CSCI-1680 Security

John Jannotti

Based on lecture notes by Scott Shenker, Mike Freedman, and Rodrigo Fonseca

Today's Lecture

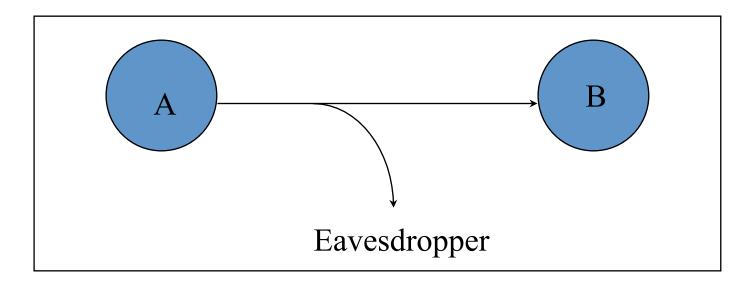
- Classes of attacks
- Basic security requirements
- Simple cryptographic methods
- Crypto toolkit (Hash, Digital Signature, ...)
- DNSSec (in .pptx, won't have time today)
- Certificate Authorities
- SSL / HTTPS

Basic Secure Communication Reqs

- Availability: Will the network deliver data?
 - Infrastructure compromise, DDoS
- Authentication: Who is this actor?
 - Spoofing, phishing
- Integrity: Do messages arrive in original form?
- Confidentiality: Can adversary read the data?
 - Sniffing, man-in-the-middle
- **Provenance:** Who is responsible for this data?
 - Forging responses, denying responsibility
 - Not who sent the data, but who created it

Other Desirable Security Properties

- Authorization: is actor allowed to do this action?
 - Access controls
- Accountability/Attribution: who did this activity?
- Audit/Forensics: what occurred in the past?
 - A broader notion of accountability/attribution
- Appropriate use: is action consistent with policy?
 - E.g., no spam; no games during business hours; etc.
- Freedom from traffic analysis: can someone tell when I am sending and to whom?
- Anonymity: can someone tell I sent this packet?


Internet's Design: Insecure

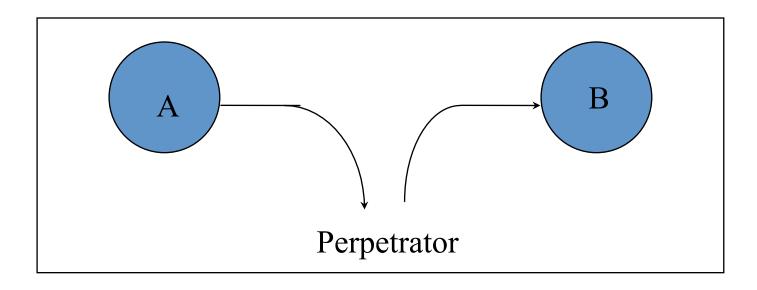
- Designed for simplicity in a naïve era
- "On by default" design
- Readily available zombie machines
- Attacks look like normal traffic
- Internet's federated operation obstructs cooperation for diagnosis/mitigation

Eavesdropping - Message Interception (Attack on Confidentiality)

- Unauthorized access to information
- Packet sniffers and wiretappers
- Illicit copying of files and programs

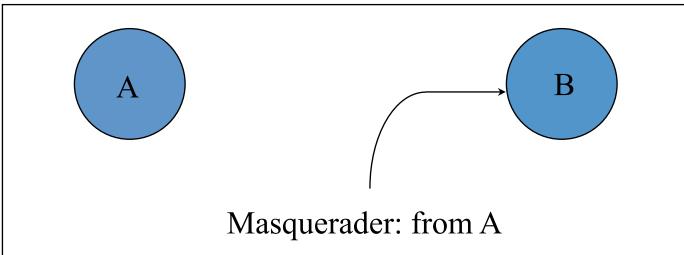
Eavesdropping Attack: Example

 tcpdump with promiscuous network interface

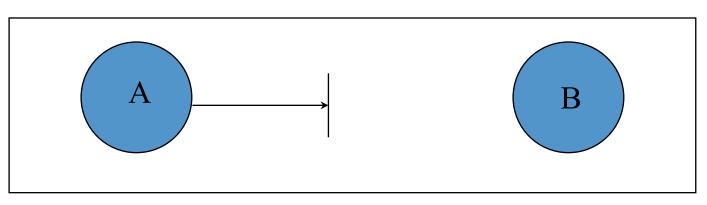

- On a switched network, what can you see?

