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Administrivia 

•  Homework 0: 
–  Sign and hand in Collaboration Policy 
–  Sign up for Piazza 
–  Send us your github account 

•  Signup for Snowcast milestone 
–  Thursday from 8pm to 10pm (tentative) 
–  See Piazza for details 



Today 

•  Review 
–  Switching, Multiplexing 

•  Layering and Encapsulation 
•  Intro to IP, TCP, UDP 

•  Extra material: sockets primer 
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Circuit Switching 

•  Guaranteed allocation 
–  Time division / Frequency division multiplexing 

•  Low space overhead 
•  Easy to reason about 

•  Failures: must re-establish connection 
–  For any failures along path 

•  Overload: all or nothing 
–  No graceful degradation 

•  Waste: allocate for peak, waste for less than 
peak 

•  Set up time 



Packet Switching 

•  Break information in small chunks: 
packets 

•  Each packet forwarded independently 
–  Must add metadata to each packet 

•  Allows statistical multiplexing 
–  High utilization 
–  Very flexible 
–  Fairness not automatic 
–  Highly variable queueing delays 
–  Different paths for each packet (why is this bad?) 



Traceroute	  map	  of	  the	  Internet,	  ~5	  million	  edges,	  circa	  2003.	  opte.org	  



Managing Complexity 

•  Very large number of computers 
•  Incredible variety of technologies 

–  Each with very different constraints 

•  No single administrative entity 
•  Evolving demands, protocols, applications 

–  Each with very different requirements! 

•  How do we make sense of all this? 



Layering 

•  Separation of concerns 
–  Break problem into separate parts 
–  Solve each one independently 
–  Tie together through common interfaces: 

abstraction 
–  Encapsulate data from the layer above inside 

data from the layer below 
–  Allow independent evolution 

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address



Analogy to Delivering a Letter 



Layers 
•  Application – what the users sees, e.g., 

HTTP 
•  Presentation – crypto, conversion between 

representations 
•  Session – can tie together multiple streams 

(e.g., audio & video) 
•  Transport – demultiplexes, provides 

reliability, flow and congestion control 
•  Network – sends packets, using routing 
•  Data Link – sends frames, handles media 

access 
•  Physical – sends individual bits 
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Layers, Services, Protocols 

Layer	  N	  
Protocol:	  rules	  for	  communicaJon	  
within	  same	  layer	  	  

Layer	  N-‐1	  

Layer	  N+1	  

Service:	  abstracJon	  provided	  to	  layer	  above	  
API:	  concrete	  way	  of	  using	  the	  service	  

Layer	  N	  uses	  the	  services	  provided	  by	  N-‐1	  to	  
implement	  its	  protocol	  and	  provide	  its	  own	  services	  



Layers, Services, Protocols 

Network	  

Link	  

Physical	  

Transport	  

ApplicaJon	  

Service:	  move	  bits	  to	  other	  node	  across	  link	  	  

Service:	  move	  frames	  to	  other	  node	  across	  link.	  
May	  add	  reliability,	  medium	  access	  control	  

Service:	  move	  packets	  to	  any	  other	  node	  in	  the	  network	  
IP:	  Unreliable,	  best-‐effort	  service	  model	  

Service:	  mulJplexing	  applicaJons	  
Reliable	  byte	  stream	  to	  other	  node	  (TCP),	  	  
Unreliable	  datagram	  (UDP)	  

Service:	  user-‐facing	  applicaJon.	  
ApplicaJon-‐defined	  messages	  



Protocols 

•  What do you need to communicate? 
–  Definition of message formats 
–  Definition of the semantics of messages 
–  Definition of valid sequences of messages 

•  Including valid timings 

•  Also, who do you talk to? … 



Addressing 

•  Each node typically has a unique* name 
–  When that name also tells you how to get to the node, it 

is called an address 
•  Each layer can have its own naming/addressing 
•  Routing is the process of finding a path to the 

destination 
–  In packet switched networks, each packet must have a 

destination address 
–  For circuit switched, use address to set up circuit 

•  Special addresses can exist for broadcast/
multicast/anycast 

* within the relevant scope 



Challenge 
•  Decide on how to factor the problem 

–  What services at which layer? 
–  What to leave out? 
–  More on this later (End-to-end principle) 

•  For example:  
–  IP offers pretty crappy service, even on top of 

reliable links… why? 
–  TCP: offers reliable, in-order, no-duplicates 

service. Why would you want UDP? 



