
CS166 Computer Systems Security Spring 2019

Dropbox Project

Design (Part 1) due: 11:59 pm, Monday, April 8
Implementation (Part 2) due: 11:59 pm, Thursday, May 2

Pentesting (Part 3) due: 11:59 pm, Thursday, May 9

Contents

1 Introduction 2
1.1 Partners . 2
1.2 Project Overview . 2
1.3 Late Days . 3

2 Specification 4
2.1 Requirements . 4

2.1.1 Extra Credit . 5
2.1.2 CS162 . 6

2.2 Client/Server Architecture . 7
2.2.1 Support Code . 7
2.2.2 Standard Library and Third-Party Code . 7
2.2.3 Dependencies for the Server . 7

2.3 Security Assumptions . 8

I Design 9

3 Assignment 9
3.1 Guidelines . 9
3.2 Advice . 11
3.3 Handing In . 11
3.4 Design Discussions . 11

II Implementation 12

4 Assignment 12
4.1 Github Classroom . 12
4.2 Support Code, In More Detail . 12

5 Requirements 13
5.1 Client Command Specification . 13

5.1.1 List of Commands . 14
5.2 Testing Mode . 15

5.2.1 System Tester . 15
5.3 Documentation . 16

5.3.1 Commenting . 16
5.3.2 README . 16

1

CS166 Computer Systems Security Spring 2019

6 Logistics 16
6.1 Handing In . 16
6.2 Grading . 16

III Pentesting 18

7 Assignment 18
7.1 Restrictions . 18
7.2 Changes from Year-to-Year . 18

8 Finding Vulnerabilities and Exploits 19
8.1 Target Scores . 19
8.2 Exploits . 20

9 Logistics 20
9.1 Handing In . 20
9.2 Grading . 21

1 Introduction

In this project, you will implement a simple “dropbox” service that allows users to upload, access, modify,
and delete files. Most importantly, you will implement it securely. This project will give you experience
not only with writing secure software, but equally importantly, with designing secure software. The key to
creating secure software is careful thinking and design before you write a single line of code.

1.1 Partners

You are required to work with a partner on this project. When you have found a partner, one partner
from each team should submit this form to register the partner that they will be working with: https:

//forms.gle/Ysb8Awei8hKJafHz9

Everyone, regardless of whether or not they have a specific partner they want to work with, must fill out
this form by Thursday, April 4 @ 5:00 PM. If you don’t already have a partner in mind, you can use
Piazza’s “Search for Teammates” feature to find a partner! If you are unable to find a partner (or want to
be assigned randomly), you should still fill out the “Partner 1” fields and leave the “Partner 2” fields blank
and we will assign you randomly.

Important: CS162 students have additional project requirements that must be completed (see the handout
for more details). We recommend that teams should only be comprised of only CS166 students (or only
CS162 students), as teams comprised of both CS166 and CS162 students must complete all of the CS162
requirements for the project. (Since the CS162 requirements are extra credit for CS166 students, in this latter
case, the CS166 student would receive extra credit for the additional features implemented while the CS162
student would be graded normally according to the CS162 guidelines described in this handout.)

1.2 Project Overview

This project is divided into three phases:

• Design (20%): In the Design phase, you will write a detailed design document that details your plan
for your Dropbox service.

2

https://forms.gle/Ysb8Awei8hKJafHz9
https://forms.gle/Ysb8Awei8hKJafHz9

CS166 Computer Systems Security Spring 2019

• Implementation (60%): In the Implementation phase, you will implement your Dropbox service in
Go. We will provide support code that sets up a basic (but very insecure) implementation of the
Dropbox service—it’s up to you to extend the code to provide a secure service for your users.

• Pentesting (20%): In the Pentesting phase, you will be penetration testing other Dropbox implemen-
tations created by your TAs when they took the course. During this phase, you will work individually
(that is, you will not work with your partner from the Design and Implementation phases).

More information about the latter phases of the project will be released after the previous phase’s due date.
Please refer to the front page of the project handout for more information on due dates for each of these
projects.

1.3 Late Days

No late days may be used on any of the deadlines for the final project. Please consult the syllabus
for more information about late handins.

If there are extenuating circumstances preventing you from completing an assignment on time (e.g., illness),
please contact the instructor before the assignment is due via the “Extension Requests” form on the http:

//cs.brown.edu/courses/cs166/resources/ page.

3

http://cs.brown.edu/courses/cs166/resources/
http://cs.brown.edu/courses/cs166/resources/

CS166 Computer Systems Security Spring 2019

2 Specification

In this section, we outline the base specification for your Dropbox service.

You will implement your Dropbox service in two parts: a client and a server (these are described more in
depth later in the handout). You will be given a lot of leeway on how to design and implement your service.
However, there are some basic requirements of what your service must do—it is not sufficient to implement
a service that does nothing and proclaim that you’ve succeeded in creating a secure service. What’s difficult
about security is not simply creating secure systems—it’s creating systems that do interesting things while
still remaining secure.

2.1 Requirements

Below we describe the minimum requirements for your service. Where things are unspecified, it is up to you
to make reasonable design decisions that are in the interest of the overall security of your service.1

• Accounts and support for multiple users

– You must support an arbitrary number of users; while you might be limited by practical limitations
such as disk space, you can’t, for example, create ten users ahead of time and not let new users
sign up.