- What might the following traffic types reveal about communications?
 - DNS lookups (and replies)
 - IP packets without payloads (headers only)
 - Payloads

Integrity Attack - Tampering


- Stop the flow of the message
- Delay and optionally modify the message
- Release the message again

Authenticity Attack - Fabrication


- Unauthorized assumption of other's identity
- Generate and distribute messages under this identity
- Special case replay attack

Attack on Availability

- Destroy hardware (cutting fiber) or software
- Modify software in a subtle way
- Corrupt packets in transit

- Blatant denial of service (DoS):
 - Crashing the server
 - Overwhelm the server (use up its resource)
 - Special case: Distributed Denial of Service (DDos)

Basic Forms of Cryptography

Confidentiality through Cryptography

- **Cryptography:** communication over insecure channel in the presence of adversaries
- Studied for thousands of years
- Central goal: how to encode information so that an adversary can't extract it ...but a friend can
- General premise: a key is required for decoding
 - Give it to friends, keep it away from attackers

Two different categories of encryption

- Symmetric: efficient, requires key distribution
- Asymmetric (Public Key): simplifies key distribution, but more computationally expensive

Symmetric Key Encryption

• Same key for encryption and decryption

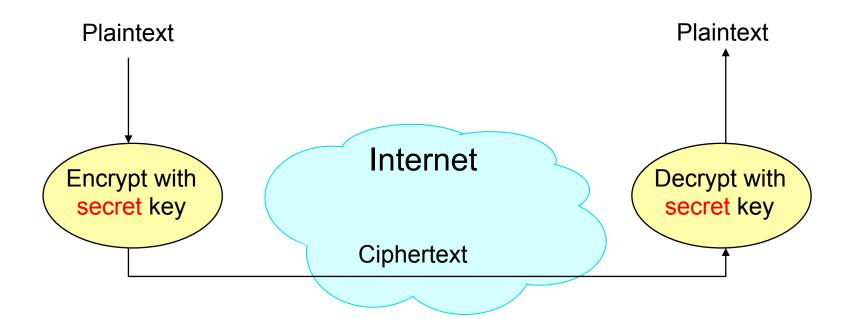
- Both sender and receiver know key
- But adversary does not know key

• For communication, problem is key distribution

- How do the parties (secretly) agree on the key?

• What can you do with a huge key? One-time pad

- Huge key of random bits


To encrypt/decrypt: just XOR with the key!

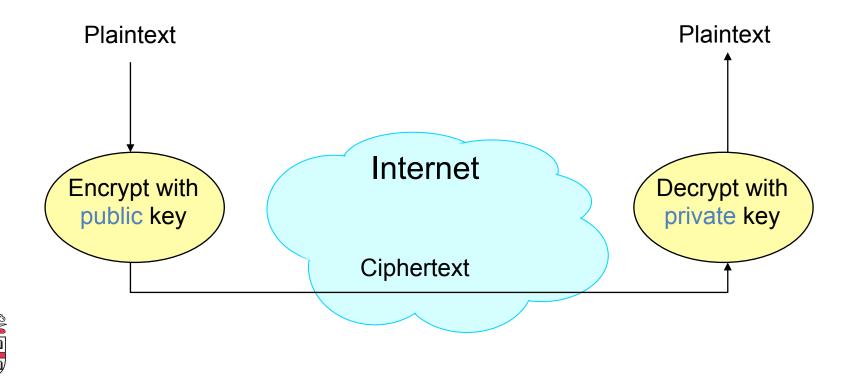
- Provably secure! provided:
 - You never reuse the key ... and it really is random
- Spies actually use these

