
CS168 Programming Assignment 1: Snowcast

Assignment Out: September 5th, 2013
Milestone: September 12th, 2013, 6pm
Assignment Due: September 19th, 2013, 4pm

1 Introduction

You will be implementing a simple Internet Radio Station. The purpose of this assignment is to
become familiar with sockets and threads, and to get you used to thinking about network protocols.

If you’re unfamiliar with sockets or threads, you should read the pages about them linked from
the course webpage. As always, e-mail us at cs168tas@cs.brown.edu or to come to one of our
office hours if you have further questions.

2 Protocol

This assignment has two parts: the server, which streams songs, and a pair of clients for connecting
to the server and receiving songs.

There are two kinds of data being sent between the server and the client. One is the control
data. The client uses this data to specify which station to listen to and the server uses it to give
the client song information. The other kind is the song data, which the server reads from song files
and streams to the client. You will be using TCP for the control data and UDP for the song data.

2.1 Client to Server Commands

The client sends the server commands. There are two commands the client can send the server,
in the following format.

Hello:

uint8_t commandType = 0;

uint16_t udpPort;

SetStation:

uint8_t commandType = 1;

uint16_t stationNumber;

A uint8_t1 is an unsigned 8-bit integer. A uint16_t is an unsigned 16-bit integer. Your
programs should use network byte order.2 So, to send a Hello command, your client must send
exactly three bytes to the server.

1You can use these types from C if you #include <inttypes.h>.
2Use the functions htons, htonl, ntohs and ntohl to convert from network to host byte order and back.

1



CS168 Snowcast

The Hello command is sent when the client connects to the server. It tells the server what
UDP port the server should be streaming song data to.

The SetStation command is sent to pick an inital station or to change stations. stationNumber
identifies the station.

2.2 Server to Client Replies

There are three possible replies the server may send to the client:

Welcome:

uint8_t replyType = 0;

uint16_t numStations;

Announce:

uint8_t replyType = 1;

uint8_t songnameSize;

char songname[songnameSize];

InvalidCommand:

uint8_t replyType = 2;

uint8_t replyStringSize;

char replyString[replyStringSize];

A Welcome reply is sent in response to a Hello command. Stations are numbered sequentially
from 0, so a numStations of 30 means 0 through 29 are valid. A Hello command, followed by a
Welcome reply, is called a handshake.

An Announce reply is sent on two occasions: after a client sends a SetStation command, or
when the station a client is listening to changes its song. songnameSize represents the length, in
bytes, of the filename, while songname contains the filename itself. The string must be formatted
in ASCII and must not be null-terminated. So, to announce a song called Beat It, your client
must send the replyType byte, followed by a byte whose value is 7, followed by the 7 bytes whose
values are the ASCII character values of Beat It.

An InvalidCommand reply is sent in response to any invalid command. replyString should
contain a brief error message explaining what went wrong. Give helpful strings stating the reason for
failure. If a SetStation command was sent with 1729 as the stationNumber, a bad replyString

is “Error, closing connection.”, while a good one is “Station 1729 does not exist.”. To simplify the
protocol, whenever the server receives an invalid command, it must reply with an InvalidCommand

and then close the connection to the client that sent it.
Invalid commands happen in the following situations:

• SetStation

– The station given does not exist.

– The command was sent before a Hello command was sent. The client must send a
Hello command before sending any other commands.

– If the command was sent before the server responded to a previous SetStation by
sending an Announce reply, then your server may reply to this with an InvalidCommand.

2



CS168 Snowcast

This means that your client should be careful and wait for an Announce before sending
another SetStation, but your server can be lax about this.

• Hello

– More than one Hello command was sent. Only one should be sent, at the very beginning.

• An unknown command was sent (one whose commandType was not 0 or 1).

3 Implementation Requirements

We recommend that you implement this project in C; we find it very straightforward to do so. If
you are unfamiliar or rusty with C, read through the documentation linked on the course web page
or contact the TAs for help. We will offer full language support and help with debugging tools.

If you decide you would like to implement this or future projects in a language other than C,
please contact us beforehand to seek approval. This project intends to familiarize you with the
Berkeley sockets API, so you must demonstrate that your language provides a sufficiently similar
API. Linking to a web page containing the relevant language documentation is sufficient. You must
not use high-level socket wrappers unless you write them yourself; we will tell you which libraries
are and which are not acceptable. Thus far, we have approved requests for C++ and Scheme
(but still contact us if you want to use one of these). Note that for the later projects, you will
be responsible for finding or writing your own IP and TCP packet headers (these can be included
directly from the Linux kernel headers for C students), the TAs will offer limited language support,
and your partner for the project must approve of your choice of language.

