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[llustrating Agnostic Learning

We want a classifier to distinguish between cats and dogs
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Unrealizable (Agnostic) Learning

We are given a training set {(x1, c(x1)), ..., (xm, c(xm))}, and
a concept class C
Let ¢ be the correct concept.

Unrealizable case - no hypothesis in the concept class C is
consistent with all the training set.

°® c¢C

® Noisy labels

Relaxed goal: Find ¢’ € C such that

Pr(c'(x) # €(x)) < jnf Pr(h(x) # c(x)) + .

We estimate Prp(h(x) # c(x)) by

m

Brih(x) # () = 3" Luguy e

i=1



Unrealizable (Agnostic) Learning

e We estimate Prp(h(x) # c(x)) by

. 1 &
Pr(h(x) # c(x)) = p. > L))
i=1

e |f for all h we have:

Pr(h(x) # c(x)) — Pr (h(x)#cw)\ <5

x~D

N ™

then the ERM (Empirical Risk Minimization) algorithm

h=arg 2"22 Pr(h(x) # ¢(x))

is e-optimal.



More General Formalization

Let f, be the loss (error) function for hypothesis h.
So far we used the 0-1 loss function:

[ 0 if h(x) = c(x)
falx) = { 1 if h(x) # c(x)

Alternatives that give higher/lower loss to false negative:

/0 if h(x) =
() _{ ((x) if h(x) #
Let Fc = {fy | he C}.

Fc has the uniform convergence property = if for any

distribution D and hypothesis h € C we have a good estimate
for f;,, the loss of h.



Uniform Convergence

So far we only discussed binary classification with 0 — 1 loss
function.

Definition

A range space (X, R) has the uniform convergence property if for
every €,0 > 0 there is a sample size m = m(e, ) such that for
every distribution D over X, if S is a random sample from D of
size m then, with probability at least 1 — 0, S is an e-sample for X
with respect to D.

Theorem

The following three conditions are equivalent:
@ A concept class C over a domain X is agnostic PAC learnable.
@® The range space (X,C) has the uniform convergence property.
©® The range space (X,C) has a finite VC dimension.



Is Uniform Convergence Necessary?

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mz(e,d) such that for
any ¢,0 > 0, m(e,d) < oo, and for any distribution D on Z, a
sample z1, . ...z, of size m = mz(e, ) satisfies

1 m
Pr(sup |— f(z) — Ep[f]| <€) >1-06.
(fefm; (zi) — Eplf]| <€)

The general supervised learning scheme:
e f, is the loss (error) for hypothesis h. Fo = {f, | h€ C}.

® F¢ has the uniform convergence property = for any
distribution D and hypothesis h € C we have a good estimate
of the error of h

e An ERM (Empirical Risk Minimization) algorithm is e-optimal



Is Uniform Convergence Necessary?

Definition

A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mz(e,d) such that for
any ¢,0 >0, m(e,d) < oo, and for any distribution D on Z, a
sample z1, ..., z, of size m = mz(e, ) satisfies

1 m
Pr(sup |— f(z) — Ep[f]| <€) >1-06.
(fefm; (zi) — Eplf]| <€)

® We don't need uniform convergence for any distribution D,
just for the input (training set) distribution— Rademacher
average.

® We don’t need tight estimate for all functions, only for

functions in neighborhood of the optimal function — local
Rademacher average.



Rademacher Complexity

Limitations of the VC-Dimension Approach:

® Hard to compute

® Combinatorial bound - ignores the distribution over the data.
Rademacher Averages:

® |ncorporates the input distribution

® Applies to general functions not just classification

Always at least as good bound as the VC-dimension

Can be computed from a sample

Still hard to compute



Rademacher Averages - Motivation

® Assume that S; and S, are sufficiently large samples for
estimating the expectations of any function in F. Then, for
any f € F,

‘51| Z | Z f(y) = E[f(x)],

or

1 1
Es, s,~p |sup | t== E f(x) — <= E fly) ]| <e
|51 |52
XESl y652

feF

® Rademacher Variables: Instead of two samples, we can take
one sample S = {z,...,z,} and split it randomly.

® leto=o01,...,0miid Pr(oj = —=1) = Pr(o; =1) =1/2.
The Empirical Rademacher Average of F is defined as

Rm(F,S) = E, [sup — ZO’, z) ]

fer M7

10 /1



Rademacher Averages (Complexity)

Definition

Let 0 =01,...,0m i.id Pr(cj = —1) = Pr(o; =1) = 1/2.

The Empirical Rademacher Average of F with respect to a sample
S={zi,...,zn}, is defined as

Rn(F,S) = E, [sup —Za f(z) ]

HETF 5

Taking an expectation over the distribution D of the samples:

Definition
The Rademacher Average of F is defined as

Rn(F) = Esp[Rm(F,S)] = Es~pE, [?22 % Z a,-f(z,-)]

11 /1



Intuition

Definition

The Rademacher Average of F is defined as

- 1 X
Ron(F) = Esp[Rm(F,S)] = Es~pE, [?22 - Z; o,-f(z,-)]

Assume that Vf € F, f:Z — {—1,1}.
If | F| =1, then Ry, (F) = 0.

If | F| = 2", then R(F) = 1. (For any assignment o1,...,0pm,
and z;,...,z, there is a function f € F such that

% > 0if(z)=1)

The Rademacher Average 0 < R,,(F) < 1 is another measure of
the complexity or expressiveness of F.

12 /1



The Major Results

We first show that the Rademacher Average indeed captures the
expected error in estimating the expectation of any function in a
set of functions F (The Generalization Error).

® Let Ep[f(z)] be the true expectation of a function f with
distribution D.