Using Symmetric Keys

 Both the sender and the receiver use the same secret keys

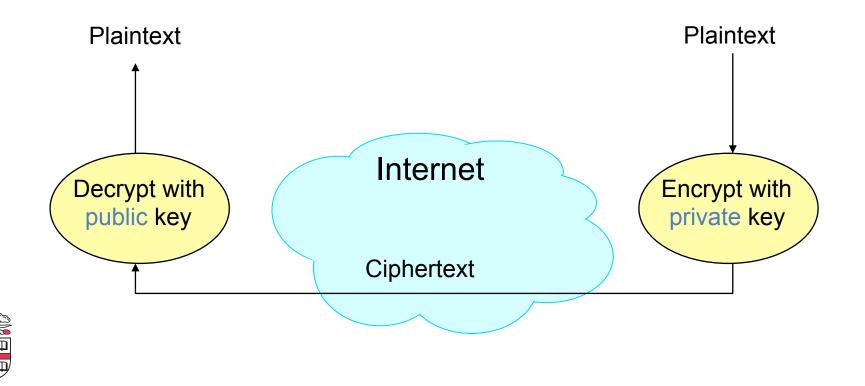
Asymmetric Encryption (Public Key)

- Idea: use two *different* keys, one to encrypt (e) and one to decrypt (d)
 - A key pair
- Crucial property: knowing e does not tell you d
- Therefore e can be public: everyone knows it!
- If Alice wants to send to Bob, she fetches Bob's public key (say from Bob's home page) and encrypts with it
 - <u>Alice</u> can't decrypt what she's sending to Bob ...
 - ... but then, <u>neither can anyone else</u> (except Bob)



Public Key / Asymmetric Encryption

- Sender uses receiver's public key
 - Advertised to everyone


Receiver uses complementary private key

- Must be kept secret

Works in Reverse Direction Too!

- Sender signs his own private key
- Receiver verifies with public key
- Allows sender to prove he knows private key

Realizing Public Key Cryptography

Invented in the 1970s

- *Revolutionized* cryptography

- (Was actually invented earlier by British intelligence)
- How can we construct an encryption/ decryption algorithm with public/private properties?

– Answer: Number Theory

Most fully developed approach: RSA

- Rivest / Shamir / Adleman, 1977; RFC 3447
- Based on modular multiplication of very large integers
- -Very widely used (e.g., SSL/TLS for https)

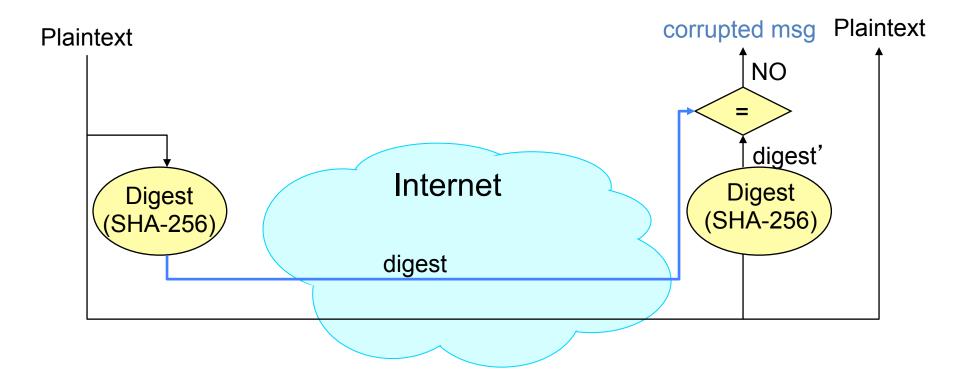
• RSA:

- assumes it is difficult to factor a large integer with two large prime factors
- Elliptic Curve:
 - discrete logarithm of a random elliptic curve in a finite field
- CS166 Introduction to Computer Systems Security
- CS151 Introduction to Cryptography and Computer Security

