
CSCI-1680 - Computer Networks

Chen Avin

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

Network Layer:

Intra-domain Routing

Today

• Intra-Domain Routing

• Next class: Inter-Domain Routing

1

2 3

IP destination address in

arriving packet’s header

routing algorithm

local forwarding table

dest address output link

address-range 1

address-range 2

address-range 3

address-range 4

3

2

2

1

Interplay between routing, forwarding

routing algorithm determines

end-end-path through network

forwarding table determines

local forwarding at this router

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

Routing

• Routing is the process of updating
forwarding tables
– Routers exchange messages about routers or

networks they can reach

– Goal: find optimal route for every destination

– … or maybe a good route, or any route
(depending on scale)

• Challenges
– Dynamic topology

– Decentralized

– Scale

Scaling Issues

• Every router must be able to forward

based on any destination IP address

– Given address, it needs to know next hop

– Naïve: one entry per address

– There would be 108 entries!

• Solutions

– Hierarchy (many examples)

– Address aggregation

• Address allocation is very important (should mirror

topology)

– Default routes

IP Connectivity

• For each destination address, must either:

– Have prefix mapped to next hop in forwarding table

– Know “smarter router” – default for unknown prefixes

• Route using longest prefix match, default is

prefix 0.0.0.0/0

• Core routers know everything – no default

• Manage using notion of Autonomous

System (AS)

Internet structure, 1990

• Several independent organizations

• Hierarchical structure with single

backbone

Internet structure, today

• Multiple backbones, more arbitrary

structure

Autonomous Systems

• Correspond to an administrative domain
– AS’s reflect organization of the Internet

– E.g., Brown, large company, etc.

– Identified by a 16-bit number

• Goals
– AS’s choose their own local routing algorithm

– AS’s want to set policies about non-local routing

– AS’s need not reveal internal topology of their
network

Inter and Intra-domain routing

• Routing organized in two levels

• Intra-domain routing
– Complete knowledge, strive for optimal paths

– Scale to ~100 networks

– Today

• Inter-domain routing
– Aggregated knowledge, scale to Internet

– Dominated by policy

• E.g., route through X, unless X is unavailable, then route
through Y. Never route traffic from X to Y.

– Policies reflect business agreements, can get
complex

– Next lecture

Intra-Domain Routing

Network as a graph

• Nodes are routers

• Assign cost to each edge

– Can be based on latency, b/w, queue length, …

• Problem: find lowest-cost path between

nodes

– Each node individually computes routes

Basic Algorithms

• Two classes of intra-domain routing

algorithms

• Distance Vector

– Requires only local state

– Harder to debug

– Can suffer from loops

• Link State

– Each node has global view of the network

– Simpler to debug

– Requires global state

Distance Vector

• Local routing algorithm

• Each node maintains a set of triples

– <Destination, Cost, NextHop>

• Exchange updates with neighbors

– Periodically (seconds to minutes)

– Whenever table changes (triggered update)

• Each update is a list of pairs

– <Destination, Cost>

• Update local table if receive a “better” route

– Smaller cost

• Refresh existing routes, delete if time out

Calculating the best path

• Bellman-Ford equation

• Let:
– Da(b) denote the current best distance from a to b

– c(a,b) denote the cost of a link from a to b

• Then Dx(y) = minz(c(x,z) + Dz(y))

• Routing messages contain D

• D is any additive metric
– e.g, number of hops, queue length, delay

– log can convert multiplicative metric into an additive
one (e.g., probability of failure)

DV Example

Destination Cost Next Hop

A 1 A

C 1 C

D 2 C

E 2 A

F 2 A

G 3 A

B’s routing table

G, 1, G

• F-G fails

• F sets distance to G to infinity, propagates

• A sets distance to G to infinity

• A receives periodic update from C with 2-hop
path to G

• A sets distance to G to 3 and propagates

• F sets distance to G to 4, through A

G, ∞, - G, 4, A

Adapting to Failures

G, 2, F

G, 2, D

G, 3, D

G, 3, A

G, 1, G
G, ∞,- G, 3,C

G, 4, A

Count-to-Infinity

• Link from A to E fails

• A advertises distance of infinity to E

• B and C advertise a distance of 2 to E

• B decides it can reach E in 3 hops through C

• A decides it can reach E in 4 hops through B

• C decides it can reach E in 5 hops through A, …

• When does this stop?

Good news travels fast

A

B

C

4 1

10

1

• A decrease in link cost has to be fresh
information

• Network converges at most in O(diameter)
steps

Bad news travels slowly

A

B

C

4 1

10

12

• An increase in cost may cause confusion with old
information, may form loops

• Consider routes to A

• Initially, B:A,4,A; C:A,5,B

• Then B:A,12,A, selects C as next hop -> B:A,6,C

• C -> A,7,B; B -> A,8,C; C -> A,9,B; B -> A,10,C;

• C finally chooses C:A,10,A, and B -> A,11,C!

How to avoid loops

• IP TTL field prevents a packet from living
forever
– Does not repair a loop

• Simple approach: consider a small cost n
(e.g., 16) to be infinity
– After n rounds decide node is unavailable

– But rounds can be long, this takes time

• Problem: distance vector based only on
local information

Better loop avoidance

• Split Horizon

– When sending updates to node A, don’t include

routes you learned from A

– Prevents B and C from sending cost 2 to A

• Split Horizon with Poison Reverse

– Rather than not advertising routes learned from

A, explicitly include cost of ∞.

