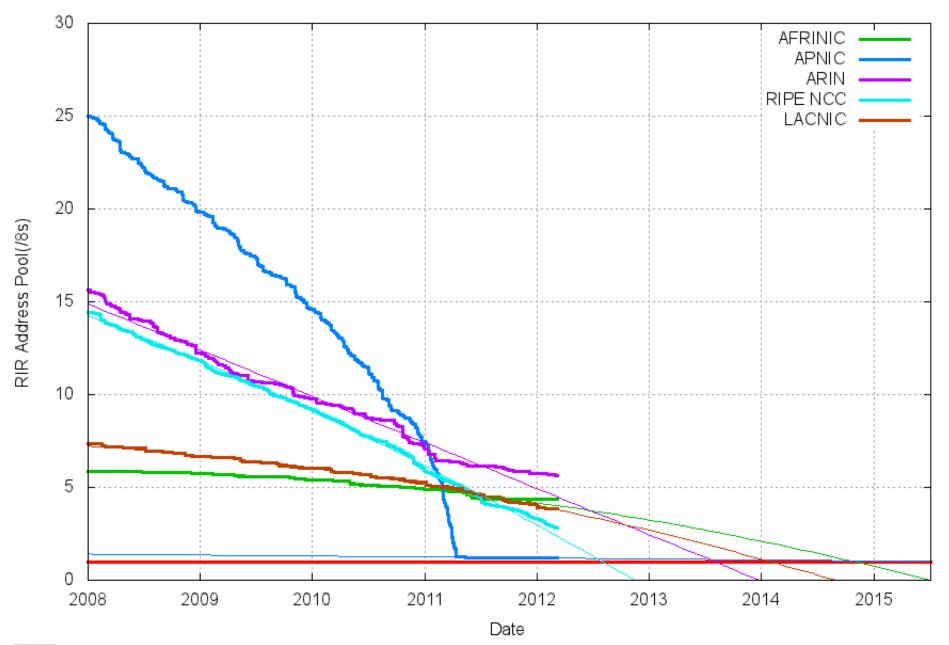
- Spanning tree over recipients, rooted at each source
- Best for each source

Shared trees:

- Single spanning tree among all sources and recipients
- Hard to find one shared tree that's best for many senders

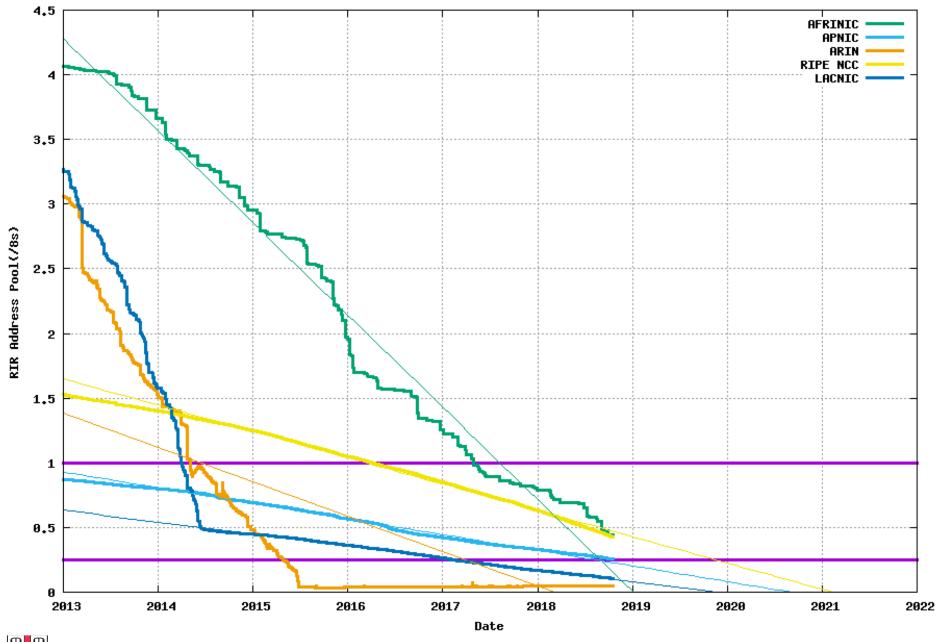
• State in routers much larger for source-specific

How to build these trees is beyond our scope here.



