
CSCI-1680

DNS

Based partly on lecture notes by Scott Shenker and John Jannotti and Rodrigo Fonseca

Chen Avin

And “Computer Networking: A Top Down Approach” - 6th edition

Host names and IP Addresses

• IP Addresses
– Numerical address appreciated by routers

– Fixed length, binary numbers

– Hierarchical, related to host location (in the
network)

– Examples: 128.148.32.110, 212.58.224.138

• Host names
– Mnemonics appreciated by humans

– Variable length, ASCII characters

– Provide little (if any) information about location

– Examples: www.cs.brown.edu, bbc.co.uk

http://www.cs.brown.edu

Separating Naming and Addressing

• Names are easier to remember
– www.cnn.com vs 157.166.224.26

• Addresses can change underneath
– e.g, renumbering when changing providers

• Name could map to multiple addresses
– www.cnn.com maps to at least 6 ip addresses

– Enables
• Load balancing

• Latency reduction

• Tailoring request based on requester’s location/device/identity

• Multiple names for the same address
– Aliases: www.cs.brown.edu and cs.brown.edu

– Multiple servers in the same node (e.g., apache virtual
servers)

Scalable Address <-> Name Mappings

• Originally kept in a local file, hosts.txt
– Flat namespace

– Central administrator kept master copy (for the Internet)

– To add a host, emailed admin

– Downloaded file regularly

• Completely impractical today
– File would be huge (gigabytes)

– Traffic implosion (lookups and updates)
• Some names change mappings every few days (dynamic IP)

– Single point of failure

– Impractical politics (security, ownership, etc…)

Goals for an Internet-scale name system

• Scalability

– Must handle a huge number of records

• With some software synthesizing names on the fly

– Must sustain update and lookup load

• Distributed Control

– Let people control their own names

• Fault Tolerance

– Minimize lookup failures in face of other network

problems

The good news

• Properties that make these goals easier

to achieve

1. Read-mostly database

Lookups MUCH more frequent than updates

2. Loose consistency

When adding a machine, not end of the world if it takes

minutes or hours to propagate

• These suggest aggressive caching

– Once you’ve lookup up a hostname, remember

– Don’t have to look again in the near future

Domain Name System (DNS)

• Hierarchical namespace broken into zones

– root (.), edu., brown.edu., cs.brown.edu.,

– Zones separately administered :: delegation

– Parent zone tells you how to find servers for

subdomains

• Each zone served from multiple replicated

servers

DNS Architecture

• Hierarchy of DNS servers
– Root servers

– Top-level domain (TLD) servers

– Authoritative DNS servers

• Performing the translation
– Local DNS servers (aka “default name server”)

– Resolver software

Resolver operation

• Apps make recursive
queries to local DNS
server (1)
– Ask server to get answer

for you

• Server makes iterative
queries to remote
servers (2,4,6)
– Ask servers who to ask

next

– Cache results
aggressively

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

4 5

6

3

recursive query:
• puts burden of name

resolution on

contacted name

server

• heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

DNS Root Server

• Located in Virginia, USA

• How do we make the root scale?

 Verisign, Dulles, VA

DNS Root Servers
• 13 Root Servers (www.root-servers.org)

– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Does this scale?

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium

 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium,

 Palo Alto, CA

 (and 37 other locations)

I Autonomica, Stockholm

(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo

 plus Seoul, Paris,

 San Francisco

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations)

DNS Root Servers
• 13 Root Servers (www.root-servers.org)

– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Replication via anycasting

TLD and Authoritative DNS Servers

• Top Level Domain (TLD) servers

– Generic domains (e.g., com, org, edu)

– Country domains (e.g., uk, br, tv, in, ly)

– Special domains (e.g., arpa)

– Typically managed professionally

• Authoritative DNS servers

– Provides public records for hosts at an

organization

• e.g, for the organization’s own servers (www, mail, etc)

– Can be maintained locally or by a service

provider

Reverse Mapping

• How do we get the other direction, IP
address to name?

• Addresses have a natural hierarchy:
– 128.148.34.7

• But, most significant element comes first

• Idea: reverse the numbers: 7.34.148.128 …
– and look that up in DNS

• Under what TLD?
– Convention: in-addr.arpa

– Lookup 7.34.148.128.in-addr.arpa

– in6.arpa for IPv6

DNS Caching

• All these queries take a long time!
– And could impose tremendous load on root servers

– This latency happens before any real communication,
such as downloading your web page

• Caching greatly reduces overhead
– Top level servers very rarely change

– Popular sites visited often

– Local DNS server caches information from many
users

• How long do you store a cached response?
– Original server tells you: TTL entry

– Server deletes entry after TTL expires

Negative Caching

• Remember things that don’t work
– Misspellings like www.cnn.comm, ww.cnn.com

• These can take a long time to fail the first
time
– Good to cache negative results so it will fail

faster next time

• But negative caching is optional, and not
widely implemented

DNS Protocol

• TCP/UDP port 53

• Most traffic uses UDP
– Lightweight protocol has 512 byte message limit

– Retry using TCP if UDP fails (e.g., reply
truncated)

• TCP requires messages boundaries
– Prefix all messages with 16-bit length

• Bit in query determines if query is
recursive

Resource Records

• All DNS info represented as resource records
(RR)

name [ttl] [class] type rdata
– name: domain name

– TTL: time to live in seconds

– class: for extensibility, normally IN (1) “Internet”

– type: type of the record

– rdata: resource data dependent on the type

• Two important RR types
– A – Internet Address (IPv4)

– NS – name server

• Example RRs
www.cs.brown.edu. 86400 IN A 128.148.32.110

cs.brown.edu. 86400 IN NS dns.cs.brown.edu.

cs.brown.edu. 86400 IN NS ns1.ucsb.edu.