– Users must be able to sign up for new accounts.

– Users must be able to login and logout.

– Users must be able to delete their own account.

– You may choose how you handle users, signing up, and so on. For example, you may decide that
each user is identified by a username that they choose, or a randomly assigned user ID, or an
interpretive dance that they perform every time they want to access or modify a file. You can also
choose how you authenticate that users are themselves (perhaps the interpretive dance approach
would work well here).

– There must be some conception of “sessions.” In particular, your authentication mechanism must
not simply work by providing the user’s login credentials with every API request. Further, it
must be the case that if any session information kept by the client is stolen, after a certain time
period, the session will expire and this information will no longer be sufficient to authenticate an
attacker (if it ever was sufficient in the first place).

– Any authentication data stored on the server must be stored in a form such that, if it were to be
stolen, it would not immediately allow an attacker to impersonate a legitimate user (for example,
if passwords are used, they must be hashed and salted).

• Allow users to upload, download, modify, and delete files

– Users must be able to upload new files.

– Users must be able to access the contents of the files that they have uploaded.

– Users must be able to list the contents of their own directories.

– Users must be able to modify the contents of files that they have uploaded. (Note: For modifica-
tion, it is sufficient to upload a new file with the same name as the old one and replace it. You
do not have to implement a text editing feature.)

– Users must be able to cat files.

– Users must be able to delete files that they have uploaded.

1Ask the TAs what constitutes “reasonable” if you’re unsure about a particular idea.

4

CS166 Computer Systems Security Spring 2019

– Users must be able to refer to files by a path from their root directory, just as in Unix systems
(root directories are discussed below).

– Users must be able to choose what to name files when they are created (that is, it’s not acceptable
to give files random IDs and only allow the user to access, modify, or delete the file if they can
guess the random ID; it’s also not acceptable to let a user upload a file but then inform them that
the file has been named “dinosaurs.txt” and that they can’t change it).

– You may, if you wish, impose reasonable limits on these names or paths (for example, you could
require that references contain only certain characters, or that they aren’t longer than some
reasonable character length limit).

– You may, if you wish, impose a reasonable cap on file sizes.

– You may, if you wish, impose a reasonable cap on the total storage used by a user.

∗ You may want to consider whether both of these size limits make sense together, or if one
alone is sufficient.

– You may not impose a limit on the number of files that a user may upload, except for limits that
are implied by your other restrictions (for example, if you have a total storage limit of 100MB,
and you count file storage usage such that each file takes up a minimum of 1 byte, users would
be effectively prevented from uploading more than 100,000,000 files).

• Directories

– Each user has an associated “root” directory in which all of their files and directories are stored
(just like on Dropbox or Google Drive).

– All of the user’s files are stored either in this root directory or in subdirectories under the root.

– All of the user’s directories are stored either in this root directory or in subdirectories under the
root.

– Users must be able to create directories.

– Users must be able to delete directories.

∗ It’s up to you to decide how to handle users who request to delete a non-empty directory.

– Users must be able to, when they upload a file or create a directory, specify what directory it will
be stored in.

– Users must be able to choose what names to give to directories, just as with files.

– You may, if you wish, impose reasonable limits on these names, just as with files.

– You may not impose a limit on the number of directories that a user can have, except for limits
that are implied by your other restrictions (for example, if you use traditional Linux-style file
paths, and limit the total length of file paths, there’s an upper bound on the number of possible
file paths).

– A user who has authenticated has a “current working directory” analogous to that on a Unix
system.

– A user may give a reference to a file or directory that is relative to this current working directory.

2.1.1 Extra Credit

For extra credit, you may implement additional features. We will allow extra credit for the following features,
and may allow extra credit for other features—please confirm with us if you want to implement an extra
credit feature not on this list:

5

CS166 Computer Systems Security Spring 2019

• Sharing—see the CS162 section below for details.

• Deduplication—see the CS162 section below for details.

• File/folder integrity—the client keeps some small amount of data stored locally that allows it to verify
the integrity of the contents of files and folders returned from the server. Thus, the server is unable
to act maliciously and convince the client of false file names, false contents of files, or false directory
contents.

You do not need to include extra credit features you will implement in your design doc. (Since sharing and
deduplication are required features for CS162 students, CS162 should include design details for sharing and
deduplication in their design documents.)

2.1.2 CS162

CS162 students must additionally implement sharing and deduplication, defined as follows:

• Sharing for files

– Users must be able to share files with other users (you do not need to be able to share directories).

– Users must have some way of referring to files that are shared with them.

– It must be that all users have access to a live version of the file such that edits by any user on
a given file affect all users’ copies of the file (this is how sharing works, for example, on Google
Drive).

– When a user shares a file that they own with other users, they must be able to specify either
read-only or read-write mode. In read-only mode, the user with whom the file is shared can see
the file (including any future updates to it), but is not able to make modifications of their own.

Note that there are concurrency issues here (for example, what happens if user A downloads a
copy of a file, and then user B downloads a copy of the same file, and then user A makes an edit to
their local copy and uploads the new file resulting from the changes?). You are not responsible for
handling these in any clever manner—doing the naive thing and simply accepting upload requests
is fine.

