
CSCI-1680
Layering and Encapsulation

Based	 partly	 on	 lecture	 notes	 by	 David	 Mazières,	 Phil	 Levis,	 Rodrigo	 Fonseca	

John Jannotti

Administrivia

•  Homework 0:
–  Sign and hand in Collaboration Policy
–  Sign up for Piazza
–  Send us your github account

•  Signup for Snowcast milestone
–  Thursday from 8pm to 10pm (tentative)
–  See Piazza for details

Today

•  Review
–  Switching, Multiplexing

•  Layering and Encapsulation
•  Intro to IP, TCP, UDP

•  Extra material: sockets primer

A Taxonomy of networks

Communication
Network

Switched
Communication

Network

Broadcast
Communication

Network

Circuit-Switched
Communication

Network

Packet-Switched
Communication

Network

Datagram
 Network

Virtual Circuit Network

A hybrid of circuits and packets;
headers include a “circuit

identifier” established during a
setup phase

Point-to-point network

Circuit Switching

•  Guaranteed allocation
–  Time division / Frequency division multiplexing

•  Low space overhead
•  Easy to reason about

•  Failures: must re-establish connection
–  For any failures along path

•  Overload: all or nothing
–  No graceful degradation

•  Waste: allocate for peak, waste for less than
peak

•  Set up time

Packet Switching

•  Break information in small chunks:
packets

•  Each packet forwarded independently
–  Must add metadata to each packet

•  Allows statistical multiplexing
–  High utilization
–  Very flexible
–  Fairness not automatic
–  Highly variable queueing delays
–  Different paths for each packet (why is this bad?)

Traceroute	 map	 of	 the	 Internet,	 ~5	 million	 edges,	 circa	 2003.	 opte.org	

Managing Complexity

•  Very large number of computers
•  Incredible variety of technologies

–  Each with very different constraints

•  No single administrative entity
•  Evolving demands, protocols, applications

–  Each with very different requirements!

•  How do we make sense of all this?

Layering

•  Separation of concerns
–  Break problem into separate parts
–  Solve each one independently
–  Tie together through common interfaces:

abstraction
–  Encapsulate data from the layer above inside

data from the layer below
–  Allow independent evolution

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Analogy to Delivering a Letter

Layers
•  Application – what the users sees, e.g.,

HTTP
•  Presentation – crypto, conversion between

representations
•  Session – can tie together multiple streams

(e.g., audio & video)
•  Transport – demultiplexes, provides

reliability, flow and congestion control
•  Network – sends packets, using routing
•  Data Link – sends frames, handles media

access
•  Physical – sends individual bits

OSI Reference Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Applica'on	 Protocol	

Transport	 Protocol	

Network	 Protocol	

Link-‐Layer	 Protocol	

Layers, Services, Protocols

Layer	 N	
Protocol:	 rules	 for	 communicaJon	
within	 same	 layer	 	

Layer	 N-‐1	

Layer	 N+1	

Service:	 abstracJon	 provided	 to	 layer	 above	
API:	 concrete	 way	 of	 using	 the	 service	

Layer	 N	 uses	 the	 services	 provided	 by	 N-‐1	 to	
implement	 its	 protocol	 and	 provide	 its	 own	 services	

Layers, Services, Protocols

Network	

Link	

Physical	

Transport	

ApplicaJon	

Service:	 move	 bits	 to	 other	 node	 across	 link	 	

Service:	 move	 frames	 to	 other	 node	 across	 link.	
May	 add	 reliability,	 medium	 access	 control	

Service:	 move	 packets	 to	 any	 other	 node	 in	 the	 network	
IP:	 Unreliable,	 best-‐effort	 service	 model	

Service:	 mulJplexing	 applicaJons	
Reliable	 byte	 stream	 to	 other	 node	 (TCP),	 	
Unreliable	 datagram	 (UDP)	

