CSCI-1680
Transport Layer |

John Jannotti

Based partly on lecture notes by David Maziéres, Phil Levis, Rodrigo Fonseca

Today

* Transport Layer
— UDP
— TCP Intro

* Connection Establishment

Transport Layer

- Ay - Ay
HTTP TFTP

M L/

_/

P
NET, NET, ~~ NET,

* Transport protocols sit on top of the
network layer

 Problem solved: communication among
processes

— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

=

=]
\E|

UDP - User Datagram Protocol

Unreliable, unordered datagram service
Adds multiplexing, checksum

End points identified by ports
— Scope is an |IP address (interface)

Checksum aids in error detection

UDP Header

16 31

SrcPort

DstPort

Length

Checksum

UDP Checksum

 Uses the same algorithm as the IP
checksum
— Set Checksum field to O
— Sum all 16-bit words, adding any carry bits to the LSB
— Flip bits to get checksum (except Oxffff->0xffff)
— To check: sum whole packet, including sum, should
get Oxffff
« How many errors?
— Catches any 1-bit error
— Not all 2-bit errors

 Optional in IPv4: not checked if value is all 0

Pseudo Header

0 7 8 15 16 23 24 31
+-——————- +-——— - +-—— - t-——————- +
| source address |
- - - +-——————- +
| destination address |
- - - e +
| zero |protocol| UDP length |
+-—————- +-—————- +-—————- +-—————- +

« UDP Checksum is computer over pseudo-
header prepended to the UDP header

— For IPv4: IP Source, IP Dest, Protocol (=17), plus
UDP length

 What does this give us?

« What is a problem with this?
— |Is UDP a layer on top of IP?

Next Problem: Reliability

* Review: reliability on the link layer

T

Dropped Packets Acknowledgments + Timeout
Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Keeping the pipe full Sliding Window (Pipelining)

« Single link: things were easy... ©

Transport Layer Reliability

« Extra difficulties
— Multiple hosts
— Multiple hops
— Multiple potential paths
 Need for connection establishment, tear

down
— Analogy: dialing a number versus a direct line

* Varying RTTs

— Both across connections and during a
connection

— Why do they vary? What do they influence?

Extra Difficulties (cont.)

* Out of order packets
— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not
get confused

* Unknown resources at other end

— Must be able to discover receiver buffer: flow
control

* Unknown resources in the network
— Should not overload the network
— But should use as much as safely possible
— Congestion Control (next class)

TCP — Transmission Control Protocol

Application process Application process

— 1=
[1 Write [1 Read
: bytes : bytes

vy L]

TCP TCP
| Send buffer | | Receive buffer|
A
| Segment | | Segment |---| Segment |

Transmit segments

 Service model: “reliable, connection oriented,
full duplex byte stream”

— Endpoints: <IP Address, Port>

* Flow control
— If one end stops reading, writes at other eventually stop/fail

« Congestion control
— Keeps sender from overloading the network

TCP

Specification

— RFC 793 (1981), RFC 1222 (1989, some
corrections), RFC 5681 (2009, congestion control), ...

Was born coupled with IP, later factored out
— We talked about this, don’t always need everything!

End-to-end protocol
— Minimal assumptions on the network
— All mechanisms run on the end points

Alternative idea:
— Provide reliability, flow control, etc, link-by-link
— Does it work?

Why not provide (*) on the network
layer?

e Cost

— These functionalities are not free: don’t burden
those who don’t need them

+ Conflicting

— Timeliness and in-order delivery, for example
 Insufficient

— Example: reliability

* may be security, reliability, ordering guarantees, ...