– Faster to break out of loops, but increases

advertisement sizes

Warning

• Split horizon/split horizon with poison

reverse only help between two nodes

– Can still get loop with three nodes involved

– Might need to delay advertising routes after

changes, but affects convergence time

Other approaches

• DSDV: destination sequenced distance
vector
– Uses a ‘version’ number per destination message

– Avoids loops by preventing nodes from using old
information from descendents

– But, you can only update when new version comes
from root

• Path Vector: (BGP)
– Replace ‘distance’ with ‘path’

– Avoids loops with extra cost

Link State Routing

• Strategy:

– send to all nodes information about directly

connected neighbors

• Link State Packet (LSP)

– ID of the node that created the LSP

– Cost of link to each directly connected neighbor

– Sequence number (SEQNO)

– TTL

Reliable Flooding

• Store most recent LSP from each node
– Ignore earlier versions of the same LSP

• Forward LSP to all nodes but the one that
sent it

• Generate new LSP periodically
– Increment SEQNO

• Start at SEQNO=0 when reboot
– If you hear your own packet with SEQNO=n, set your

next SEQNO to n+1

• Decrement TTL of each stored LSP
– Discard when TTL=0

A Link-State Routing Algorithm

notation:

• c(x,y): link cost from node x to y; = ∞ if not
direct neighbors

• D(v): current value of cost of path from
source to dest. v

• p(v): predecessor node along path from
source to v

• N': set of nodes whose least cost path
definitively known

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Network Layer 4-30

w 3

4

v

x

u

5

3
7 4

y

8

z
2

7

9

Dijkstra’s algorithm: example

Step

N'
D(v)

p(v)

0

1

2

3

4

5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,w uwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
 construct shortest path tree by

tracing predecessor nodes

 ties can exist (can be broken
arbitrarily)

uwxvyz

Dijkstra’s algorithm: another

example

Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)

∞
2,x

D(z),p(z)
∞
∞

4,y

4,y

4,y

u

y x

w v

z

2

2

1
3

1

1

2

5
3

5

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

Dijkstra’s algorithm: example (2)

u

y x

w v

z

resulting shortest-path tree from u:

v

x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

resulting forwarding table in u:

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

Dijkstra’s algorithm, discussion

algorithm complexity: n nodes
 each iteration: need to check all nodes, w, not in N

 n(n+1)/2 comparisons: O(n2)

 more efficient implementations possible: O(nlogn)

oscillations possible:
 e.g., support link cost equals amount of carried

traffic:

A

D

C

B

1 1+e

e 0

e

1 1

0 0

initially

A

D

C

B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0

1+e 1

A

D

C

B

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e 1

0 0

A

D

C

B

given these costs,
find new routing….

resulting in new costs

2+e 0

0 0

1+e 1

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

Distance Vector vs. Link State

• # of messages (per node)
– DV: O(d), where d is degree of node

– LS: O(nd) for n nodes in system

• Computation
– DV: convergence time varies (e.g., count-to-infinity)

– LS: O(n2) with O(nd) messages

• Robustness: what happens with
malfunctioning router?
– DV: Nodes can advertise incorrect path cost

– DV: Others can use the cost, propagates through
network

– LS: Nodes can advertise incorrect link cost

Metrics

• Original ARPANET metric
– measures number of packets enqueued in each link

– neither latency nor bandwidth in consideration

• New ARPANET metric
– Stamp arrival time (AT) and departure time (DT)

– When link-level ACK arrives, compute
Delay = (DT – AT) + Transmit + Latency

– If timeout, reset DT to departure time for retransmission

– Link cost = average delay over some time period

• Fine Tuning
– Compressed dynamic range

– Replaced Delay with link utilization

• Today: commonly set manually to achieve
specific goals

Examples

• RIPv2

– Fairly simple implementation of DV

– RFC 2453 (38 pages)

• OSPF (Open Shortest Path First)

– More complex link-state protocol

– Adds notion of areas for scalability

– RFC 2328 (244 pages)

RIP table processing

RIP routing tables managed by application-
level process called route-d (daemon)

advertisements sent in UDP packets,
periodically repeated

physical

link

network forwarding

 (IP) table

transport

 (UDP)

routed

physical

link

network

 (IP)

transprt

 (UDP)

routed

forwarding

table

Slide from: “Computer Networking: A Top Down Approach” - 6th edition

RIPv2

• Runs on UDP port 520

• Link cost = 1

• Periodic updates every 30s, plus
triggered updates

• Relies on count-to-infinity to resolve
loops
– Maximum diameter 15 (∞ = 16)

– Supports split horizon, poison reverse

• Deletion
– If you receive an entry with metric = 16 OR

– If a route times out

Packet format

RIPv2 Entry

Route Tag field

• Allows RIP nodes to distinguish internal

and external routes

• Must persist across announcements

• E.g., encode AS

Next Hop field

• Allows one router to advertise routes for

multiple routers on the same subnet

• Suppose only XR1 talks RIPv2:

OSPFv2

• Link state protocol

• Runs directly over IP (protocol 89)

– Has to provide its own reliability

• All exchanges are authenticated

• Adds notion of areas for scalability

OSPF Areas

• Area 0 is “backbone” area (includes all

boundary routers)

• Traffic between two areas must always go

through area 0

• Only need to know how to route exactly

within area

• Otherwise, just route to the appropriate area

• Tradeoff: scalability versus optimal routes

OSPF Areas

Next Class

• Inter-domain routing: how scale routing

to the entire Internet