Service:	 user-‐facing	 applicaJon.	
ApplicaJon-‐defined	 messages	

Protocols

•  What do you need to communicate?
–  Definition of message formats
–  Definition of the semantics of messages
–  Definition of valid sequences of messages

•  Including valid timings

•  Also, who do you talk to? …

Addressing

•  Each node typically has a unique* name
–  When that name also tells you how to get to the node, it

is called an address
•  Each layer can have its own naming/addressing
•  Routing is the process of finding a path to the

destination
–  In packet switched networks, each packet must have a

destination address
–  For circuit switched, use address to set up circuit

•  Special addresses can exist for broadcast/
multicast/anycast

* within the relevant scope

Challenge
•  Decide on how to factor the problem

–  What services at which layer?
–  What to leave out?
–  More on this later (End-to-end principle)

•  For example:
–  IP offers pretty crappy service, even on top of

reliable links… why?
–  TCP: offers reliable, in-order, no-duplicates

service. Why would you want UDP?

IP as the Narrow Waist

•  Many applications protocols on top of UDP
& TCP

•  IP works over many types of networks
•  This is the “Hourglass” architecture of the

Internet.
–  If every network supports IP, applications run over

many different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Network Layer: Internet Protocol (IP)

•  Used by most computer networks today
–  Runs over a variety of physical networks, can connect

Ethernet, wireless, modem lines, etc.
•  Every host has a unique 4-byte IP address

(IPv4)
–  E.g., www.cs.brown.edu à128.148.32.110
–  The network knows how to route a packet to any address

•  Need more to build something like the Web
–  Need naming (DNS)
–  Interface for browser and server software (sockets)
–  Need demultiplexing within a host: which packets are for

web browser, Skype, or the mail program? (ports)

Inter-process Communication

•  Talking from host to host is great, but we want
abstraction of inter-process communication

•  Solution: encapsulate another protocol within IP

Host

HostHost

Channel

Application

Host

Application

Host

Transport: UDP and TCP

•  UDP and TCP most popular protocols on IP
–  Both use 16-bit port number & 32-bit IP address
–  Applications bind a port & receive traffic on that port

•  UDP – User (unreliable) Datagram Protocol
–  Exposes packet-switched nature of Internet
–  Adds multiplexing on top of IP
–  Sent packets may be dropped, reordered, even

duplicated (but there is corruption protection)
•  TCP – Transmission Control Protocol

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

–  Handles congestion and flow control

Uses of TCP

•  Most applications use TCP
–  Easier to program (reliability is convenient)
–  Automatically avoids congestion (don’t need to

worry about overloading the network)
•  Servers typically listen on “well-known”

ports:
–  SSH: 22
–  SMTP (email): 25
–  Finger: 79
–  HTTP (web): 80

Transport: UDP and TCP

•  UDP and TCP most popular protocols on IP
–  Both use 16-bit port number & 32-bit IP address
–  Applications bind a port & receive traffic on that port

•  UDP – User (unreliable) Datagram Protocol
–  Exposes packet-switched nature of Internet
–  Adds multiplexing on top of IP
–  Packets may be dropped, reordered, even duplicated

(but there is corruption protection)
•  TCP – Transmission Control Protocol

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

–  Handles congestion and flow control

Internet Layering

•  Strict layering not required
–  TCP/UDP “cheat” to detect certain errors in IP-level

information like address
–  Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application

Using TCP/IP

•  How can applications use the network?
•  Sockets API.

–  Originally from BSD, widely implemented (*BSD,
Linux, Mac OS X, Windows, …)

–  Higher-level APIs build on them
•  After basic setup, use much like files

Sockets: Communication Between
Machines

•  Network sockets are file descriptors too
•  Datagram sockets: unreliable message delivery

–  With IP, gives you UDP
–  Send atomic messages, which may be reordered or lost
–  Special system calls to read/write: send/recv

•  Stream sockets: bi-directional pipes
–  With IP, gives you TCP
–  Bytes written on one end read on another
–  read() may not return full amount requested. Check return

value and read() again! (But returning zero bytes = eof)

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

 accept – accept connection

•  client bind is optional, connect can choose address &
port.