Cryptographic Toolkit

Cryptographic Toolkit

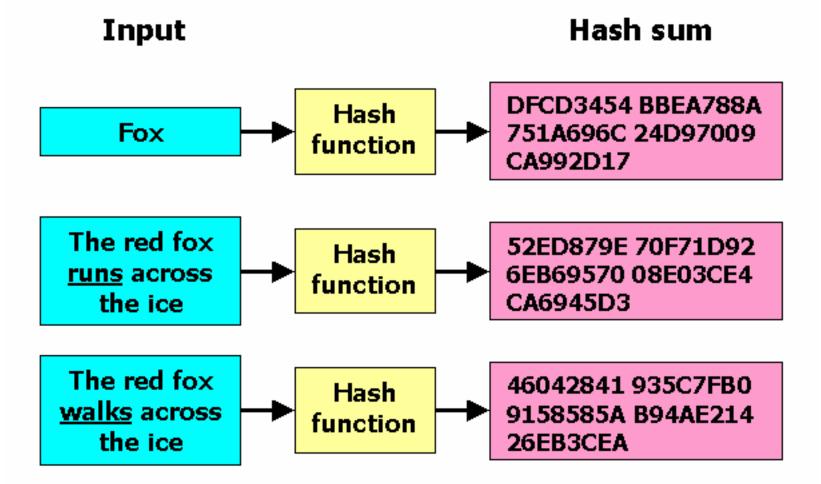
- Confidentiality: Encryption
- Integrity: ?
- Authentication: ?
- Provenance: ?



Integrity: Cryptographic Hashes

- Sender computes a *digest* of message *m*, i.e., *H(m)*
 - H() is a publicly known hash function
- Send *m* in any manner
- Send digest d = H(m) to receiver in a secure way:
 - Using another physical channel
 - Using encryption (why does this help?)
- Upon receiving *m* and *d*, receiver re-computes *H(m)* to see whether result agrees with *d*

Operation of Hashing for Integrity



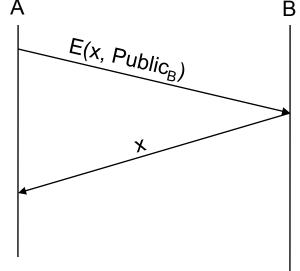
Cryptographically Strong Hashes

- Hard to invert
 - Given hash, adversary can't find input that produces it
 - Allows oblique reference to private objects (e.g., passwords)
 - · Send hash of object rather than object itself
- Hard to find collisions
 - Adversary can't find two inputs that produce same hash
 - So can't alter message without modifying digest
 - Allows succinct reference to large objects (e.g. BitTorrent blocks)
- Here, "Can't" means "Thought to be computationally infeasible"

Effects of Cryptographic Hashing

Cryptographic Toolkit

- Confidentiality: Encryption
- Integrity: Cryptographic Hash
- Authentication: ?
- Provenance: ?



Public Key Authentication

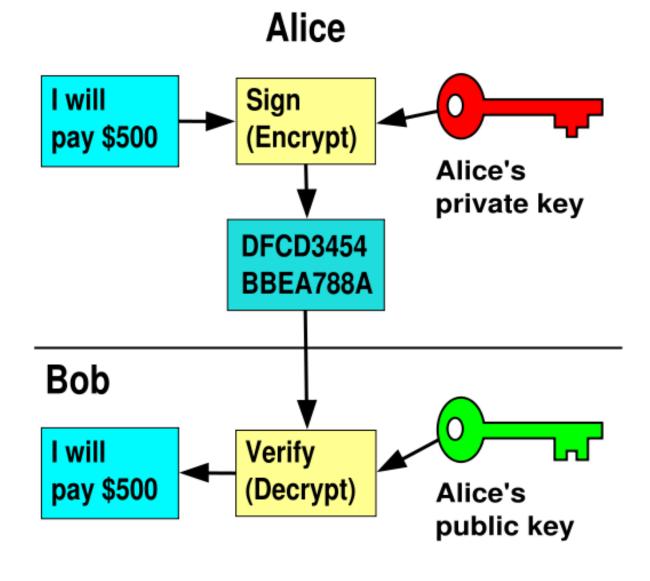
 Each side only needs to know the other side's public key

- No secret key need be shared

- A encrypts a nonce (random number) x using B's public key
- B proves it can recover x
- A can authenticate itself to B in the same way

Cryptographic Toolkit

- Confidentiality: Encryption
- Integrity: Cryptographic Hash
- Authentication: Decrypting nonce
- Provenance: ?