IPv4 Address Exhaustion

- Turns out 2³² addresses was not a lot
 - (Hint: $7.6B \sim 1.7 \times 2^{32}$ people in the world)
- How bad is the problem?
- What to do?


RIR IPv4 Address Run-Down Model

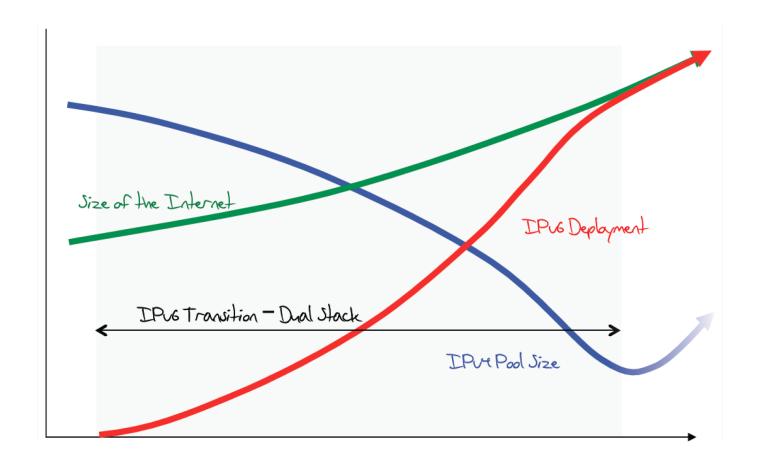
Source: potaroo.net/tools/ipv4

RIR IPv4 Address Run-Down Model

Source: potaroo.net/tools/ipv4

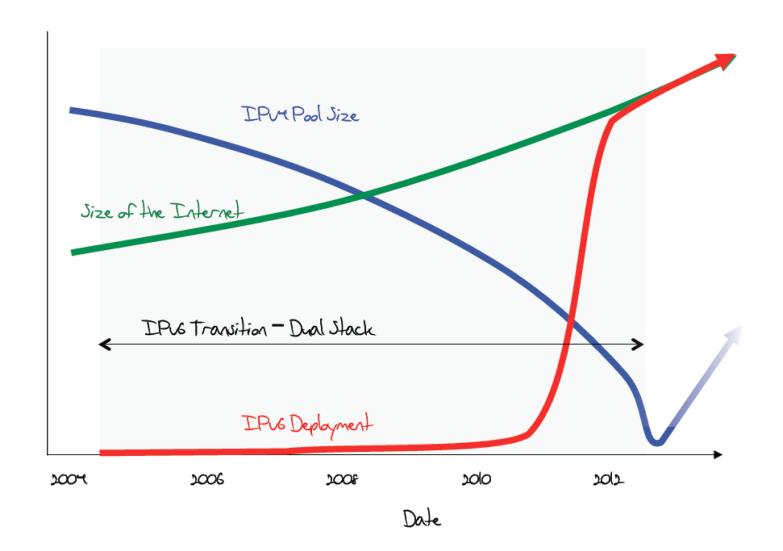
So what happened when we ran out of IPv4 addresses?