Socket Naming
•  Recall how TCP & UDP name communication

endpoints
–  IP address (128.148.32.110) specifies host (netif)
–  16-bit port number demultiplexes within host
–  Well-known services listen on standard ports (e.g.

ssh: 22, http: 80, mail: 25, see /etc/services for list)
–  Clients connect from arbitrary ports to well known

ports
•  A connection is named by 5 components

–  Protocol, local IP, local port, remote IP, remote port
–  TCP requires connected sockets, but not UDP

Dealing with Address Types
•  All values in network byte order (Big

Endian)
–  htonl(), htons(): host to network, 32 and 16 bits
–  ntohl(), ntohs(): network to host, 32 and 16 bits
–  Always convert! On some machines, it’s a no-op.

•  All address types begin with family
–  sa_family in sockaddr tells you actual type

•  Not all addresses are the same size
–  e.g., struct sockaddr_in6 is typically 28 bytes,

yet generic struct sockaddr is only 16 bytes
–  Most calls also take the socketaddr length
–  New sockaddr_storage is “big enough”

Client Skeleton (IPv4) Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);

Server Skeleton (IPv4) Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}

Using UDP

•  Call socket with SOCK_DGRAM, bind as before
•  New calls for sending/receiving individual packets

–  sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);

–  recvfrom(int s, void *buf, int len, int flags, struct
sockaddr *from, socklen t *fromlen);

–  Must send/get peer address with each packet

•  Example: udpecho.c
•  Can use UDP in connected mode (Why?)

–  connect assigns remote address
–  send/recv syscalls, like sendto/recvfrom w/o last two

arguments

Uses of UDP Connected Sockets

•  Kernel demultiplexes packets based on port
–  Can have different processes getting UDP packets

from different peers
•  Feedback based on ICMP messages (future

lecture)
–  Say no process has bound UDP port you sent packet

to
–  Server sends port unreachable message, but you will

only receive it when using connected socket

Serving Multiple Clients

•  A server may block when talking to a client
–  Read or write of a socket connected to a slow client

can block
–  Server may be busy with CPU
–  Server might be blocked waiting for disk I/O

•  Concurrency through multiple processes
–  Accept, fork, close in parent; child services request

•  Advantages of one process per client
–  Don’t block on slow clients
–  May use multiple cores
–  Can keep disk queues full for disk-heavy workloads

Threads
•  One process per client has

disadvantages:
–  High overhead – fork + exit ~100µsec
–  Hard to share state across clients
–  Maximum number of processes limited

•  Can use threads for concurrency
–  Data races and deadlocks make programming

tricky
–  Must allocate one stack per request
–  Many have heavy thread-switch overhead

Rough equivalents to fork(), waitpid(),
exit(), kill(), plus locking primitives.

Non-blocking I/O
•  fcntl sets O_NONBLOCK flag on descriptor

int n;
if ((n = fcntl(s, F_GETFL)) >= 0)

fcntl(s, F_SETFL, n|O_NONBLOCK);

•  Non-blocking semantics of system calls:
–  read immediately returns -1 with errno EAGAIN if no

data
–  write may not write all data, or may return EAGAIN
–  connect may fail with EINPROGRESS (or may

succeed, or may fail with a real error like
ECONNREFUSED)

–  accept may fail with EAGAIN or EWOULDBLOCK if no
connections present to be accepted

How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

Use select() to know when to act.

•  Entire program runs in an event loop
•  poll() is similar, epoll() is “better” in some ways.

Event-driven servers

•  Quite different from processes/threads
–  Race conditions, deadlocks rare
–  Often more efficient

•  But…
–  Unusual programming model.
–  Sometimes difficult to avoid blocking. (You must

know your libraries are also asynchronous.)
–  Scaling to more CPUs is more complex.

Coming Up

•  Next class: Physical Layer
•  Same day: Snowcast milestones