Digital Signatures

- Suppose Alice has published public key K_E
- If she wishes to prove who she is, she can send a message *x* encrypted with her private key K_D
 - Therefore: anyone w/ public key K_E can recover x, verify that Alice must have sent the message
 - It provides a digital signature
 - Alice can't deny it later \Rightarrow non-repudiation
 - Well, she could claim her key was compromised

RSA Crypto & Signatures, con't

Summary of Our Crypto Toolkit

- If we can securely distribute a key, then
 - Symmetric ciphers (e.g., AES) offer fast, presumably strong confidentiality
- Public key cryptography does away with problem of secure key distribution
 - But not as computationally efficient
 - Often addressed by using public key crypto to exchange a session key
 - Not guaranteed secure
 - But it would be a **major** result if it isn't

Summary of Our Crypto Toolkit, con't

- Cryptographically strong hash functions provide major building block for integrity (e.g., SHA-1)
 - As well as providing concise digests
 - And providing a way to prove you know something (e.g., passwords) without revealing it (non-invertibility)
 - But: worrisome recent results regarding their strength
- Public key also gives us signatures
 - Including sender non-repudiation
- Turns out there's a crypto trick based on similar algorithms that allows two parties who don't know each other's public key to securely negotiate a secret key even in the presence of eavesdroppers Diffie-Hellman exchange

PKIs and HTTPS

Public Key Infrastructure (PKI)

- Public key crypto is *very* powerful ...
- ... but the realities of tying public keys to real world identities turn out to be quite hard
- PKI: *Trust distribution* mechanism
 - Authentication via Digital Certificates
- Trust doesn't mean someone is honest, just that they are who they say they are...

Managing Trust

- The most solid level of trust is rooted in our direct personal experience
 - E.g., Alice's trust that Bob is who they say they are
 - Clearly doesn't scale to a global network!
- In its absence, we rely on *delegation*
 - Alice trusts Bob's identity because Charlie attests to it
 - and Alice trusts Charlie

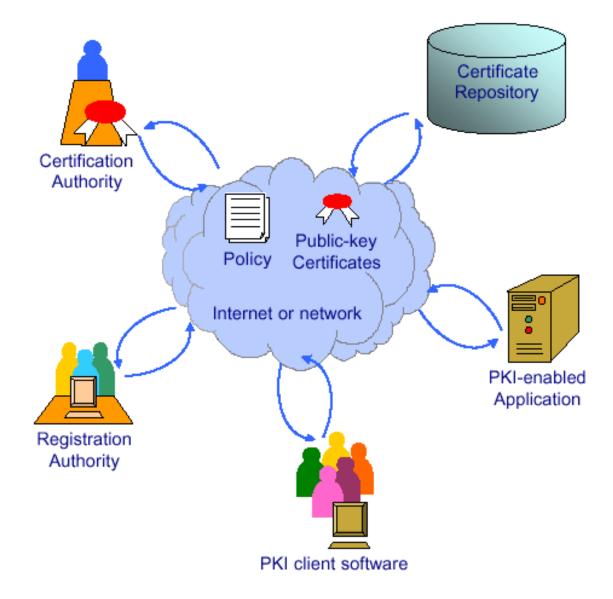
. . . .

Managing Trust, con't

- Trust is not particularly transitive
 - Should Alice trust Bob because she trusts Charlie ...
 - … and Charlie vouches for Donna …
 - … and Donna says Eve is trustworthy …
 - … and Eve vouches for Bob's identity?

Two models of delegating trust

- Rely on your set of friends and their friends
 - "Web of trust" -- e.g., PGP
- Rely on trusted, well-known authorities (and their minions)
 - "Trusted root" -- e.g., HTTPS


PKI Conceptual Framework

• Trusted-Root PKI:

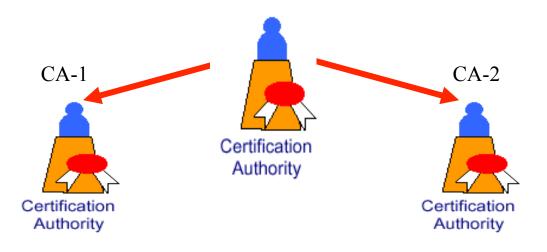
- Basis: well-known public key serves as root of a hierarchy
- Managed by a Certificate Authority (CA)
- To publish a public key, ask the CA to digitally sign a statement indicating that they agree ("certify") that it is indeed your key
 - This is a certificate for your key (certificate = bunch of bits)
 - Includes both your public key and the signed statement
 - Anyone can verify the signature
- Delegation of trust to the CA
 - They'd better not screw up (duped into signing bogus key)
 - They'd better have procedures for dealing with stolen keys
 - Note: can build up a hierarchy of signing

