
CSCI-1680 - Computer Networks 

Chen Avin 
 

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca 

Network Layer: 

Intra-domain Routing 



Today 

• Intra-Domain Routing  

• Next class: Inter-Domain Routing 
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Interplay between routing, forwarding 

routing algorithm determines 

end-end-path through network 

forwarding table determines 

local forwarding at this router 
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Routing 

• Routing is the process of updating 
forwarding tables 
– Routers exchange messages about routers or 

networks they can reach 

– Goal: find optimal route for every destination 

– … or maybe a good route, or any route 
(depending on scale) 

• Challenges 
– Dynamic topology 

– Decentralized  

– Scale 

 

 



Scaling Issues 

• Every router must be able to forward 

based on any destination IP address 

– Given address, it needs to know next hop 

– Naïve: one entry per address 

– There would be 108 entries! 

• Solutions 

– Hierarchy (many examples) 

– Address aggregation 

• Address allocation is very important (should mirror 

topology) 

– Default routes 



IP Connectivity 

• For each destination address, must either: 

– Have prefix mapped to next hop in forwarding table 

– Know “smarter router” – default for unknown prefixes 

• Route using longest prefix match, default is 

prefix 0.0.0.0/0 

• Core routers know everything – no default 

• Manage using notion of Autonomous 

System (AS) 



Internet structure, 1990 

• Several independent organizations 

• Hierarchical structure with single 

backbone 



Internet structure, today 

• Multiple backbones, more arbitrary 

structure 



Autonomous Systems 

• Correspond to an administrative domain 
– AS’s reflect organization of the Internet 

– E.g., Brown, large company, etc. 

– Identified by a 16-bit number 

• Goals 
– AS’s choose their own local routing algorithm 

– AS’s want to set policies about non-local routing 

– AS’s need not reveal internal topology of their 
network 





Inter and Intra-domain routing 

• Routing organized in two levels 

• Intra-domain routing 
– Complete knowledge, strive for optimal paths 

– Scale to ~100 networks 

– Today 

• Inter-domain routing 
– Aggregated knowledge, scale to Internet 

– Dominated by policy 

• E.g., route through X, unless X is unavailable, then route 
through Y. Never route traffic from X to Y. 

– Policies reflect business agreements, can get 
complex 

– Next lecture 



Intra-Domain Routing 



Network as a graph 

• Nodes are routers 

• Assign cost to each edge 

– Can be based on latency, b/w, queue length, … 

• Problem: find lowest-cost path between 

nodes 

– Each node individually computes routes 



Basic Algorithms 

• Two classes of intra-domain routing 

algorithms 

• Distance Vector 

– Requires only local state 

– Harder to debug 

– Can suffer from loops  

• Link State 

– Each node has global view of the network 

– Simpler to debug 

– Requires global state 



Distance Vector 

• Local routing algorithm 

• Each node maintains a set of triples 

– <Destination, Cost, NextHop> 

• Exchange updates with neighbors 

– Periodically (seconds to minutes) 

– Whenever table changes  (triggered update) 

• Each update is a list of pairs 

– <Destination, Cost> 

• Update local table if receive a “better” route 

– Smaller cost 

• Refresh existing routes, delete if time out 



Calculating the best path 

• Bellman-Ford equation 

• Let: 
– Da(b) denote the current best distance from a to b 

– c(a,b) denote the cost of a link from a to b 

• Then Dx(y) = minz(c(x,z) + Dz(y)) 

• Routing messages contain D 

• D is any additive metric 
– e.g, number of hops, queue length, delay 

– log can convert multiplicative metric into an additive 
one (e.g., probability of failure) 



DV Example 

Destination Cost Next Hop 

A 1 A 

C 1 C 

D 2 C 

E 2 A 

F 2 A 

G 3 A 

B’s routing table 



G, 1, G 

• F-G fails 

• F sets distance to G to infinity, propagates 

• A sets distance to G to infinity 

• A receives periodic update from C with 2-hop 
path to G 

• A sets distance to G to 3 and propagates 

• F sets distance to G to 4, through A  

G, ∞, - G, 4, A 

Adapting to Failures 

G, 2, F 

G, 2, D 

G, 3, D 

G, 3, A 

G, 1, G 
G, ∞,- G, 3,C 

G, 4, A 



Count-to-Infinity 

• Link from A to E fails 

• A advertises distance of infinity to E 

• B and C advertise a distance of 2 to E 

• B decides it can reach E in 3 hops through C 

• A decides it can reach E in 4 hops through B 

• C decides it can reach E in 5 hops through A, … 

• When does this stop? 