Some important details

• How do local servers find root servers?
– DNS lookup on a.root-servers.net ?

– Servers configured with root cache file

– Contains root name servers and their addresses
. 3600000 IN NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

...

• How do you get addresses of other name
servers?
– To obtain the address of www.cs.brown.edu, ask

a.edu-servers.net, says a.root-servers.net

– How do you find a.edu-servers.net?

– Glue records: A records in parent zone

Example

dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110

Structure of a DNS Message

• Same format for queries and replies
– Query has 0 RRs in Answer/Authority/Additional

– Reply includes question, plus has RRs

• Authority allows for delegation

• Additional for glue, other RRs client
might need

Header format

• Id: match response to query; QR: 0 query/1 response

• RCODE: error code.

• AA: authoritative answer, TC: truncated,

• RD: recursion desired, RA: recursion available

Other RR Types

• CNAME (canonical name): specifies an
alias

www.google.com. 446199 IN CNAME www.l.google.com.

www.l.google.com. 300 IN A 72.14.204.147

• MX record: specifies servers to handle
mail for a domain (the part after the @ in
email addr)
– Different for historical reasons

• SOA (start of authority)
– Information about a DNS zone and the server

responsible for the zone

• PTR (reverse lookup)
7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.

Reliability

• Answers may contain several alternate

servers

• Try alternate servers on timeout

– Exponential backoff when retrying same server

• Use same identifier for all queries

– Don’t care which server responds, take first

answer

Inserting a Record in DNS

• Your new startup helpme.com

• Get a block of addresses from ISP
– Say 212.44.9.128/25

• Register helpme.com at GoDaddy.com (for
ex.)
– Provide name and address of your authoritative

name server (primary and secondary)

– Registrar inserts RR pair into the com TLD server:
• helpme.com NS dns1.helpme.com

• dns1.helpme.com A 212.44.9.129

• Configure your authoritative server
(dns1.helpme.com)
– Type A record for www.helpme.com

– Type MX record for your mail server

Inserting a Record in DNS, cont

• Need to provide reverse PTR bindings
– E.g., 212.44.9.129 -> dns1.helpme.com

• Normally, these would go into the
9.44.212.in-addr.arpa zone

• Problem: you can’t run the name server for
that domain. Why not?
– Your block is 212.44.9.128/25, not 212.44.9.0/24

– Whoever has 212.44.9.0/25 wouldn’t be happy with
you setting their PTR records

• Solution: [RFC2317, Classless Delegation]
– Install CNAME records in parent zone, e.g:

129.9.44.212.in-addr.arpa CNAME 129.ptr.helpme.com

DNS Measurements (Data from MIT, 2000)

• What was being looked up?

– 60% A, 25% PTR, 5% MX, 6% ANY

• Latency

– Median ~100ms (90th percentile ~500ms)

• Query packets per lookup: ~2.4

• Top 10% of domains ~70% of lookups

– Great for caching!

• 9% of lookups are unique

– Caching can’t hit more than 91%

• Cache hit rates actually ~75%

DNS Measurements (Data from MIT, 2000)

• Does DNS give back answers?

– ~23% of queries do not elicit an answer

– ~13% return NXDOMAIN (or similar)

• Mostly reverse lookups

– Only ~64% of queries are successful

• ~63% of DNS packets in unanswered

queries

– Failing queries are frequently retransmitted

– 99.9% successful queries have <= 2 retransmissions

DNS Security

• You go to starbucks, how does your
browser find www.google.com?
– Ask local name server, obtained from DHCP

– You implicitly trust this server

– Can return any answer for google.com, including
a malicious IP that poses as a man in the middle

• How can you know you are getting
correct data?
– Today, you can’t for all sources

– HTTPS can help

– DNSSEC extension allow you to verify

DNS Security 2 – Cache Poisoning

• Suppose you control evil.com. You receive a

query for www.evil.com and reply:

;; QUESTION SECTION:

;www.evil.com. IN A

;; ANSWER SECTION:

www.evil.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:

evil.com. 600 IN NS dns1.evil.com.

evil.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:

google.com. 5 IN A 212.44.9.155

• Glue record pointing to your IP, not Google’s

• Gets cached!

Cache Poisoning # 2

• But how do you get a victim to look up evil.com?

• You might connect to their mail server and send

– HELO www.evil.com

– Which their mail server then looks up to see if it

corresponds to your IP address (SPAM filtering)

• Mitigation (bailiwick checking)

– Only accept glue records from the domain you asked for

Cache Poisoning

• Another possibility: bad guy at Starbucks, can
sniff or guess the ID field the local server will use
– Not hard if DNS server generates ID numbers sequentially

– Can be done if you force the DNS server to look up
something in your name server

– Guessing has 1 in 65535 chance (Or does it?)

• Now:
– Ask the local server to lookup google.com

– Spoof the response from google.com using the correct ID

– Bogus response arrives before legit one (maybe)

• Local server caches first response it receives
– Attacker can set a long TTL

Countermeasures

• Randomize id

– Used to be sequential

• Randomize source port number

– Used to be the same for all requests from the

server

• Offers some protection, but attack still

possible

Solution: signatures

• Signature: cryptographic way to prove a

party is who they say they are

• Requires a chain of trust

• DNSSEC deployment is underway

Some more DNS fun

• You can use DNS to tunnel data!

• Steps:

– Start up a Name Server for a domain you control

– Send info encoding data in the domain name

part of a query

– Server encodes response in a TXT record

• Why? DNS is often not blocked in

airports, etc

• This has been a final project in this

class!

Updates

Updates