- It's not completely gone just yet, but close
- Address block fragmentation
 - Secondary market for IPv4
 - E.g., in 2011 Microsoft bought >600K US IPv4 addresses for \$7.5M
- NATs galore
 - Home NATs, carrier-grade NATs

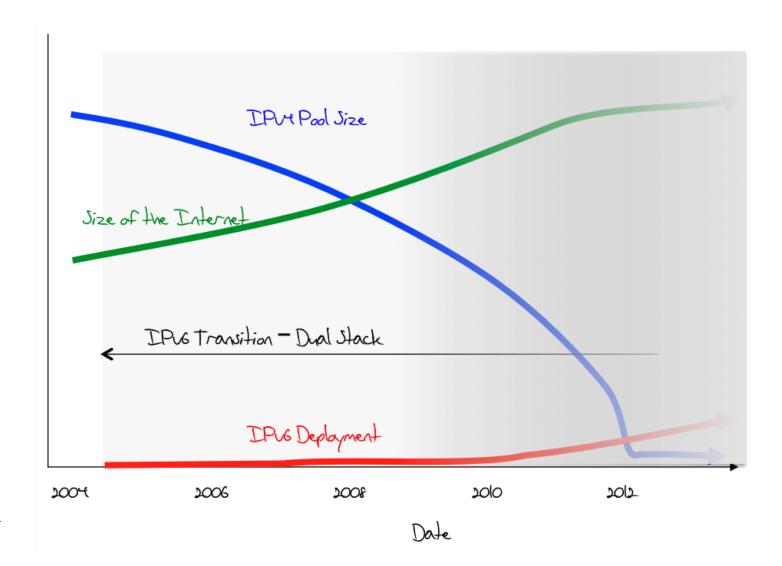


IPv6

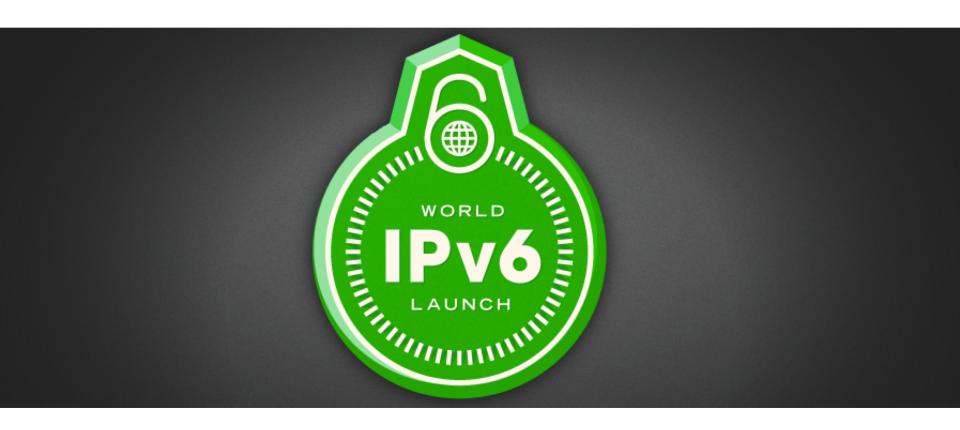
- Main motivation: IPv4 address exhaustion
- Initial idea: larger address space
- Need new packet format:
 - REALLY expensive to upgrade all infrastructure!
 - While at it, why don't we fix a bunch of things in IPv4?
- Work started in 1994, basic protocol published in 1998