Good news travels fast 
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• A decrease in link cost has to be fresh 
information 

• Network converges at most in O(diameter) 
steps 



Bad news travels slowly 
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• An increase in cost may cause confusion with old 
information, may form loops 

• Consider routes to A 

• Initially, B:A,4,A; C:A,5,B 

• Then B:A,12,A, selects C as next hop -> B:A,6,C 

• C -> A,7,B; B -> A,8,C; C -> A,9,B; B -> A,10,C; 

• C finally chooses C:A,10,A, and B -> A,11,C!  



How to avoid loops 

• IP TTL field prevents a packet from living 
forever 
– Does not repair a loop 

• Simple approach: consider a small cost n 
(e.g., 16) to be infinity 
– After n rounds decide node is unavailable 

– But rounds can be long, this takes time 

• Problem: distance vector based only on 
local information 



Better loop avoidance 

• Split Horizon 

– When sending updates to node A, don’t include 

routes you learned from A 

– Prevents B and C from sending cost 2 to A 

• Split Horizon with Poison Reverse 

– Rather than not advertising routes learned from 

A, explicitly include cost of ∞. 

– Faster to break out of loops, but increases 

advertisement sizes 



Warning  

• Split horizon/split horizon with poison 

reverse only help between two nodes 

– Can still get loop with three nodes involved 

– Might need to delay advertising routes after 

changes, but affects convergence time 



Other approaches 

• DSDV: destination sequenced distance 
vector 
– Uses a ‘version’ number per destination message 

– Avoids loops by preventing nodes from using old 
information from descendents 

– But, you can only update when new version comes 
from root 

• Path Vector: (BGP) 
– Replace ‘distance’ with ‘path’ 

– Avoids loops with extra cost 



Link State Routing 

• Strategy:  

– send to all nodes information about directly 

connected neighbors 

• Link State Packet (LSP) 

– ID of the node that created the LSP 

– Cost of link to each directly connected neighbor 

– Sequence number (SEQNO) 

– TTL 



Reliable Flooding 

• Store most recent LSP from each node 
– Ignore earlier versions of the same LSP 

• Forward LSP to all nodes but the one that 
sent it 

• Generate new LSP periodically 
– Increment SEQNO 

• Start at SEQNO=0 when reboot 
– If you hear your own packet with SEQNO=n, set your 

next SEQNO to n+1 

• Decrement TTL of each stored LSP 
– Discard when TTL=0  



A Link-State Routing Algorithm 

notation: 

• c(x,y): link cost from node x to y;  = ∞ if not 
direct neighbors 

• D(v): current value of cost of path from 
source to dest. v 

• p(v): predecessor node along path from 
source to v 

• N': set of nodes whose least cost path 
definitively known 
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Dijsktra’s Algorithm 

1  Initialization:  

2    N' = {u}  

3    for all nodes v  

4      if v adjacent to u  

5          then D(v) = c(u,v)  

6      else D(v) = ∞  

7  

8   Loop  

9     find w not in N' such that D(w) is a minimum  

10    add w to N'  

11    update D(v) for all v adjacent to w and not in N' :  

12       D(v) = min( D(v), D(w) + c(w,v) )  

13    /* new cost to v is either old cost to v or known  

14     shortest path cost to w plus cost from w to v */  

15  until all nodes in N'  



Network Layer 4-30 
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Dijkstra’s algorithm: example 

Step 

 

N' 
D(v) 

p(v) 

0 

1 

2 

3 

4 
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D(w) 
p(w) 

D(x) 
p(x) 

D(y) 
p(y) 

