
CSCI-1680

HTTP & Web

Chen Avin

Based on “Computer Networking: A Top Down Approach” - 6th edition

Administrivia

• This Week:

– HW3 (delay to Thursday)

– TCP Milestone II

• Coming week: HTTP, E-mail, DNS

Web and HTTP

First, a review…

• web page consists of objects

• object can be HTML file, JPEG image, Java

applet, audio file,…

• web page consists of base HTML-file which

includes several referenced objects

• each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext
transfer protocol

• Web’s application layer
protocol

• client/server model
– client: browser that

requests, receives,
(using HTTP
protocol) and
“displays” Web
objects

– server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

HTTP overview (continued)

uses TCP:
• client initiates TCP

connection (creates socket)
to server, port 80

• server accepts TCP
connection from client

• HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

• TCP connection closed

HTTP is
“stateless”

• server maintains no
information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP connections

non-persistent HTTP

• at most one object

sent over TCP

connection

– connection then

closed

• downloading multiple

objects required

multiple connections

persistent HTTP

• multiple objects can

be sent over single

TCP connection

between client,

server

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP

connection to HTTP server

(process) at

www.someSchool.edu on port

80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket.

Message indicates that client

wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to 10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP (cont.)

5. HTTP client receives response

message containing html file,

displays html. Parsing html file,

finds 10 referenced jpeg

objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Application Layer 2-9

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:

• one RTT to initiate TCP
connection

• one RTT for HTTP request
and first few bytes of HTTP
response to return

• file transmission time

• non-persistent HTTP
response time =

 2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

non-persistent HTTP

issues:

• requires 2 RTTs per object

• OS overhead for each TCP

connection

• browsers often open parallel

TCP connections to fetch

referenced objects

persistent HTTP:

• server leaves connection

open after sending response

• subsequent HTTP messages

between same client/server

sent over open connection

• client sends requests as

soon as it encounters a

referenced object

• as little as one RTT for all

the referenced objects

• With/without pipelining

HTTP request message

• two types of HTTP messages: request, response

• HTTP request message:

– ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

 lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~

Uploading form input

POST method:

• web page often

includes form input

• input is uploaded to

server in entity body

URL method:

• uses GET method

• input is uploaded in

URL field of request

line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0:

• GET

• POST

• HEAD

– asks server to leave

requested object out

of response

HTTP/1.1:

• GET, POST, HEAD

• PUT

– uploads file in entity

body to path

specified in URL field

• DELETE

– deletes file specified

in the URL field

HTTP response message

status line

(protocol

status code

status phrase)

header

 lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

HTTP response status codes

200 OK

– request succeeded, requested object later in this msg

301 Moved Permanently

– requested object moved, new location specified later in this
msg (Location:)

400 Bad Request

– request msg not understood by server

404 Not Found

– requested document not found on this server

505 HTTP Version Not Supported

• status code appears in 1st line in server-to-
client response message.

• some sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

User-server state: cookies

many Web sites use
cookies

four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host,
managed by user’s
browser

4) back-end database
at Web site

example:

• Susan always access
Internet from PC

• visits specific e-
commerce site for first
time

• when initial HTTP
requests arrives at site,
site creates:

– unique ID

– entry in backend
database for ID

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Cookies (continued)

what cookies can be
used for:

• authorization
• shopping carts
• recommendations
• user session state

(Web e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name and

e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Web caches (proxy server)

• user sets browser: Web

accesses via cache

• browser sends all HTTP

requests to cache

– object in cache: cache

returns object

– else cache requests

object from origin

server, then returns

object to client

goal: satisfy client request without involving origin server

client

proxy

server

client origin

server

origin

server

More about Web caching

• cache acts as both

client and server
– server for original

requesting client

– client to origin server

• typically cache is

installed by ISP

(university,

company,

residential ISP)

why Web caching?

• reduce response time
for client request

• reduce traffic on an
institution’s access
link

• Internet dense with
caches: enables
“poor” content
providers to effectively
deliver content (so too
does P2P file sharing)

Caching example:

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + usecs

problem!

