CSCI-1680
Transport Layer Il
Data over TCP

John Jannotti

Based partly on lecture notes by David Maziéres, Phil Levis, Rodrigo Fonseca

Last Class

* Introduction to TCP

— Header format
— Connection state diagram
K SYN
 Today: sending data \ (

ESTABLISHED

IMI KFH*

~_

First Goal

e We should not send more data than the
receiver can take: flow control

 When to send data?
— Sender can delay sends to get larger segments

 How much data to send?

— Data is sent in MSS-sized segments
« Chosen to avoid fragmentation

=

=]
\E|

Flow Control

« Part of TCP specification (even before
1988)

* Receiver uses window header field to tell
sender how much space it has

Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i Y

{ ! : :
A A bl
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
* Receiver: AdvertisedWindow (b)

= MaxRcvBuffer — ((NextByteExpected-1) —
LastByteRead)

« Sender: LastByteSent — LastByteAcked <=
. EffectiveWindow = AdvertisedWindow — (ByteslInFlight)
LastByteWritten — LastByteAcked <= MaxSendBuffer

AdvertisedWindow

Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i

Y

{ ! : :
A A bl
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

)

(a) (b
* Advertised window can fall to 0
— How?
— Sender eventually stops sending, blocks application

« Sender keeps sending 1-byte segments until
= window comes back > 0

When to Transmit?

 Nagle’s algorithm
* Goal: reduce the overhead of small packets
If available data and window >= MSS
Send a MSS segment
else
If there is unAcked data in flight
buffer the new data until ACK arrives

else
send all the new data now

* Receiver should avoid advertising a window
<= MSS after advertising a window of 0

Delayed Acknowledgments

+ Goal: Piggy-back ACKs on data

— Delay ACK for 200ms in case application sends
data

— If more data received, immediately ACK second
segment

— Note: never delay duplicate ACKs (if missing a
segment)

 Warning: can interact badly with Nagle

— Temporary deadlock
— Can disable Nagle with TCP_NODELAY
— Application can also avoid many small writes

Limitations of Flow Control

Network may be the bottleneck
Signal from receiver not enough!

Sending too fast will cause queue
overflows, heavy packet loss

Flow control provides correctness

Need more for performance: congestion
control

Second goal

 We should not send more data than the
network can take: congestion control

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 15!, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer congestion
collapses

— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper*: (TCP Tahoe)

1990: Fast retransmit and fast recovery added
(TCP Reno)

* Van Jacobson. Congestion avoidance and control. SIGCOMM ’88

Congestion Collapse
Nagle, rfc896, 1984

 Mid 1980°s. Problem with the protocol
implementations, not the protocol!

 What was happening?

— Load on the network - buffers at routers fill up
—> round trip time increases

 If close to capacity, and, e.g., a large flow
arrives suddenly...
— RTT estimates become too short
— Lots of retransmissions - increase in queue size
— Eventually many drops happen (full queues)
— Fraction of useful packets (not copies) decreases

TCP Congestion Control

* 3 Key Challenges
— Determining the available capacity in the first place
— Adjusting to changes in the available capacity
— Sharing capacity between flows

* ldea
— Each source determines network capacity for itself
— Rate is determined by window size
— Uses implicit feedback (drops, delay)
— ACKs pace transmission (self-clocking)

=

=]
\E|

Dealing with Congestion

 TCP keeps congestion and flow control
windows

— Max packets in flight is lesser of two

* Sending rate: ~Window/RTT

 The key here is how to set the
congestion window to respond to
congestion signals

Dealing with Congestion

« Assume losses are due to congestion

« After a loss, reduce congestion window
— How much to reduce?

* |ldea: conservation of packets at equilibrium

— Want to keep roughly the same number of packets in
network

— Analogy with water in fixed-size pipe
— Put new packet into network when one exits

How much to reduce window?

* Crude model of the network
— Let L; be the load (# pkts) in the network at time i
— If network uncongested, roughly constant L. = N

 What happens under congestion?
— Some fraction y of packets can’t exit the network
— NowL =N+yL ., orL=glLl,
— Exponential increase in congestion

 Sources must decrease offered rate
exponentially

— 1.e, multiplicative decrease in window size
— TCP chooses to cut window in half

How to use extra capacity?

 Network signals congestion, but says
nothing of underutilization
— Senders constantly try to send faster, see if it works
— S0, increase window if no losses... By how much?

« Multiplicative increase?
— Easier to saturate the network than to recover
— Too fast, will lead to saturation, wild fluctuations
« Additive increase?

— Won't saturate the network
— Remember fairness (third challenge)?

Chiu Jain Phase Plots

Fair:A=B

Goal: fair and efficient!