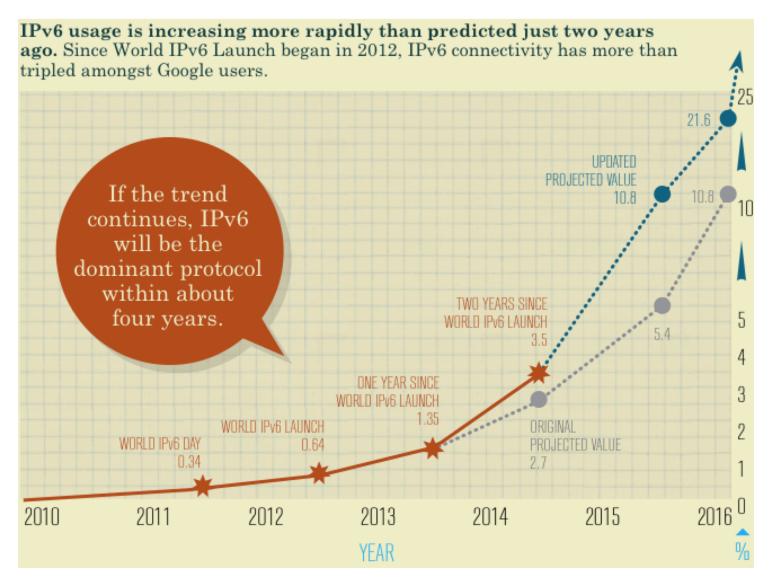
The original expected plan



The plan in 2011

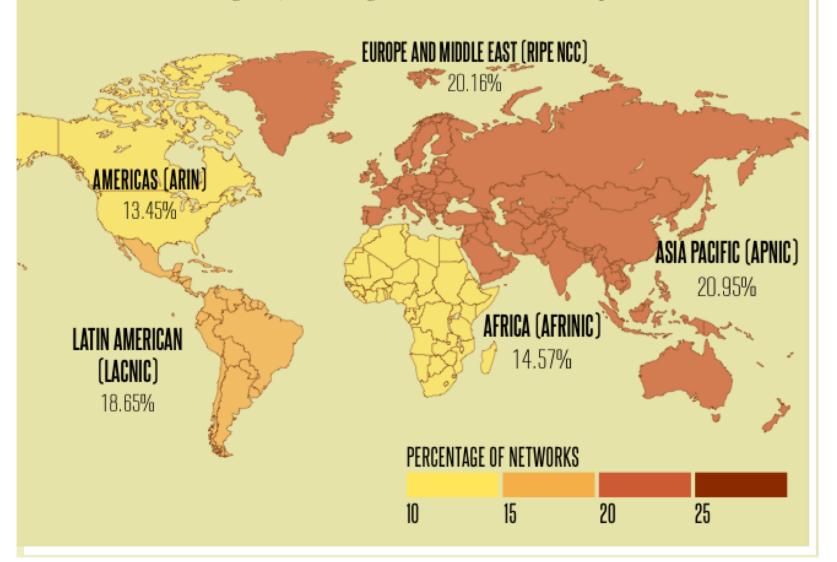


What was happening (late 2012)



June 6th, 2012

In 2014...



From: http://www.worldipv6launch.org/infographic/

IPv6-ENABLED **Internet networks** by region

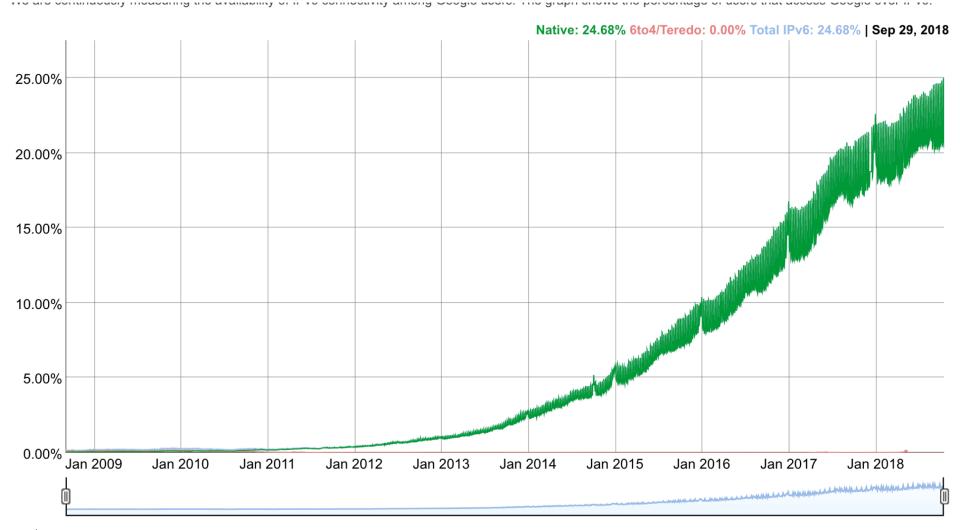
This graph shows the percentage of networks (ASes) that announce an IPv6 prefix for RIR regions, according to RIPE NCC as of 30 April 2014.