End-to-end argument

* Functions placed at lower levels of a system
may be redundant or of little value

— They may need to be performed at a higher layer
anyway

« But they may be justified for performance
reasons
— Or just because they provide most of what is needed
— Example: retransmissions

* Lesson: weigh the costs and benefits at each
layer
— Also: the end also varies from case to case

TCP Header

012345678901234567890123456789°01

Source Port Destination Port
—+-+-+-+-+-+—+-+-+—+-+-+—+—+-+—t -+ -+ttt -+ -+ -+ -+ -+ —+-

| Sequence Number |
+-t-t—+-t-t—+—F-t—t -ttt -ttt -ttt -ttt -ttt -+ —+—+—+-+-+
| Acknowledgment Number |
e e s man s ok S T ol S e A e e e S e e
| Data | |UIA|P|R|S|F| I
| Offset| Reserved |R|C|S|S|Y|I| Window |
I I |IGIK|H|T|N|N| I
i e e e e s s H e A e e R e e e e e e R o e Rl ol e e

| Checksum | Urgent Pointer |
e T T e h s et T A e e e e e e A A S e e e St St R S s e 1
| Options | Padding |
e T T Y yyYs.
| data |
+-+-+—+-t-+-+-t-+—F-t -+ttt -t —F—+—t—F—F -t -+t -+ -+t —-+-+-+

Header Fields

Ports: multiplexing
Sequence number

— Correspond to bytes, not packets!
Acknowledgment Number

— Next expected sequence number

Window: willing to receive

— Lets receiver limit SWS (even to 0) for flow
control

Data Offset: # of 4 byte (header + option
bytes)
Flags, Checksum, Urgent Pointer

=

=]
\E|

Header Flags

URG: whether there is urgent data
ACK: ack no. valid (all but first segment)

PSH: push data to the application
immediately

RST: reset connection

SYN: synchronize, establishes
connection

FIN: close connection

Establishing a Connection

Active participant Passive participant
(client) (server)
Connect Listen,
Accept...
ACk
ACknowledgment Accept
R returns

 Three-way handshake

— Two sides agree on respective initial sequence
nums

* If no one is listening on port: server
sends RST

If server is overloaded: ignore SYN
If no SYN-ACK: retry, timeout

=1 =
\E] Bk
-

Connection Termination

* FIN bit says no more data to send
— Caused by close or shutdown
— Both sides must send FIN to close a connection

* Typical close

Close

FIN._WAIT 1 FIN
ACK CLOSE_WAIT

FIN_WAIT 2
Close

PN LAST ACK
TIME_WAIT
ACk

CLOSED

2MSL

CLOSED

Summary of TCP States

CLOSED =
i Q
. A : i
Unsynchronized Active open/SYN 1 &
Passive open Close : 'E,
Synchronized v | §
LISTEN -4
L c
.
SYN/SYN + ACK Send/SYN LB
SYN/SYN + ACK L@
SYN_RCVD |= : SYN_SENT -
ACK SYN + ACK/ACK S
Close/FIN ESTABLISHED
/,// \) A 1 ‘ \\\\ .
|" Close/FIN ‘F|IN/ACK i | Passive close:
| | FIN_WAIT_1 ; 7| CLOSE_WAIT ' Can still d!
Active close: | 4, FINACK i i | -an shll send:
)) | ACK o3 ! i Close/FIN
Can still receive | v ; | v i
| FIN_WAIT 2 CLOSING | ! i LAST_ACK ;
i ACK Timeout after two ACK |
. , FINJACK Y séigment /ife;times Y :
& ; ~ TIME_WAIT - = CLOSED |

\,
’
S

Endpoint 1 Endpoint 2
(address a, port p) (address b, port q)

.
—

Time

Old
Connection
Closed

New
Connection
Established

Duplicate
Old Packet
Accepted!?

From: The TIME-WAIT state in TCP and Its Effect on Busy Servers, Faber and Touch

Infocom 1999

TIME_WAIT

 Why do you have to wait for 2MSL in TIME_WAIT?

— What if last ack is severely delayed, AND
— Same port pair is immediately reused for a new connection?

« Solution: active closer goes into TIME_WAIT
— Waits for 2MSL (Maximum Segment Lifetime)

« Can be problematic for active servers
— OS has too many sockets in TIME_WAIT, can accept fewer
connections
« Hack: send RST and delete socket, SO LINGER =0
— OS won't let you re-start server because port in use
« SO_REUSEADDR lets you rebind

Next class

* Sending data over TCP