– Users must be able to modify sharing on a file.

∗ Users must be able to modify the permissions that a specific other user has on a given file
(changing read-only to read-write, or vice-versa).

∗ Users must be able to remove permissions that a specific other user has on a given file (that
is, un-sharing the file with them).

– Note that there are some subtleties and edge cases that we have left unspecified. In these cases,
it is up to you to do something reasonable, and document your choice.

• Server-side deduplication

– The server must be designed so that if multiple copies of the same file are uploaded (where two files
are “the same” if they have the same contents), even if they are uploaded by different users,the
server only stores the contents of the file once. It is acceptable for some amount of metadata to
be stored for each copy of the file. This is known as “deduplication,” and it should have no effect
on how users experience the server - the behavior of all API calls should be unaffected, as should
the security properties.

6

CS166 Computer Systems Security Spring 2019

2.2 Client/Server Architecture

You will implement your service as two components: a client and a server. The bulk of the work will be
in designing and implementing the server, as it is the software which is more complex and which must be
secure—the security of the client software is out of scope for this project.

Both your server and your client will run as compiled Go binaries. We will supply support code that
handles the majority of the necessary networking code between the server and the client (discussed more
below).

You should consider the following technical requirements when you’re designing your Dropbox service:

• It must be possible to start your server simply by running the server binary (though you may specify
any command-line flags you deem necessary).

• There must be a way to cause the server to exit cleanly so that all necessary state is saved. Most
importantly, it must be the case that if the server is shut down and then started up again, no data has
been lost. However, you may assume that all shutdowns are clean—you don’t have to deal with the
case in which the server binary is stopped before it has a chance to clean up, or the server crashes, etc.

2.2.1 Support Code

The support code we will provide handles the majority of all necessary networking code needed for the client
to communicate with the server. It allows the client to invoke functions on the server as if they were running
in the same process on the same machine (the server cannot invoke functions on the client). This is known
as a Remote Procedure Call (RPC). It is guaranteed that no two of these functions will ever be running at
the same time, so the functions called on the server may be written with the assumption that no other code
will be running at the same time. Additionally, the server must provide a finalizer function, which will be
run once when the server shuts down (when a user types CTRL+C on the command line).

More information about the support code (and the support code itself) will be released after the Design
phase due date.

2.2.2 Standard Library and Third-Party Code

In general, use of standard library or third-party code is allowed so long as that the third party code:

• Doesn’t implement any high-level security functionality (for example, cryptographic primitives like
hash functions or encryption are fine, while entire authentication frameworks are disallowed).

• Doesn’t implement any significant feature of Dropbox for you (for example, for CS162 students, it
would not be acceptable to implement deduplication by using a deduplicating database).

Please ask the course staff if you are unsure if a given standard library or third-party package is allowed for
the Dropbox project.

2.2.3 Dependencies for the Server

Whatever state your service stores persistently (in files, in databases, etc) must be stored within a single
folder on the machine it runs on (though this can have sub-folders). This especially means that you must
not rely on system-wide services such as MySQL/PostgreSQL/etc. Databases that are entirely local (e.g.,
SQLite) are fine. This requirement is intended to make your service more portable and less tied to the
machines they are installed on. This will also make it both easier for you to develop your service and also
easier for the TAs to run your service alongside others. It will also mean that if you ever mess things up
beyond repair, you can easily wipe away your state and start over.

7

CS166 Computer Systems Security Spring 2019

To be clear, your server binary must be able to be invoked in the following manner:

./server <path-to-server-dir> <server-addr>

where path-to-server-dir is a path to a directory on the machine your server is running on that will
store all of the necessary files, subdirectories, etc. that are necessary for your server to run properly, and
server-addr is the address for the server to listen for client connections on.

Additionally, you will have to provide a --reset option to your server binary that will reset the file struc-
ture/data storage to its original blank version. That is, running the following command:

./server --reset <path-to-server-dir>

will generate a directory at path-to-server-dir that should contain all of the necessary files to start your
server for the first time.

You do not need to worry about the command-line arguments to your server during the Design portion of
the project, though we provide this information now so you have an idea of what you’ll need to be able to
do when you start implementing the project.

2.3 Security Assumptions

You will not be required to protect against the following types of attacks:

• Denial-of-service attacks that involve connecting large numbers of clients to the server (or other similar
attacks that involve clogging the network connection).

• Attacks that involve eavesdropping on unencrypted connections.

• Attacks that exploit vulnerabilities in the support code. Any vulnerabilities in the support code will
neither count against your project nor will be given any credit during the penetration testing phase
(though if you find any, please report them!).

8

CS166 Computer Systems Security Spring 2019

Part I

Design

3 Assignment

In the first phase, you will write a detailed design document for your Dropbox service. A critical part of
creating secure software is careful, thoughtful design. We expect you to spend a good amount of time and
effort on this—that’s why this document constitutes 20% of the final grade for the project.

Note that some elements of the design are left intentionally open and are not constrained to a particular
design choice by the requirements presented above. This is intentional. This project is designed to give you
a chance to do some critical thinking about security design in a broad sense. We’re not just trying to test
your ability to pick a strong hash function or avoid path escaping vulnerabilities. We encourage you to do
lots of brainstorming, and consider many possible designs.