242 NETWORK OPERATORS

AMONG THEM GLOBAL LEADERS LIKE AT&T, COMCAST, FREE TELECOM. INTERNODE, KDDI, T-MOBILE USA, AND VERIZON WIRELESS

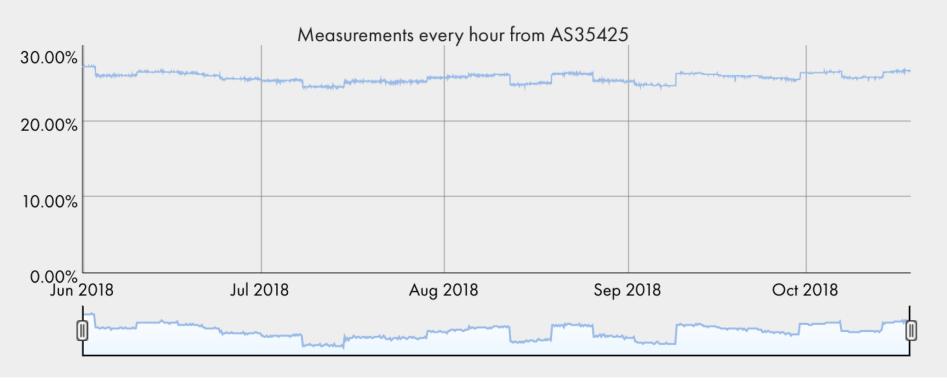
20,000 * EBSITES

FACEBOOK, GOOGLE, YOUTUBE, YAHOO, AND WIKIPEDIA + 14% OF THE ALEXA TOP 1000 WEBSITES WITH MORE THAN 100,000 IPv6 WEBSITE HITS/SECOND



ILI HOME ROUTER VENDORS

INCLUDING LINKSYS AND D-LINK


Current Adoption (as seen by Google)

Source: http://www.google.com/ipv6/statistics.html

Percentage of Alexa Top 1000 websites currently reachable over IPv6

Transition is not painless

From http://www.internetsociety.org/deploy360/ipv6/:

You may want to begin with our "Where Do I Start?" page where we have guides for:

- Network operators
- Developers
- Content providers / website owners
- Enterprise customers
- Domain name registrars
- Consumer electronics vendors
- Internet exchange point (IXP) operators

• Why do each of these parties have to do something?

IPv6 Key Features

- 128-bit addresses
 - Autoconfiguration
- Simplifies basic packet format through extension headers
 - 40-byte base header (fixed)
 - Make less common fields optional
- Security and Authentication

IPv6 Address Representation

• Groups of 16 bits in hex notation 47cd:1244:3422:0000:0000:fef4:43ea:0001

- Two rules:
 - Leading 0's in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fef4:43ea:1
 - One contiguous group of 0's can be compacted47cd:1244:3422::fef4:43ea:1

IPv6 Addresses

• Break 128 bits into 64-bit network and 64-bit interface

 Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example

Types of addresses

- All 0's: unspecified
- 000...1: loopback
- ff/8: multicast
- fe8/10: link local unicast
- fec/10: site local unicast
- All else: global unicast

IPv6 Header

Ver Class **Flow** Next Hdr. | Hop limit Length Source (16 octets, 128 bits) **Destination** (16 octets, 128 bits)

IPv6 Header Fields

- Version: 4 bits, 6
- Class: 8 bits, like TOS in IPv4
- Flow: 20 bits, identifies a *flow*
- Length: 16 bits, datagram length
- Next Header, 8 bits: ...
- Hop Limit: 8 bits, like TTL in IPv4
- Addresses: 128 bits
- What's missing?
 - No options, no fragmentation flags, no checksum

Design Philosophy

Simplify handling

- New option mechanism (fixed size header)
- No more header length field

Do less work at the network (why?)