D(z) 
p(z) 

u ∞  ∞  7,u 3,u 5,u 

uw ∞  11,w  6,w 5,u 

14,x  11,w  6,w uwx 

uwxv 14,x  10,v  

uwxvy 12,y  

notes: 
 construct shortest path tree by 

tracing predecessor nodes 

 ties can exist (can be broken 
arbitrarily) 

uwxvyz 



Dijkstra’s algorithm: another 

example 

Step 
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Dijkstra’s algorithm: example (2)  

u 

y x 

w v 

z 

resulting shortest-path tree from u: 

v 

x 

y 

w 

z 

(u,v) 

(u,x) 

(u,x) 

(u,x) 

(u,x) 

destination link 

resulting forwarding table in u: 
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Dijkstra’s algorithm, discussion 

algorithm complexity: n nodes 
 each iteration: need to check all nodes, w, not in N 

 n(n+1)/2 comparisons: O(n2) 

 more efficient implementations possible: O(nlogn) 

oscillations possible: 
 e.g., support link cost equals amount of carried 

traffic: 
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Slide from: “Computer Networking: A Top Down Approach” - 6th edition  



Distance Vector vs. Link State 

• # of messages (per node) 
– DV: O(d), where d is degree of node 

– LS: O(nd) for n nodes in system 

• Computation 
– DV: convergence time varies (e.g., count-to-infinity) 

– LS: O(n2) with O(nd) messages 

• Robustness: what happens with 
malfunctioning router? 
– DV: Nodes can advertise incorrect path cost 

– DV: Others can use the cost, propagates through 
network 

– LS: Nodes can advertise incorrect link cost 



Metrics  

• Original  ARPANET metric 
– measures number of packets enqueued in each link 

– neither latency nor bandwidth in consideration 

• New ARPANET metric 
– Stamp arrival time (AT) and departure time (DT) 

– When link-level ACK arrives, compute 
Delay = (DT – AT) + Transmit + Latency 

– If timeout, reset DT to departure time for retransmission 

– Link cost = average delay over some time period 

• Fine Tuning 
– Compressed dynamic range 

– Replaced Delay with link utilization 

• Today: commonly set manually to achieve 
specific goals 



Examples 

• RIPv2 

– Fairly simple implementation of DV 

– RFC 2453 (38 pages) 

• OSPF (Open Shortest Path First) 

– More complex link-state protocol 

– Adds notion of areas for scalability 

– RFC 2328 (244 pages) 



RIP table processing 

RIP routing tables managed by application-
level process called route-d (daemon) 

advertisements sent in UDP packets, 
periodically repeated 

physical 

link 

network       forwarding 

   (IP)             table 

transport 

  (UDP) 

routed 

physical 

link 

network 

   (IP) 

transprt 

  (UDP) 

routed 

forwarding 

table 
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RIPv2 

• Runs on UDP port 520 

• Link cost = 1 

• Periodic updates every 30s, plus 
triggered updates 

• Relies on count-to-infinity to resolve 
loops 
– Maximum diameter 15 (∞ = 16) 

– Supports split horizon, poison reverse 

• Deletion 
– If you receive an entry with metric = 16 OR 

– If a route times out 



Packet format 



RIPv2 Entry 



Route Tag field 

• Allows RIP nodes to distinguish internal 

and external routes 

• Must persist across announcements 

• E.g., encode AS 



Next Hop field 

• Allows one router to advertise routes for 

multiple routers on the same subnet 

• Suppose only XR1 talks RIPv2: 



OSPFv2 

• Link state protocol 

• Runs directly over IP (protocol 89) 

– Has to provide its own reliability 

• All exchanges are authenticated 

• Adds notion of areas for scalability 



OSPF Areas 

• Area 0 is “backbone” area (includes all 

boundary routers) 

• Traffic between two areas must always go 

through area 0 

• Only need to know how to route exactly 

within area 

• Otherwise, just route to the appropriate area 

• Tradeoff: scalability versus optimal routes 



OSPF Areas 



Next Class 

• Inter-domain routing: how scale routing 

to the entire Internet 