IP as the Narrow Waist 

•  Many applications protocols on top of UDP 
& TCP 

•  IP works over many types of networks 
•  This is the “Hourglass” architecture of the 

Internet.  
–  If every network supports IP, applications run over 

many different networks (e.g., cellular network) 

…
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NET1 NET2 NETn
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Network Layer: Internet Protocol (IP) 

•  Used by most computer networks today 
–  Runs over a variety of physical networks, can connect 

Ethernet, wireless, modem lines, etc. 
•  Every host has a unique 4-byte IP address 

(IPv4) 
–  E.g.,  www.cs.brown.edu à128.148.32.110 
–  The network knows how to route a packet to any address 

•  Need more to build something like the Web 
–  Need naming (DNS) 
–  Interface for browser and server software (sockets) 
–  Need demultiplexing within a host: which packets are for 

web browser, Skype, or the mail program? (ports) 



Inter-process Communication 

•  Talking from host to host is great, but we want 
abstraction of inter-process communication 

•  Solution: encapsulate another protocol within IP 

Host

HostHost
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Application

Host

Application

Host



Transport: UDP and TCP 

•  UDP and TCP most popular protocols on IP 
–  Both use 16-bit port number & 32-bit IP address 
–  Applications bind a port & receive traffic on that port 

•  UDP – User (unreliable) Datagram Protocol 
–  Exposes packet-switched nature of Internet 
–  Adds multiplexing on top of IP 
–  Sent packets may be dropped, reordered, even 

duplicated (but there is corruption protection) 
•  TCP – Transmission Control Protocol 

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between 
two processes anywhere on the network 

–  Handles congestion and flow control 



Uses of TCP 

•  Most applications use TCP 
–  Easier to program (reliability is convenient) 
–  Automatically avoids congestion (don’t need to 

worry about overloading the network) 
•  Servers typically listen on “well-known” 

ports: 
–  SSH: 22 
–  SMTP (email): 25 
–  Finger: 79 
–  HTTP (web): 80 



Transport: UDP and TCP 

•  UDP and TCP most popular protocols on IP 
–  Both use 16-bit port number & 32-bit IP address 
–  Applications bind a port & receive traffic on that port 

•  UDP – User (unreliable) Datagram Protocol 
–  Exposes packet-switched nature of Internet 
–  Adds multiplexing on top of IP 
–  Packets may be dropped, reordered, even duplicated 

(but there is corruption protection) 
•  TCP – Transmission Control Protocol 

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between 
two processes anywhere on the network 

–  Handles congestion and flow control 



Internet Layering 

•  Strict layering not required 
–  TCP/UDP “cheat” to detect certain errors in IP-level 

information like address 
–  Overall, allows evolution, experimentation 

TCP UDP

IP
Network

Application



Using TCP/IP 

•  How can applications use the network? 
•  Sockets API.  

–  Originally from BSD, widely implemented (*BSD, 
Linux, Mac OS X, Windows, …) 

–  Higher-level APIs build on them 
•  After basic setup, use much like files 



Sockets: Communication Between 
Machines 

•  Network sockets are file descriptors too 
•  Datagram sockets: unreliable message delivery 

–  With IP, gives you UDP 
–  Send atomic messages, which may be reordered or lost 
–  Special system calls to read/write: send/recv

•  Stream sockets: bi-directional pipes 
–  With IP, gives you TCP 
–  Bytes written on one end read on another 
–  read() may not return full amount requested. Check return 

value and read() again! (But returning zero bytes = eof) 



System calls for using TCP 

Client  Server    
   socket – make socket 
   bind – assign address, port 
   listen – listen for clients 

socket – make socket 
bind* – assign address 
connect – connect to listening socket 

   accept – accept connection 
 

•  client bind is optional, connect can choose address & 
port.  