Components of a PKI

Digital Certificate

Signed data structure that binds an entity with its corresponding public key

- Signed by a *recognized* and *trusted* authority, i.e., Certification Authority (CA)
- Provide assurance that a particular public key belongs to a specific entity
- Example: certificate of entity Y Cert = E({name_Y, KY_{public}}, KCA_{private})
 - KCA_{private}: private key of Certificate Authority
 - name_Y: name of entity Y
 - KY_{public}: public key of entity Y
 - In fact, they may sign whatever glob of bits you give them
- Your browser has a bunch of CAs wired into it



Certification Authority

- People, processes responsible for creation, delivery and management of digital certificates
- Organized in an hierarchy
 - To verify signature chain, follow hierarchy up to root

Registration Authority

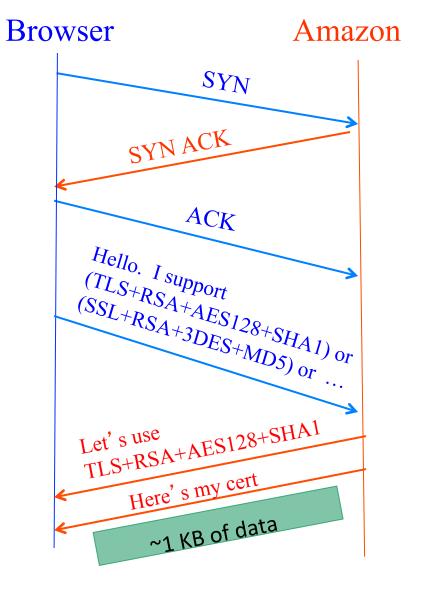
People & processes responsible for:

- Authenticating the identity of new entities (users or computing devices), e.g.,
 - By phone, or physical presence + ID
- Issuing requests to CA for certificates
- The CA must trust the Registration
 Authority
 - This trust can be misplaced

Certificate Repository

- A database accessible to all users of a PKI
- Contains:
 - Digital certificates
 - Policy information associated with certs
 - Certificate revocation information
 - Vital to be able to identify certs that have been compromised
 - Usually done via a *revocation list*

Certificate Repository


HTTPS

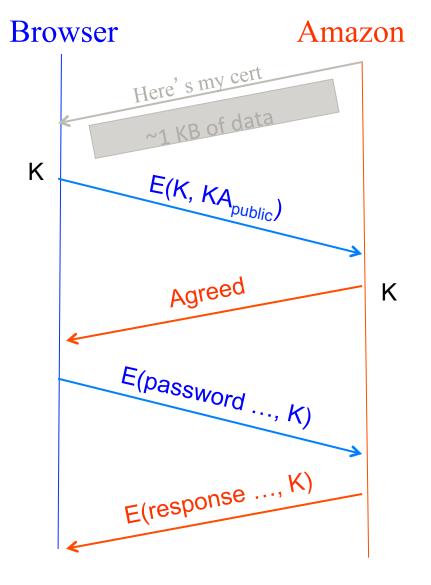
- After clicking https://www.amazon.com
- https = "Use HTTP over SSL/TLS"
 - SSL = Secure Socket Layer
 - TLS = Transport Layer Security
 - Successor to SSL, and compatible with it
 - RFC 4346
- Provides security layer (authentication, encryption) on top of TCP
 - Fairly transparent to the app

HTTPS Connection (SSL/TLS), con't

- Browser (client) connects via TCP to Amazon's HTTPS server
- Client sends over list of crypto protocols it supports
- Server picks protocols to use for this session
- Server sends over its certificate
- (all of this is in the clear)

