CSCI-1680 Network Layer: More

Chen Avin

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

and "Computer Networking: A Top Down Approach" - 6th edition

Administrivia

- Homework 2 is due Tuesday
 - So we can post solutions before the midterm!

• Exam on Thursday

- All content up to today (including!)
- Questions similar to the homework
- Book has some exercises, samples on the course web page

Today: IP Wrap-up

- BGP extra
- IP Service models
 - Unicast, Broadcast, Anycast, Multicast
- IPv6
 - Tunnels

BGP – cont.

Structure of ASs

• 3 Types of relationships (Customer, Provider, Peer)

- Customer-Provider: customer AS pays provider AS for access to rest of Internet: provider provides transit service
 - End customers pay ISPs, and ISPs in lower "tiers" pay ISPs in higher tiers
- Peers: ASs that allow each other transit service
 - ISPs on same tier, usually involvesno fees
- Customer-Backup Provider: Provider if primary provider fails. May be peers otherwise

AS BGP Policies

- AS Policy for its customers an AS gives its customers transit services toward all of its neighboring ASes.
- AS Policy for its providers an AS gives its providers transit services only toward its customers.
- AS Policy for its peers an AS gives its peers transit services only toward its customers.
- "Valley free" paths.

Peering Drama

- Cogent vs. Level3 were peers
- In 2003, Level3 decided to start charging Cogent
- Cogent said no
- Internet partition: Cogent's customers couldn't get to Level3's customers and viceversa
 - Other ISPs were affected as well
- Took 3 weeks to reach an undisclosed agreement

"Shutting off" the Internet

 Starting from Jan 27th, 2011, Egypt was disconnected from the Internet

- 2769/2903 networks withdrawn from BGP (95%)!

Source: RIPEStat - http://stat.ripe.net/egypt/

Some BGP Challenges

- Convergence
- Scaling (route reflectors)
- Security
- Traffic engineering

Convergence

- Given a change, how long until the network re-stabilizes?
 - Depends on change: sometimes never
 - Open research problem: "tweak and pray"
 - Distributed setting is challenging
- Some reasons for change
 - Topology changes
 - BGP session failures
 - Changes in policy
 - Conflicts between policies can cause oscillation

Unstable Configurations

• Due to policy conflicts (Dispute Wheel)

Avoiding BGP Instabilities

- Detecting conflicting policies
 - Centralized: NP-Complete problem!
 - Distributed: open research problem
 - Requires too much cooperation
- Detecting oscillations
 - Monitoring for repetitive BGP messages
- Restricted routing policies and topologies
 - Some topologies / policies proven to be safe*

* Gao & Rexford, "Stable Internet Routing without Global Coordination", IEEE/ACM ToN, 2001

Scaling iBGP: route reflectors

iBGP Mesh == O(n^2) mess

Scaling iBGP: route reflectors

Solution: Route Reflectors O(n*k)

BGP Security Goals

- Confidential message exchange between neighbors
- Validity of routing information
 - Origin, Path, Policy
- Correspondence to the data path

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Debug

- Real origin AS doesn't see the problem
 - Picks its own route
 - Might not even learn the bogus route
- May not cause loss of connectivity
 - E.g., if the bogus AS snoops and redirects
 - ... may only cause performance degradation
- Or, loss of connectivity is isolated
 - E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

Pakistan Youtube incident

- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- <u>http://www.youtube.com/watch?v=lzLPKuAOe50</u>

News

CNET > News > Security

Report: China hijacked U.S. Internet data

by Lance Whitney | October 22, 2010 10:27 AM PDT

y Lance Whitney 1 October 22,

. E

GZ

A Chinese state-run telecom provider was the source of the redirection of U.S. military and corporate data that occurred this past April, according to excerpts of a draft report sent to CNET by the U.S.-China Economic and Security Review Commission.

CYBERWAR

China's Internet Hijacking Uncovered

Cybercrime experts have found proof that China hijacked the Internet for 18 minutes last April. China absorbed 15% of the traffic from US military and civilian networks, as well as from other Western countries—a massive chunk. Nobody knows why.

IP Service models

IP Routing

Multicast

- Send messages to many nodes: "one to many"
- Why do that?
 - Snowcast, Internet Radio, IPTV
 - Stock quote information
 - Multi-way chat / video conferencing
 - Multi-player games
- What's wrong with sending data to each recipient?
 - Link stress
 - Have to know address of all destinations

Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

source duplication in-network duplication

source duplication: how does source determine recipient addresses?

Multicast Service Model

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)

224.x.x.x to 229.x.x.x

- 28 bits left for group address

In-network duplication

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadacsted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members

- tree: not all paths between routers used
- shared-tree: same tree used by all group members
- **SOURCE-based:** different tree from each sender to rcvrs

Approaches for building mcast trees

- approaches:
- source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- group-shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra' s algorithm

LEGEND

group member

- Fouter with no attached group member
- i indicates order link added by algorithm

Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center) *then* flood datagram onto all outgoing links *else* ignore datagram

Reverse path forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

LEGEND

- X
- router with attached group member
- router with no attached group member
 - prune message
- links with multicast forwarding

Anycast

- Multiple hosts may share the same IP address
- "One to one of many" routing
- Example uses: load balancing, nearby servers
 - DNS Root Servers (e.g. f.root-servers.net)
 - Google Public DNS (8.8.8.8)
 - IPv6 6-to-4 Gateway (192.88.99.1)

Anycast Implementation

- Anycast addresses are /32s
- At the BGP level
 - Multiple ASs can advertise the same prefixes
 - Normal BGP rules choose one route

At the Router level

- Router can have multiple entries for the same prefix
- Can choose among many
- Each packet can go to a different server
 - Best for services that are fine with that (connectionless, stateless)

IPv6 – in a nutshell

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS
- IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). next header: identify upper layer protocol for data

ver	pri	flow label		
payload len			next hdr	hop limit
source address (128 bits)				
destination address (128 bits)				
data				

32 bits

IPv6 Address Representation

Groups of 16 bits in hex notation

47cd:1244:3422:0000:0000:fef4:43ea:0001

- Two rules:
 - Leading 0's in each 16-bit group can be omitted 47cd:1244:3422:0:0:fef4:43ea:1
 - One contiguous group of 0's can be compacted

47cd:1244:3422::fef4:43ea:1

IPv6 Addresses

- Break 128 bits into 64-bit network and 64bit interface
 - Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example

Types of addresses

- All 0's: unspecified
- 000...1: loopback
- ff/8: multicast
- fe8/10: link local unicast
- fec/10: site local unicast

- All else: global unicast

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Good Luck in the exam!

Next wee I'm away, but online...