Relatedly, you should not pick a particular design, and then try to figure out how to secure it. Instead,
you should consider different designs, and for each, how much it will naturally lend itself to being secure.
Often you will find that an entire class of vulnerability may go away entirely when the right design is chosen
(though likely not without introducing a new set of vulnerabilities to contend with). Finding and choosing
a design that leaves you with a manageable set of potential vulnerabilities is very subjective, and again we
emphasize that spending some time brainstorming with your partner will be very beneficial here.

3.1 Guidelines

Your design document should include the following sections:

• High-level security goals. Describe in layman’s terms what the high-level security goals of your service
are for authentication, access control, and file storage (for CS162 students, sharing and deduplication
as well). For example, “users should not be able to read each others’ files”.

• Authentication. This section should, at a minimum, address the following questions:

– How will users be identified (e.g., username, user ID, etc)?

– How will users prove their authenticity to the server?

– How will an authenticated user prove that they have already been authenticated (sessions)?

– How will authentication be verified by the server?

– How will authentication information be stored on the server? What about when the server isn’t
running (that is, how will authentication information be saved when the server is stopped and
then started again)?

– How will sessions be implemented, including creation, validation, and expiration?

• Access control. This section should, at a minimum, address the following questions:

– Given a request from a client which you have determined as being from a particular user (that is,
the request includes the requisite authentication information), how will you determine whether or
not the request should be allowed? Keep in mind that this will likely depend on other aspects of
your design.

• File storage. This section should, at a minimum, address the following questions:

– How will file data be stored on the server?

– Given a file path supplied by the client, how will you determine:

9

CS166 Computer Systems Security Spring 2019

∗ Whether this identifies a file, a directory, or does not exist

∗ If it’s a file, where this file’s data is stored

∗ If it’s a directory, what files/directories are inside it

– How will you ensure that users do not have access to one another’s’ file trees?

– [CS162 Students Only] Be sure to cover deduplication here as appropriate.

• [CS162 Students Only] Sharing. This section should, at a minimum, address the following questions:

– How will sharing data be stored?

– How will shared files be referred to by users with whom they are shared? That is, will they live
somewhere inside the user’s root? If so, where? If not, how will they be referred to?

– How will you handle making updates to sharing information?

• [CS162 Students Only] Deduplication. This section should, at a minimum, address the following ques-
tions:

– How will it be detected when two duplicate files are uploaded to the system?

– How will it be detected when a given file no longer exists on the system? In other words, if a
file is deleted or a file is replaced by a new file with different contents, how will it be determined
whether the old file had any duplicates, and thus whether to delete the storage or not?

– How will deduplication interact with sharing?

• Persistence. How will you ensure that data persists between runs of your server program? This may
overlap somewhat with other sections, which is fine.

• API. What methods will your server expose to be callable by the client? For each, specify:

– What are the arguments to this method?

– What are the return values from this method?

– What are the semantics of this method (what is its purpose / what does it do with arguments)?

– What, if any, authentication will be performed on this method?

– What, if any, access control will be performed on this method?

• Client computation. What work will be done only on the client, that the server may assume has already
been performed?

• Vulnerabilities and mitigating their risk. For authentication, access control, and file storage (for CS162
students, sharing and deduplication as well):

– What vulnerabilities might you expect out of a system employing your design?

– How will you ensure that your implementation does not have these vulnerabilities? Explain how
you will reduce the risk of introducing vulnerabilities during the implementation of your design.
This must include concrete actions or approaches (for example, saying “we will be very careful”
is not sufficient).

• Verification. Explain how, after you have implemented parts and all of your service, you will analyze
it to verify that it meets your stated security requirements, and does not contain any vulnerabilities.
During implementation, this should occur both after large independent components are implemented
and additionally after the entire service is completed.

You do not need to describe how you will implement any of the networking components handled by our
support code (for example, you don’t need to describe how file data is transferred from the server from the
client); see the “Support Code” section earlier in the handout for more information.

10

CS166 Computer Systems Security Spring 2019

3.2 Advice

In designing your service, you may find the following pieces of advice helpful:

• Security should be thought of as a property of a design, not as a feature. If you approach the problem
by first designing a service, and then afterwards adding security, your design will be complicated, and
likely quite insecure (this is essentially how the Web was designed, and we’ve seen how that turned
out). Instead, you should aim to have security be a goal that drives what design choices you make
throughout the process.

• Complexity is the enemy of security. The simpler your design is, the easier it will be for you to reason
about its behavior, and the less likely it will be to behave in surprising, insecure ways. Again, the Web
is a good example of what can happen when this design principle isn’t followed.

• One way to simplify your implementation is to push logic to the client. In particular, you may want
to make it so that the client performs any kind of input transformations or parsing. This way, your
server can take these input values in an already-parsed form.

• This doesn’t mean, of course, that you should trust the client. From the server’s perspective, the client
is completely untrustworthy, and all inputs from it should be treated as hostile (and in fact, graders
will send your server hostile input, bypassing any sorts of validation done by your client).