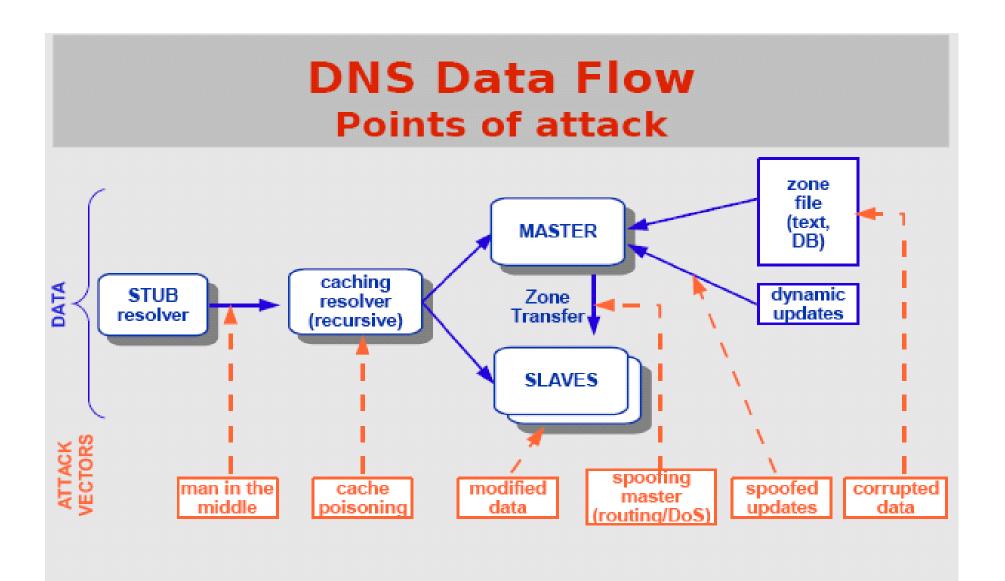
Inside the Server's Certificate

- Name associated with cert (e.g., Amazon)
- Amazon's public key
- A bunch of auxiliary info (physical address, type of cert, expiration time)
- URL to revocation center to check for revoked keys
- Name of certificate's signatory (who signed it)
- A public-key signature of a hash of all this
 - Constructed using the signatory's private RSA key


Validating Amazon's Identity

- Browser retrieves cert belonging to the signatory
 - These are hardwired into the browser
- If it can't find the cert, then warns the user that site has not been verified
 - And may ask whether to continue
 - Note, can still proceed, just without authentication
- Browser uses public key in signatory's cert to decrypt signature
 - Compares with its own hash of Amazon's cert
- Assuming signature matches, now have high confidence it's indeed Amazon ...
 - ... assuming signatory is trustworthy

HTTPS Connection (SSL/TLS), con't


- Browser constructs a random session key K
- Browser encrypts K using Amazon's public key
- Browser sends E(K, KA_{public}) to server
- Browser displays
- All subsequent communication encrypted w/ symmetric cipher using key K
 - E.g., client can authenticate using a password

DNS Security

Source: http://nsrc.org/tutorials/2009/apricot/dnssec/dnssec-tutorial.pdf

Root level DNS attacks

• Feb. 6, 2007:

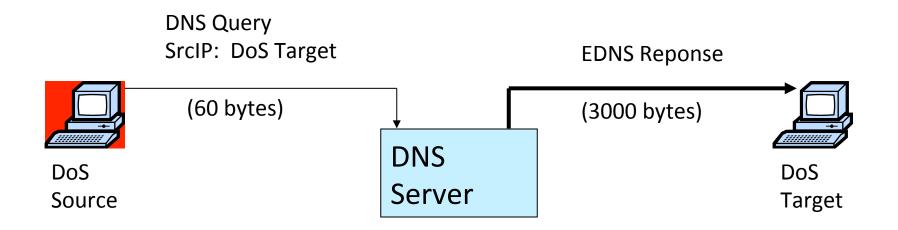
- Botnet attack on the 13 Internet DNS root servers
- Lasted 2.5 hours
- None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

Do you trust the TLD operators?