- No fragmentation
- No checksum

General flow label

- No semantics specified
- Allows for more flexibility
- Still no accountability

Interoperability

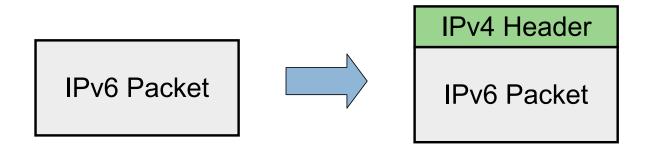
RFC 4038

- Every IPv4 address has an associated IPv6 address (mapped)
- Networking stack translates appropriately depending on other end
- Simply prefix 32-bit IPv4 address with 80 bits of 0 and 16 bits of 1:
- E.g., ::FFFF:128.148.32.2

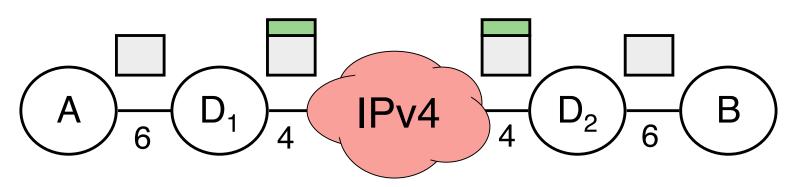
Two IPv6 endpoints must have IPv6 stacks

• Transit network:

$$- v4 - v4 - v4$$
:


$$- v4 - v6 - v4$$
:

$$- v6 - v4 - v6 : X!!$$


IP Tunneling

- Encapsulate an IP packet inside another IP packet
- Makes an end-to-end path look like a single IP hop

IPv6 in IPv4 Tunneling

Key issues: configuring the tunnels

- Determining addresses
- Determining routes
- Deploying relays to encapsulate/forward/decapsulate

Several proposals, not very successful

- 6to4, Teredo, ISATAP
- E.g., 6to4
 - Deterministic address generation
 - Anycast 192.88.99.1 to find gateway into IPv6 network
 - Drawbacks: voluntary relays, requires public endpoint address

Other uses for tunneling

- Virtual Private Networks
- Use case: access CS network from the outside
 - Set up an encrypted TCP connection between your computer and Brown's OpenVPN server
 - Configure routes to Brown's internal addresses to go through this connection
- Can connect two remote sites securely

Extension Headers

- Two types: hop-by-hop and end-to-end
- Both have a next header byte
- Last next header also denotes transport protocol
- Destination header: intended for IP endpoint
 - Fragment header
 - Routing header (loose source routing)
- Hop-by-hop headers: processed at each hop
 - Jumbogram: packet is up to 2³² bytes long!

Example Next Header Values

- 0: Hop by hop header
- 1: ICMPv4
- 4: IPv4
- 6:TCP
- 17: UDP
- 41: IPv6
- 43: Routing Header
- 44: Fragmentation Header
- 58: ICMPv6

Fragmentation and MTU

- Fragmentation is supported only on end hosts!
- Hosts should do MTU discovery
- Routers will not fragment: just send ICMP saying packet was too big
- Minimum MTU is 1280-bytes
 - If some link layer has smaller MTU, must interpose fragmentation reassembly underneath

Current State

- IPv6 Deployment picking up
- Most end hosts have dual stacks today (Windows, Mac OSX, Linux, *BSD, Solaris)
- Requires all parties to work!
 - Servers, Clients, DNS, ISPs, all routers
- IPv4 and IPv6 will coexist for a long time

Next time: Transport Layer

- UDP, TCP, Congestion Control
- Application protocols

— ...