3.1 Clients

You will write two separate clients.

3.1.1 UDP Client

The UDP client handles song data. The executable must be called snowcast_listener. Its
command line must be:

snowcast_listener udpport

The UDP client must print all data received on the specified UDP port to stdout3.

3.1.2 TCP Client

The TCP client handles the control data. The executable must be called snowcast_control. Its
command line must be:

3There’s no need for the UDP client to play the data it receives itself, since you can just pipe its output into
another program which plays the music instead. More on this later.

3



CS168 Snowcast

snowcast_control servername serverport udpport

servername represents the IP address (e.g. 128.148.38.158) or hostname (e.g. localhost, cslab6c)
which the control client should connect to, and serverport is the port to connect to. udpport is
the port on which the local UDP client is watching for song data.

The control client should connect to the server and communicate with it according to the
protocol. After the handshake, it should show a prompt and wait for input from stdin. If the user
types in ’q’ followed by a newline, the client should quit. If the user types in a number followed by
a newline, the control should send a SetStation command with the user-provided station number.

If the client gets an invalid reply from the server (one whose replyType is not 0, 1, or 2), then
it should close the connection and exit.

The client must print whatever information the server sends it (e.g. the numStations in a
Welcome). It must print replies in real time.

3.2 Server

The server executable must be called snowcast_server. Its command line must be:

snowcast_server tcpport file1 [file2 [file3 [...]]]

That is, a port number on which the server will listen, followed by a list of files. To make things
easy, each station will contain just one song. Station 0 should play file1, Station 1 should play file2,
etc... Each station should loop its song indefinitely.

When the server starts, it should begin listening for connections. When a client connects, it
should interact with it as specified by the Protocol. Additionally, it should send an Announce

whenever a song repeats.
You want the server to stream music, not to send it as fast as possible. Assume that all mp3

files are 128kbps, meaning that the server should send data at a rate of 128kpbs (16 kilobytes/s).
The server must print out any commands it receives and any replies it sends to stdout. It should

also have a simple command-line interface: ‘p’ followed by a newline should cause the the server
should print out a list of its stations along with the clients that are connected to each one, and ‘q’
followed by a newline should cause the server to close all connections, free any resources it’s using,
and quit.

Additionally:

• The server has to support multiple clients simultaneously.

• There should be no hard-coded limit to the number of stations your server can support or to
the number of clients connected to a station.

• Remember to properly handle invalid commands (see the Protocol section above).

• The server should never crash, even when a misbehaving client connects to it. The connection
to that client might be terminated, however.

4



CS168 Snowcast

• If multiple clients are connected to one station, they should all be listening to the same part
of the song, even if they connected at different times.

• If no clients are connected to a station, the current position in the song should still progress,
without sending any data. The radio doesn’t stop when no one is listening.

• The server should not read the entire song file into memory.

4 Testing

We’ve provided a sample Makefile in /course/cs168/pub/snowcast/Makefile that you can use
as a stencil to get started.

A good way to test your code at the beginning is to stream text files instead of mp3s. Once
you’re more confident of your code, you can test your program using the mp3 files in
/course/cs168/pub/snowcast/mp3. You can pipe the output of your UDP client into mpg123 to
listen to the mp3:

./snowcast_listener port | mpg123 -

If you bring headphones to the sunlab, you should hear something.

4.1 Rate Monitor

Unfortunately, there are many details to streaming mp3s well that would require understanding
the mp3 file format in detail to do a really good job. Instead we ask only that you stream the mp3
at a constant bitrate. We’ve created a rate monitoring program available in
/course/cs168/pub/snowcast/rate_monitor. This takes data from stdin, outputs it to stdout,
and prints statistics about the rate at which it is receiving data to stderr. We’ll be testing to see
that your rate is consistently 16 kilobytes/second. You can run it as follows:

./snowcast_listener port | /course/cs168/pub/snowcast/rate_monitor > /dev/null

You can also pipe the rate monitor’s output into mpg123.