- Wildcard DNS record for all <u>.com</u> and <u>.net</u> domain names not yet registered by others
 - September 15 October 4, 2003
 - February 2004: Verisign sues ICANN
- Redirection for these domain names to Verisign web portal: "to help you search"

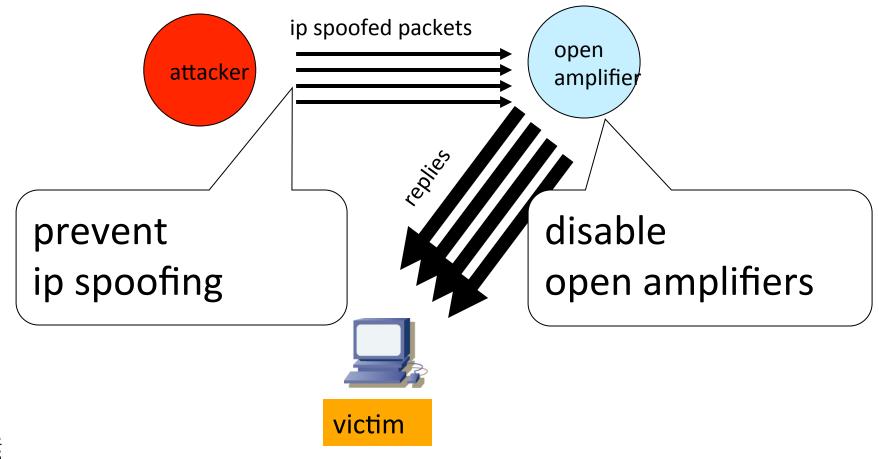
and serve you ads...and get "sponsored" search

Defense: Replication and Caching


Letter	Old name	Operator	Location
Α	ns.internic.net	VeriSign	Dulles, Virginia, USA
В	ns1.isi.edu	ISI	Marina Del Rey, California, USA
с	c.psi.net	Cogent Communications	distributed using anycast
D	terp.umd.edu	University of Maryland	College Park, Maryland, USA
Е	ns.nasa.gov	NASA	Mountain View, California, USA
F	ns.isc.org	ISC	distributed using anycast
G	ns.nic.ddn.mil	U.S. DoD NIC	Columbus, Ohio, USA
н	aos.arl.army.mil	U.S. Army Research Lab 🔒	Aberdeen Proving Ground, Maryland, USA
I	nic.nordu.net	Autonomica 🗗	distributed using anycast
J		VeriSign	distributed using anycast
к		RIPE NCC	distributed using anycast
L		ICANN	Los Angeles, California, USA
м		WIDE Project	distributed using anycast

source: wikipedia

DNS Amplification Attack

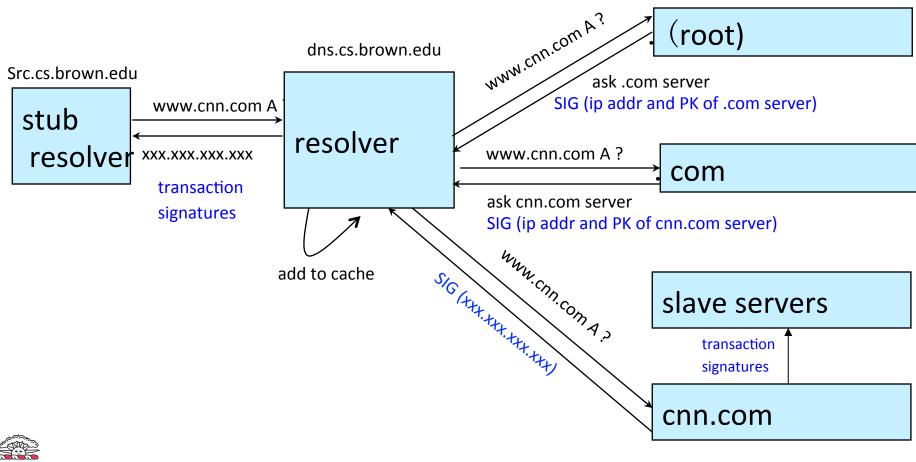

DNS Amplification attack: (×40 amplification)

580,000 open resolvers on Internet (Kaminsky-Shiffman'06)

Solutions

But should we believe it? Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity


PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
- Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of nameserver's public keys is established by a signature over the keys by the parent's private key
 - In ideal case, only roots' public keys need to be distributed out-of-band

Verifying the tree

Question: www.cnn.com ?

Next Class

- Some new trends, Software-Defined Networking
- Second-to-last class!