• Any kinds of security decisions should be made after inputs are fully parsed. You want to make sure
you have parsed input from the client and interpreted it fully before proceeding to execute that input.
For example, in access control, you want to make sure you have parsed a path before accessing that
path. If the server tries to access a path before parsing that path, it may end up allowing a user to
access something they should not have been able to access.

3.3 Handing In

Your design document should be formatted as a PDF. It does not need to be a formal document (that is,
you may use bullet points when describing your service’s design).

You should clearly mark in your document whether or not the team includes at least CS162 student (which
means you must complete the CS162 requirements for the design document).

Please hand in your design document on Gradescope. Only one partner should hand in the PDF—you
must use the team selection dropdown in Gradescope to select your partner’s name when you hand in. (A
deduction may be applied if more than one partner from a team hands in or the team is not correctly selected
on Gradescope.)

3.4 Design Discussions

There will be “design discussions” after the Design phase deadline in which you and your partner will
meet with a TA and have the opportunity to discuss your design for the Implementation phase for 30
minutes.

These are not interactive gradings—when you meet with your TA, your design document will have already
been graded (you will receive your Design grade at the beginning of this meeting). These meetings are
designed to help your team translate your design ideas into practice as you start implementing your Dropbox
service as well as give you an opportunity to have dedicated time with a TA for improving your project’s
design before you start implementing it.

We will send out information on how to sign up for design meetings after the Design phase deadline.

11

CS166 Computer Systems Security Spring 2019

Part II

Implementation

4 Assignment

In the second phase, you will implement your Dropbox service.

In the “Specification” section of the handout, we have already discussed some of the technical details regard-
ing what we expect for your service’s implementation—we won’t reiterate those details here, so you should
revisit that section before continuing with the second phase of the project. Below, we discuss how to get
started with the support code for your implementation as well as some requirements to keep in mind when
you’re implementing the project.

4.1 Github Classroom

The support code for this assignment will be distributed on a Github repository via Github Classroom. To
access the code, one partner from each team should follow these steps:

• Register a new team for the Dropbox assignment at https://classroom.github.com/g/s4aWDiaB.
Your team name should be comprised of the CS logins in the partnership separated by hyphens. (For
example, the group name for the team of zespirit and zkirsche should be “zespirit-zkirsche”.)
The order of the CS logins does not matter.

• When you register your team, this will take you to a page that will automatically set up your team’s
repository and import the Dropbox stencil code. This may take a few minutes. Once it’s done, you
will have access to a Github repository containing the support code for the assignment.

All other team members should do the following:

• Find the team that your partner created for the Dropbox assignment at https://classroom.github.
com/g/s4aWDiaB, then click on “Join” next to the team name.

• This will add you to your team’s Github repository. You should now have access to the same Github
repository as your partner.

TAs will be able to assist helping teams set up their Github Classroom assignment during the “design
discussions” regarding the Design phase of the project.

You are required to use Git and Github for this project. This will help facilitate collaboration
between you and your partner as well as allow us to better evaluate your work in the end. If you’re looking
for a Git tutorial, we recommend starting with the tutorials at https://try.github.io.

4.2 Support Code, In More Detail

Your Github repository will be pre-populated with the support code. This support code consists of an
example Dropbox “implementation” client and server that are meant to illustrate how to use the Remote
Procedure Call (RPC) framework provided for calling server functions from the client. The support code we
provide establishes a very insecure implementation of the Dropbox service—you should only use the code as
an example of how to use the remote procedure call framework described in the “Client/Server Architecture”
section above.

Comments in the code go into more detail about the purpose of each of the files we provide, but here we
provide a general overview of the code.

12

https://classroom.github.com/g/s4aWDiaB
https://classroom.github.com/g/s4aWDiaB
https://classroom.github.com/g/s4aWDiaB
https://try.github.io

CS166 Computer Systems Security Spring 2019

The support code is split up into the following directories:

• internal - code common to both the client and the server

• lib/support - our support code

• client - the source code of the client

• server - the source code of the server

The key piece of code for you to look at is the Client interface defined in lib/support/client. In the
Design phase, we asked you to come up with the necessary API methods for your Dropbox system in order
to get you to start concretely thinking about the project—now that we’re in the Implementation phase, we
provide this interface as a recommendation for what functions should be included in your API and the inputs
and outputs for each of those functions.

We recommend (but do not require) that your client implementation implement the provided Client in-
terface. This will allow you to use the RunCLI function in the lib/support/client package, which will
automatically set up a command-line REPL for your client. However, if you modify the Client interface,
you’re welcome to change the RunCLI implementation to fit your new Client implementation.

The idea behind the Client interface is that it represents an authenticated client. Remember that “authen-
tication” is design-dependent, so you will need to write all code relating to authentication yourself (including
the command-line interface that the user interacts with for authenticating themselves). After the client has
successfully authenticated, you should construct a value of a type that satisfies this interface, and pass it to
RunCLI in order to run the CLI. Once RunCLI returns, you should perform any post-logic such as logging
out of the server (again, this is dependent on your design).

5 Requirements

Your second handin will be the completed service. It must properly and securely implement all functionality
outlined in the “Specification” section of the handout. Additionally, it must satisfy the requirements listed
in the following sections.

5.1 Client Command Specification

In order to provide consistency between Dropbox implementations for grading purposes, each of the standard
commands that clients in your Dropbox implementation will rely on (cd, cat, ls, etc.) has a particular input
and output format that you are required to follow.