Socket Naming 
•  Recall how TCP & UDP name communication 

endpoints 
–  IP address (128.148.32.110) specifies host (netif) 
–  16-bit port number demultiplexes within host 
–  Well-known services listen on standard ports (e.g. 

ssh: 22, http: 80, mail: 25, see /etc/services for list) 
–  Clients connect from arbitrary ports to well known 

ports 
•  A connection is named by 5 components 

–  Protocol, local IP, local port, remote IP, remote port 
–  TCP requires connected sockets, but not UDP 



Dealing with Address Types 
•  All values in network byte order (Big 

Endian) 
–  htonl(), htons(): host to network, 32 and 16 bits 
–  ntohl(), ntohs(): network to host, 32 and 16 bits 
–  Always convert! On some machines, it’s a no-op. 

•  All address types begin with family 
–  sa_family in sockaddr tells you actual type 

•  Not all addresses are the same size 
–  e.g., struct sockaddr_in6 is typically 28 bytes, 

yet generic  struct sockaddr is only 16 bytes 
–  Most calls also take the socketaddr length 
–  New sockaddr_storage is “big enough” 



Client Skeleton (IPv4) Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);



Server Skeleton (IPv4) Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}



Using UDP 

•  Call socket with SOCK_DGRAM, bind as before 
•  New calls for sending/receiving individual packets 

–  sendto(int s, const void *msg, int len, int flags, 
const struct sockaddr *to, socklen t tolen);

–  recvfrom(int s, void *buf, int len, int flags, struct 
sockaddr *from, socklen t *fromlen);

–  Must send/get peer address  with each packet 

•  Example: udpecho.c
•  Can use UDP in connected mode (Why?) 

–  connect assigns remote address 
–  send/recv syscalls, like sendto/recvfrom w/o last two 

arguments 



Uses of UDP Connected Sockets 

•  Kernel demultiplexes packets based on port 
–  Can have different processes getting UDP packets 

from different peers 
•  Feedback based on ICMP messages (future 

lecture) 
–  Say no process has bound UDP port you sent packet 

to 
–  Server sends port unreachable message, but you will 

only receive it when using connected socket 



Serving Multiple Clients 

•  A server may block when talking to a client 
–  Read or write of a socket connected to a slow client 

can block 
–  Server may be busy with CPU 
–  Server might be blocked waiting for disk I/O 

•  Concurrency through multiple processes 
–  Accept, fork, close in parent; child services request 

•  Advantages of one process per client 
–  Don’t block on slow clients 
–  May use multiple cores 
–  Can keep disk queues full for disk-heavy workloads 



Threads 
•  One process per client has 

disadvantages: 
–  High overhead – fork + exit ~100µsec 
–  Hard to share state across clients 
–  Maximum number of processes limited 

•  Can use threads for concurrency 
–  Data races and deadlocks make programming 

tricky 
–  Must allocate one stack per request 
–  Many have heavy thread-switch overhead  

Rough equivalents to fork(), waitpid(), 
exit(), kill(), plus locking primitives. 



Non-blocking I/O 
•  fcntl sets O_NONBLOCK flag on descriptor 

int n;
if ((n = fcntl(s, F_GETFL)) >= 0)

fcntl(s, F_SETFL, n|O_NONBLOCK);

•  Non-blocking semantics of system calls: 
–  read immediately returns -1 with errno EAGAIN if no 

data 
–  write may not write all data, or may return EAGAIN 
–  connect may fail with EINPROGRESS (or may 

succeed, or may fail with a real error like 
ECONNREFUSED) 

–  accept may fail with EAGAIN or EWOULDBLOCK if no 
connections present to be accepted 



How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

Use select() to know when to act. 

•  Entire program runs in an event loop 
•  poll() is similar, epoll() is “better” in some ways. 



Event-driven servers 

•  Quite different from processes/threads 
–  Race conditions, deadlocks rare 
–  Often more efficient 

•  But… 
–  Unusual programming model. 
–  Sometimes difficult to avoid blocking. (You must 

know your libraries are also asynchronous.) 
–  Scaling to more CPUs is more complex. 



Coming Up 

•  Next class: Physical Layer 
•  Same day: Snowcast milestones 