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + usecs

Caching example: fatter access link

origin

servers

1.54 Mbps

access link

154 Mbps

154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

 Internet

institutional

network
1 Gbps LAN

institutional

network
1 Gbps LAN

Caching example: install local cache

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 100%
 total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

 Internet

Caching example: install local cache

Calculating access link
utilization, delay with cache:

• suppose cache hit rate is 0.4
– 40% requests satisfied at cache, 60%

requests satisfied at origin

origin

servers

1.54 Mbps

access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public

 Internet

institutional

network
1 Gbps LAN

local web
cache

Conditional GET

• Goal: don’t send object
if cache has up-to-date
cached version
– no object transmission

delay

– lower link utilization

• cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

• server: response
contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Electronic mail

Three major components:
• user agents

• mail servers

• simple mail transfer
protocol: SMTP

User Agent
• a.k.a. “mail reader”

• composing, editing, reading
mail messages

• e.g., Outlook, Thunderbird,
iPhone mail client

• outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

pplication Layer

Electronic mail: mail servers

mail servers:
• mailbox contains

incoming messages for
user

• message queue of
outgoing (to be sent)
mail messages

• SMTP protocol between
mail servers to send
email messages

– client: sending mail
server

– “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Electronic Mail: SMTP [RFC 2821]

• uses TCP to reliably transfer email message
from client to server, port 25

• direct transfer: sending server to receiving
server

• three phases of transfer
– handshaking (greeting)

– transfer of messages

– closure

• command/response interaction (like HTTP,
FTP)
– commands: ASCII text

– response: status code and phrase

• messages must be in 7-bit ASCI

Application Layer 2-31

user

agent

Scenario: Alice sends message to

Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server;
message placed in
message queue

3) client side of SMTP opens
TCP connection with
Bob’s mail server

4) SMTP client sends

Alice’s message over

the TCP connection

5) Bob’s mail server

places the message in

Bob’s mailbox

6) Bob invokes his user

agent to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Sample SMTP interaction

 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

Try SMTP interaction for yourself:

• telnet servername 25

• see 220 reply from server

• enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client

(reader)

SMTP: final words

• SMTP uses persistent

connections

• SMTP requires

message (header &

body) to be in 7-bit

ASCII

• SMTP server uses
CRLF.CRLF to

determine end of

message

comparison with HTTP:

• HTTP: pull

• SMTP: push

• both have ASCII

command/response

interaction, status codes

• HTTP: each object

encapsulated in its own

response msg

• SMTP: multiple objects

sent in multipart msg

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

• header lines, e.g.,

– To:

– From:

– Subject:

different from SMTP MAIL

FROM, RCPT TO:
commands!

• Body: the “message”
– ASCII characters only

header

body

blank

line

Mail access protocols

• SMTP: delivery/storage to receiver’s server

• mail access protocol: retrieval from server
– POP: Post Office Protocol [RFC 1939]: authorization,

download

– IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on server

– HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user

agent

user

agent

Application Layer 2-37

POP3 protocol

authorization phase
• client commands:

– user: declare username

– pass: password

• server responses

– +OK

– -ERR

transaction phase,
client:

• list: list message numbers

• retr: retrieve message by
number

• dele: delete

• quit

 C: list
 S: 1 498

 S: 2 912

 S: .

 C: retr 1

 S: <message 1 contents>

 S: .

 C: dele 1

 C: retr 2

 S: <message 1 contents>

 S: .

 C: dele 2

 C: quit

 S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

POP3 (more) and IMAP

more about POP3
• previous example uses

POP3 “download and
delete” mode

– Bob cannot re-read e-
mail if he changes
client

• POP3 “download-and-
keep”: copies of
messages on different
clients

• POP3 is stateless
across sessions

IMAP
• keeps all messages in

one place: at server

• allows user to
organize messages in
folders

• keeps user state
across sessions:

– names of folders and
mappings between
message IDs and
folder name