The client implementation in the support code2, by default, prints out the output of each of the commands
in the required format already, so you can use the support code to check that the result of each of your
commands is printed out in the correct format. Additionally, the test cases that we provide for our system
tester (discussed below in Section 5.2.1) provide a few examples of the expected output for a given set of
inputs, so you can reference those test cases to determine what output you should print out for a given
scenario.

Our command output requirements are listed below. Note that all command descriptions assume access is
permitted by the calling user—it is up to you to handle any edge cases in a reasonable manner. You are wel-
come to add any commands to supplement these in your implementation if you think they are necessary (for
example, you will probably need to implement sharing-related commands if you are implementing sharing),
but at a minimum your client implementation must support the commands below.

2As a reminder, the support code we provide already provides a very basic implementation of the Dropbox service as a whole
(without users or authentication).

13

CS166 Computer Systems Security Spring 2019

5.1.1 List of Commands

• upload <localpath> <remotepath>

Semantics. Uploads the file at <localpath> (a path to a file on the client’s filesystem) to <remotepath>
(a path in the Dropbox server).

Output. No output should be printed on success.

• download <remotepath> <localpath>

Semantics. Downloads the file at <remotepath> from the current user’s dropbox account to client’s
local filesystem at <localpath>

Output. No output should be printed on success.

• cat <file-path>

Semantics. Consumes a <file-path> to a file on the server..

Output. Prints the contents of the file if it exists.

• ls [<path>]

Semantics. If no <path> is specified, prints out all of the files and the directories in the current working
directory. Otherwise, prints out all of the files and the directories in the directory specified by
<path>.

Output. See Semantics. Each directory is denoted with a leading character “d”; each file is denoted
with a leading character “-”. Directories and files are printed out in alphabetical order.

As an example—assume we have a file named test.pdf, a directory named tmp, and a directory
named secret in the current working directory:

$ ls

d secret

- test.pdf

d tmp

• mkdir <path-to-newdir>

Semantics. Makes a new directory at <path-to-new-dir>.

Output. No output should be printed on success.

• rm <path>

Semantics. Removes the file or directory at <path>.

Output. No output should be printed on success.

• pwd

Semantics. Prints out the current working directory.

Output. See Semantics.

• cd <path>

Semantics. Changes the currently logged-in user’s current working directory to <path>.

Output. No output should be printed on success.

• quit or exit

Semantics. Closes the client program.

Output. No output should be printed on success.

14

CS166 Computer Systems Security Spring 2019

5.2 Testing Mode

While the contents of your client’s REPL prompt and the details of your system’s authentication are up to
you, you must make sure your Dropbox client implements a particular feature in order to make your system
easier to grade.

At the top of the main function provided in the support code for the client in client.go, you will see the
following block of code:

// Check if we're in testing mode. (See the handout for more information.)

if compileMode == "test" {

isTestingMode = true

}

This automatically sets the isTestingMode variable (which is, by default, set to false) to true if your
client binary is compiled with a special Go flag that specifies that the client should be compiled in “testing
mode”. Your client binary can be compiled in “testing mode” by running the make test client command
(as opposed to the make client command).3

If isTestingMode is true, your client binary is in “testing mode” and must do the following:

• The client needs to authenticate itself on start up. For example, you might register a new account, then
log that account in (if your implementation does not immediately log in an account after registering
it). The reason for this is that authentication processes are implementation-dependent, and as a result
will not work with our automated test suite.

• The command-line REPL prompt should not be printed. Note that our support code already handles
this for you—the RunCLI consumes a boolean flag that states whether or not to print the REPL prompt.

• Any user-defined writes to standard output (for example, output from the authentication process,
debugging printouts) from your client should not print when the client is in “testing mode”. Otherwise,
the test suite will not run correctly with your client.

5.2.1 System Tester

To allow you to check that you’ve correctly set up the “testing mode” version of your client, check that your
client implementation prints the expected output for each of your commands, and verify the correctness of
your implementation as a whole, we’ve provided a basic test suite and testing program that will run system
tests against your Dropbox server and client.

You can run the tester using the following command on a department machine:

cs166_dropbox_tester [--client <path-to-client>] [--server <path-to-server>]

[--test-folder <path-to-test-folder>]

The cs166 dropbox tester will start a server instance of the server specified by the --server flag and
connect the “testing mode” client binary specified by the --client flag to the server. It will then run each
of the tests in the specified --test-folder, each of which pass input to the client and compare the output
of your client to some expected output.

To get you started, we’ve placed a basic set of tests in /course/cs1660/pub/dropbox/tests. Each test is a
directory containing an input file and an output file, where the output file is the expected output to stdout
after all of the commands in the input file have been entered on the client. To run these tests against a
client binary located at ./test client and a server binary located at ./server, you could run:

cs166_dropbox_tester --client ./test_client --server ./server

--test-folder /course/cs1660/pub/dropbox/tests

3The details of how this special compilation mode works are not important to the project and are outside the scope of this
course, but if you’re curious, you can look at the contents of the provided Makefile for more information.