4.2 Reference Implementations

For your convenience, we have provided binaries of reference implementations of the client and the
server that follow the protocol and meet all the requirements. They’re in
/course/cs168/pub/snowcast. Take advantage of these! You can test your adherence to the
protocol based on how well your programs interact with them. This is why our protocol is specified
so precisely. Your programs are expected to interoperate with ours.

5



CS168 Snowcast

5 Handin

Hand in your project by typing

cs168_handin snowcast

from inside the directory where your work is located. To reduce clutter, the handin script removes
.o files and binary executable files, and runs make clean before handing in your assignment. You
can handin more than once - the new handin will replace the older one. We should be able to
rebuild your programs by running make.

6 Grading

6.1 Milestone - 30%

To make sure you’re on the right track, 30% of your grade will be a milestone.
You have to schedule an appointment with a TA by Thursday the 12th at 6PM. 10% of the

milestone is a small demo. You must demo a client to us that successfully connects to a server,
sends a Hello command, then waits for and prints the Welcome reply.

The other 20% is for the design of your server, which is the hardest part of the assignment. You
will be graded based on how well you have thought your design through. Make sure you especially
think through your threading model. Will you spawn a new thread for every command you receive?
How many threads will you have per client? Will you have one thread to handle all the stations,
or one or more threads for each one? How will they communicate with each other? What mutexes
will you need?

If you’re having trouble with the design, please come to our hours, or e-mail us with your
question. We also encourage appointments outside of our hours if you feel you need help in-person.

6.2 Program - 65%

Most of your grade will be based on how well your program conforms to the specification. This
includes how well it interacts with the reference implementations, as well as with each other’s
projects. Furthermore:

• You must check return codes for all system calls you make. You can use perror to print error
messages.

• You can’t assume recv and send will read or write all the bytes you requested. You have to
check each return code and re-call them until the entire buffer is read or written.

• You must protect access to data shared by multiple threads, even integers.

6



CS168 Snowcast

6.3 README - 5%

Please include a README file with your program. Describe design decisions, such as how your
server is structured in terms of threading, how it handles announces, how it handles multiple clients,
etc. List any bugs that you know your program has. We’ll take off less points for any bugs you list
than if we had to find them ourselves =).

6.4 Extra Credit - up to 20%

The protocol we’ve defined is extremely limited. We’ll consider any addition to the protocol for
extra credit. You can also augment the server or client in a non-trivial way. Here are some ideas:

• Add a command which requests a listing of what each of the stations is currently playing (it
is acceptable for the TA binary to respond to this with InvalidCommand).

• Add support for multiple songs per station.

• Add a command to retrieve a station’s playlist (maybe the next 5 items or so).

• Add support for adding and removing stations while the server is running through the
command line interface. If you remove a station while a client is listening to it, send a
StationShutdown packet, or something along those lines, to inform him. If a new station is
added, you can maybe send a NewStation packet to all currently connected clients to inform
them.

Feel free to ask what we think about your addition. Also note that we’ve awarded extra credit
in the past just for particularly innovative or elegant solutions, so feel motivated to do your best
in your design and implementation.

A Useful Hints/Tips

We recommend that you use #define or const ints (in C++) for protocol-type constants. Your
code will be much more readable - you won’t be checking to see whether replyType is 2, you’ll be
checking to see that it’s REPLY_INVALID_COMMAND.

For the TCP connection, use recv() and send() (or read() and write()). For the UDP
connection, use sendto() and recvfrom(). Don’t send more than 1400 bytes with one call to
sendto()4

You will want to permit the server to reuse its port, so that you can kill it and restart it
without waiting a few minutes. Look at the end of section 4.2 in the networking guide (off the
course website). To handle multiple connections on the server, you should have a thread which
calls accept() in a loop. When it accepts a connection, it should start one or more threads to

4This is because the MTU of Ethernet is 1440 bytes, and we don’t want our UDP packets to be fragmented. You’ll
learn more about this later.

7



CS168 Snowcast

handle that connection, and then continue accept()ing. To control the rate that the server sends
song data at, use the the nanosleep() and gettimeofday() functions.

The TCP client has to read input from two sources at the same time - stdin, and the server.
You might do this with a thread for the server and a thread for standard input, or you might
use select()5 to handle both tasks in a single thread without blocking. To implement hostname
lookup (e.g. localhost to 127.0.0.1 or cslab6e to 128.148.31.38), use gethostbyname().

5See http://www.lowtek.com/sockets/select.html for a guide on select()

8