Flow Rate B

Efficient: A+B =C
>

Flow Rate A

Chiu Jain Phase Plots

Fair:A=B

Flow Rate B

Efficient: A+B =C
>

Flow Rate A

Chiu Jain Phase Plots

Fair:A=B

Flow Rate B

Efficient: A+B =C
>

Flow Rate A

Chiu Jain Phase Plots

Fair:A=B
AIMD

Flow Rate B

Efficient: A+B =C
>

Flow Rate A

AIMD Implementation

* In practice, send MSS-sized segments
— Let window size in bytes be w (a multiple of MSS)

* Increase:
— After w bytes ACKed, could setw =w + MSS

— Smoother to increment on each ACK
e w=w+ MSS * MSS/w

* (receive wW/MSS ACKs per RTT, increase by MSS/(w/MSS)
for each)

 Decrease:
— After a packet loss, w = w/2
— But don’t want w < MSS
— So react differently to multiple consecutive losses

— Back off exponentially (pause with no packets in
flight)

AIMD Trace

* AIMD produces sawtooth pattern of
window size

— Always probing available bandwidth

70
60 —
50 -
e 40 H
2 30 4
20
10

T T T T T T T T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

Starting Up

« Before TCP Tahoe

— On connection, nodes send full (rcv) window of
packets

— Retransmit packet immediately after its timer expires

* Result: window-sized bursts of packets in
network

Bursts of Packets

70

60
\

50

30
\

Packet Sequence Number (KB)

20
\

10
I

o i 1 1 1 1
0 2 4 6 8 10
Send Time (sec)

Graph from Van Jacobson and Karels, 1988

Determining Initial Capacity

* Question: how do we set w initially?

— Should start at TMSS (to avoid overloading the
network)

— Could increase additively until we hit congestion
— May be too slow on fast network

« Start by doubling w each RTT

— Then will dump at most one extra window into network
— This is called slow start

Slow start, this sounds quite fast!

— In contrast to initial algorithm: sender would dump
entire flow control window at once

Startup behavior with Slow Start

160

140
\
.

120
\
s

100
\

80
™

Packet Sequence Number (KB)
40 60
S,

20
\
T

Send Time (sec)

Slow start implementation

 Let w be the size of the window in bytes
— We have w/MSS segments per RTT

 We are doubling w after each RTT

— We receive w/MSS ACKs each RTT
— So we can setw =w + MSS on every ACK

At some point we hit the network limit.
— Experience loss
— We are at most one window size above the limit

— Remember window size (ssthresh) and reduce
window

Putting it together

TCP has two states: Slow Start (SS) and
Congestion Avoidance (CA)

A window size threshold governs the state
transition

— Window <= threshold: SS

— Window > threshold: congestion avoidance

States differ in how they respond to ACKs

— Slow start: w =w + MSS

— Congestion Avoidance: w = w + MSS?/w (1 MSS per
RTT)

On loss event: set w =1, slow start

Putting it all together

A
cwnd

Timeout

Timeout
AIMD

j\ ssthresh —» /

Slow Slow Slow Time
Start Start Start

How to Detect Loss

e Timeout

Any other way?
— Gap in sequence numbers at receiver

— Receiver uses cumulative ACKs: drops =>
duplicate ACKs

3 Duplicate ACKs considered loss

Which one is worse?

RTT

We want an estimate of RTT so we can know a
packet was likely lost, and not just delayed

Key for correct operation
Challenge: RTT can be highly variable

— Both at long and short time scales!

Both average and variance increase a lot with
load
Solution

— Use exponentially weighted moving average (EWMA)
— Estimate deviation as well as expected value

— Assume packet is lost when time is well beyond reasonable
deviation

Originally

EsStRTT = (1 — a) x EstRTT + a x SampleRTT
Timeout = 2 x EstRTT

Problem 1:

— in case of retransmission, ack corresponds to which send?
— Solution: only sample for segments with no retransmission

Problem 2:

— does not take variance into account: too aggressive when
there is more load!

Jacobson/Karels Algorithm (Tahoe)

EsStRTT = (1 — a) x EstRTT + a x SampleRTT

— Recommended a is 0.125

DevRTT = (1 - B) X DevRTT + B | SampleRTT — EstRTT |
— Recommended 3 is 0.25

Timeout = EstRTT + 4 DevRTT

For successive retransmissions: use
exponential backoff

RTT (sec.)

12

10

Old RTT Estimation

20 30 40 50 60 70 80 90 100
Packet

RTT (sec.)

12

10

Tahoe RTT Estimation

10 20 30 40 50 60 70 80 90
Packet

100

110

Slow start every time?!

* Losses have large effect on throughput
 Fast Recovery (TCP Reno)

— Same as TCP Tahoe on Timeout: w = 1, slow start
— On triple duplicate ACKs: w = w/2

— Retransmit missing segment (fast retransmit)

— Stay in Congestion Avoidance mode

cwnd

Fast Recovery and Fast Retransmit

Slow Start

Al/MD

M

Fast retransmit

Time

3 Challenges Revisited

Determining the available capacity in the
first place
— Exponential increase in congestion window

Adjusting to changes in the available
capacity

— Slow probing, AIMD

Sharing capacity between flows

— AIMD

Detecting Congestion

— Timeout based on RTT

— Triple duplicate acknowledgments

Fast retransmit/Fast recovery
— Reduces slow starts, timeouts

=

=]
\E|

Next Class

More Congestion Control fun
Cheating on TCP

TCP on extreme conditions
TCP Friendliness

TCP Future