15

CS166 Computer Systems Security Spring 2019

We strongly recommend writing your own set of system tests, as the tests provided do not cover all cases
or commands. See the contents of each of the tests in the /course/cs1660/pub/dropbox/tests folder for
examples of how to write your own test cases.

Make sure to run the tester program with the “testing mode” version of your client binary.

The tester program comes with some other helpful options that you can use when running it—you can see
a full list of options by running cs166 dropbox tester --help.

5.3 Documentation

5.3.1 Commenting

Above each function, you must document:

• The expected/allowed input values and return values.

• Any pre-conditions and post-conditions, including any security assumptions (for example, “the caller
of this function has already verified that this action is allowed”).

• The exact behavior of the function.

We expect extensive, descriptive, and readable documentation explaining any potentially confusing pieces of
code. You will be graded on this, so when in doubt, comment.

5.3.2 README

Along with your code, you should submit a README, which should contain:

• Any changes that you have made to your original design during the Implementation phase, including
justification for those changes.

• All testing/verification that you have done to verify that your service is secure. This includes any
additional tests you may have written for the cs166 dropbox tester program.

• Any vulnerabilities that you discovered during this testing/verification, and how you fixed them.

• Any third-party code or libraries that you used and how to install them.

6 Logistics

6.1 Handing In

The last commit pushed to the master branch on your Github Classroom repository prior to the deadline
will be considered your team’s final submission for the Implementation phase. (You do not need to—and
should not—run the cs166 handin command.)

If you’ve written any additional tests for the cs166 dropbox tester program, you should also include those
in a folder in your repository. Extra credit may be provided for particularly good and thoughtful tests that
are included in implementation submissions.

6.2 Grading

Out of the 60% allocated for the Implementation phase in the Dropbox project, the grading breakdown for
this portion is as follows:

16

CS166 Computer Systems Security Spring 2019

• 20% Functionality

• 40% Security

If any extra credit features are implemented, these will increase the overall value of the Implementation
portion of the project. Functionality and Security scores will maintain the same ratio (1:2), but these will
now be out of this increased total score.

Finally, you can only get Security credit for what you implement. If you were to implement only half of the
required functionality, you would not be able to get more than 20% on the Security score.

17

CS166 Computer Systems Security Spring 2019

Part III

Pentesting

7 Assignment

In the third phase of the project, you will be penetration testing Dropbox implementations written by your
TAs when they were students in the course. Dropbox teams will not work together during this phase; instead,
all students must work individually.

Each student will be given several Dropbox implementations to “pentest”. You can find these in /course/

cs1660/pub/dropbox/pentesting. (Please do not redistribute these project files outside of the course—it
is a violation of the Collaboration Policy to do so.) For each implementation, you will be given each team’s
implementation code.

We have provided six implementations—you must pentest three of these and meet the target scores de-
fined below for each. Additionally, at least one of the implementations you choose must be a CS162
implementation—these implementations are clearly marked in the folders provided. (This rule applies to all
students, not just those enrolled in CS162.)

7.1 Restrictions

Please note that while you are given full access to the server, you may only use that access to set up the
service, verify that your exploits have worked, and reset it if necessary. Additionally, you may not take
advantage of any vulnerabilities that rely on the client and server to run on the same machine. In essence,
any vulnerabilities you report must not rely on having direct access to the server in order for them to work—it
must be possible to exploit them solely by making RPC calls against the server.

Please also see the prior Dropbox specification in this handout for other vulnerabilities which are outside
the scope of this project.

7.2 Changes from Year-to-Year

The project specifications are updated from year-to-year based on course feedback and pedagogical changes.
As a result, the implementations created by your TAs may not fully match the specification presented in
this year’s handout.

In particular, the implementations provided for pentesting do not necessarily follow the same client command
specification as prescribed in the this year’s project handout, and therefore the cs166 dropbox tester

program may not work with these implementations.

Recall from your experience with hacking unfamiliar systems that it is incredibly important for you to first
learn how the system that you’re penetration testing works before actually trying any exploits. Read the
method comments fully until you understand it, and then read the implementation and make sure you
understand how it and each of the components work. The better you understand how the service works, the
better the chance you’ll have of actually finding vulnerabilities once you start looking for them.

Remember that you have the distinct advantage of having had implemented a similar system yourself, so
think about the errors and edge cases you found while implementing your implementation and use that as a
starting point to attack the TAs’ implementations!

18

/course/cs1660/pub/dropbox/pentesting
/course/cs1660/pub/dropbox/pentesting

CS166 Computer Systems Security Spring 2019

8 Finding Vulnerabilities and Exploits

As in previous projects, your task will be to identify vulnerabilities and develop exploits for those vulner-
abilities. Two submissions will count as distinct from one another if the vulnerabilities they leverage are
distinct. Two vulnerabilities are considered distinct if they would require separate updates to the code in
order to fix—ask on Piazza what constitutes “separate updates” before proceeding with two separate exploits
in order to avoid losing points.

Point values for each submission will be assigned based on the severity of the exploit that you are able to
accomplish. They will be evaluated on the following scale:

Exploit Description Points
Remote Code Execution Execute arbitrary code on the server. This is similar to the Arbi-

trary Code Execution exploit from the Handin project (but you
do not need code to execute with any particular permissions).

10

Account Takeover Take control of another user’s account, whether directly (by being
able to impersonate their account or steal the credentials needed
to login) or indirectly (arbitrarily manipulate a given user’s file
system as another user).

8

File Modification / Exfiltration Being able to read or change a file owned by another user. (If
you’re able to arbitarily manipulate all files owned by a given
user, this would be considered Account Takeover.)

6

File Deletion Deleting a user’s file that you should not have access to delete. 5
Password Hash Exfiltration Recovering a password’s hash for another user. 5
Denial of Service Anything that crashes the server or prevents other users from

using the service. (Note that attacks that involve connecting large
numbers of clients to the server, or other similar attacks that
involve clogging the network connection, are not permitted as per
the Dropbox specification.)

4

Metadata Exfiltration Being able to discover sensitive metadata such as the names of
files or directories that other users have created. (This does not
include finding out whether or not a username already is in use
or not. Many websites, like Reddit and Gmail, will tell you if a
username is already taken, so this isn’t considered a vulnerability
in the real world.)

4

Metadata Deletion Deleting metadata. 2

An exploit will be associated with the highest-scoring severity category (but not more than one category).
For example, if an exploit allows for metadata exfiltration, and the metadata stolen (such as a password)
allows for account takeover, the exploit will be given 8 points, as the Account Takeover category (8 points)
is worth more than the Metadata Exfiltration category (2 points).

Finally, please note that the TAs are human too and some of the functionality might be a little buggy. Your
goal is not to find functionality errors, but to find security vulnerabilities (given the above table). If you are
unsure if something that you have found is a functionality issue or a security issue, please ask the TAs on
Piazza.

8.1 Target Scores

For each project, we have computed a target score based on what vulnerabilities were found during last year’s
grading. Your grade for each project will be the ratio of the number of points that you got out of the target
score. (The target score is also a cap on the number of points you can score on a given implementation—there
is no extra credit in this phase of Dropbox.)

19

CS166 Computer Systems Security Spring 2019

The target scores are as follows:

• Balthazar: 1 point

• Kevin: 6 points

• BoogieBots: 14 points

• Margo (CS162): 1 point

• LucyWilde (CS162): 4 points

• Vector (CS162): 9 points

Note that implementations with a target score of 1 point only need one valid exploit to get full credit.
However, the target scores are determined from known exploits on each of the systems, so implementations
with lower scores may have less apparent (or, possibly, no) vulnerabilities when compared with the higher
point implementations.

8.2 Exploits

The requirements for each exploit you submit are as follows:

• You must include a detailed README that:

– Reports what vulnerability exists in the system that your exploit takes advantage of.

– Explains how your exploit takes advantage of this vulnerability. This should include instructions
sufficient to reproduce the exploit that would allow even a person completely unfamiliar with the
system to reproduce the exploit on their own. There should be no question how the vulnerability
or the exploit works after reading your explanations.

– Documents the severity of the vulnerability by choosing one of the provided exploit severity
categories. If you feel there is no category that adequately suits your vulnerability, please include
a detailed explanation of your suggested class of vulnerability.

• Any files (such as scripts, payloads, etc.) that are needed to run your vulnerability. Not all exploits
need to be scripted—if you’re unsure if something should be scripted, ask the TAs on Piazza.

You do not have to describe fixes for each vulnerability.

9 Logistics

9.1 Handing In

Each project has a separate handin command—you only have to hand in pentesting results for three
implementations. Note that if you hand in exploits for more than three implementations, we will randomly
pick three of those handins to grade—so do not hand in pentesting exploits for a given implementation unless
you’re certain you want to commit to pentesting that implementation.

To hand in pentesting exploits for a given implementation, run the corresponding command in a directory
containing all of your exploits for that implementation (each exploit should be in its own subdirectory, each
with its own separate README and exploit code, payloads, etc):

• Balthazar: cs166 handin dropbox pentesting balthazar

• Kevin: cs166 handin dropbox pentesting kevin

• BoogieBots: cs166 handin dropbox pentesting boogiebots

20

CS166 Computer Systems Security Spring 2019

• Margo (CS162): cs166 handin dropbox pentesting margo

• LucyWilde (CS162): cs166 handin dropbox pentesting lucywilde

• Vector (CS162): cs166 handin dropbox pentesting vector

9.2 Grading

The three implementations that you pentest will each count for 1
3 of the grade for Pentesting, which counts

for 20% of the final Dropbox grade.

21

	Introduction
	Partners
	Project Overview
	Late Days

	Specification
	Requirements
	Extra Credit
	CS162

	Client/Server Architecture
	Support Code
	Standard Library and Third-Party Code
	Dependencies for the Server

	Security Assumptions

	I Design
	Assignment
	Guidelines
	Advice
	Handing In
	Design Discussions

	II Implementation
	Assignment
	Github Classroom
	Support Code, In More Detail

	Requirements
	Client Command Specification
	List of Commands

	Testing Mode
	System Tester

	Documentation
	Commenting
	README

	Logistics
	Handing In
	Grading

	III Pentesting
	Assignment
	Restrictions
	Changes from Year-to-Year

	Finding Vulnerabilities and Exploits
	Target Scores
	Exploits

	Logistics
	Handing In
	Grading