® For asample S = {z,...,zy,} the empirical estimate of
Ep[f(z)] using the sample S is £ 37 £(z).

1 m
Es.p [igg <ED[f(Z)] - Z: f(Zf))

12 /1



Jensen’s Inequality

Definition

A function f : R™ — R is said to be convex if, for any x1, x> and
0<A<1,

AF(xa) + (1= A f() > F(xa + (1 — A\)x)

Theorem (Jenssen's Inequality)

If f is a convex function, then

E[f(X)] = f(E[X]) .

In particular, E[sup f] > sup E[f]]
feF feF

14 /1



Symmetrization Inequality: Proof

Function family. F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

“|m (350 eam) -

Start with the supremum deviation (which we want to bound)

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

E, |: sup (% Z f(zj) — ED[f]>:| =E; [ sup <% Z f(zi) — E, |:% z f(z,’):| )] Linearity of Expectation

fer P

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher” = {—1,1}". Pr(—1) = Pr(1) = 1/2.
E, |: sup (% 2’": f(z;) — ED[f]>:| =E; |:fseug: <% Xm: f(z;) — E, |:% z’": f(z,/):| >:| Linearity of Expectation

fer i=1 i=1 i=1

1 & 1N,
<E; {EZ/ LSEU; <; Z f(zi) — - Z f(l;))

i=1 i=1

z:| Jensen's Inequality

Jensen's Inequality: Easier to pick an f € F to fit (maximize) each
draw of Z' individually than to pick an f € F that has to work in
expectation over z/

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher” = {-1,1}". Pr(—1) = Pr(1) = 1/2.

1 & 1 & 1
E, |:fsg§: (;Zf(z;)fED[f]>:| =E; |:fsEu§: (;Zf(z,-)sz/ |:; )

m
i=1 i=1 i=

f(z;):| ) :| Linearity of Expectation

-

1 & 1 &
< E;|E, |sup | — Z f(z;) — — Z f(z,-l) z Jensen’s Inequality
fer \mi= =
1 = 1 &
=E, s [sup | — Z f(z) — — Z f(z/-/) Conditional Expectation
Tolrer Mo M
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Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

E, |: sup (% Z f(z;) — ED[f]>:| =E, [fs:gr (% Z |:% Z f(z, :|>:| Linearity of Expectation

feF py =1 i=1
1 & 1 —
< E;|E, |sup | — Z f(zj)) — — Z f(z,-/) z Jensen’s Inequality
fer \m = Lyt
1 m
=E, ;s | sup | — f(z Conditional Expectation
o [fe}‘ (m Z Z )]
i=1 i=1
m
=E, [:g;; ,Xl:(f z) — f(z ] Algebra

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}™. Pr(—1) = Pr(1) =1/2.

E, |: sup (% Z f(z;) — ED[f]>:| =E, |:fsugr (% Z f(zi) — E, |:% Z f(z,l):| >:| Linearity of Expectation

Z(f(zi) - f(zll)):| Jensen’s Inequality

Consolidate the previous few steps

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

1 1« 1, o !
E, |: sup (* Z f(z;) — ED[f]>:| =E, |:fsug: (; Z f(zi) — E, |:; Z f(z; ):| ):| Linearity of Expectation

fer m i=1 € i=1 i=1
1
<E sup — f(zi) — (2] Jensen’s Inequalit
<E, [fefm,;((’) (,))} quality
=E .- |:f56u51r - Z o,(f(z,) - f(z ):| Symmetry

Symmetry. Since z,z' are i.i.d., swapping z;, z/ is equally likely.
oi = 1. z;, z/ not swapped. o; = —1: z;, z/ swapped.

15 /1



Symmetrization Inequality: Proof

Function family.: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {-1,1}". Pr(—1) = Pr(1) = 1/2.

1 & 1 & 1 &
E, | su f(z;) — Ep|f =E;| su — f(z — f(z, Linearity of Expectation
z|:F€;<m; i D[]>:| z[ p(m;(/) |:mz y p

i=1
1 - 9 1 .
< Ez,z/ SUP ; E (f(zi) - f(zi)) Jensen's Inequality
i=1
1

m
— |:f5€ujpt - IZ o (f z;) — f(z, ):| Symmetry

1 m
<E, sup — oif(z) | + [ sup —— oif(z] Subadditivity
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Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher” = {-1,1}". Pr(—1) = Pr(1) = 1/2.

m m m
1 1
E; | sup z;) — Ep[f] sup | — f(z — f(z, Linearity of Expectation
: |:f€]: ( Z I fer m :ZI: m Igl:

1 m
<E, | sup — § (f(zi) - f(z,/)) Jensen’s Inequality
fer mi4
m
=E, , sup — oi(f(z) — f(z Symmetry
| 2SS - 1)

m m
1
<E,,, |:<Fsgg:; E a,-F(z,-)) + (sup —-— E a,-f(z,-/)>:| Subadditivity
i=1

1 m
= Ez, sup — oif(z)| +E,/ sup —— oif(z Linearity of Expectation
Za{fefm; o 7 N feF Z

15 /1



Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}™. Pr(—1) = Pr(1) =1/2.

E, |: sup (% Z f(z;) — ED[f]>:| =E, |:fsugr (% Z f(zi) — E, |:% Z f(z,l):| >:| Linearity of Expectation

fer = € i=1 i=1

1

<E, s |sup — Z(f(zi) - f(zll)) Jensen’s Inequality
eI
m

=E, . o |sup — Z a,(f(z,) - f(Z ) Symmetry

feFr m
<E sup — oif(z +E,/ sup —— oif(z Subadditivity
SR IR PR

Consolidate the previous few steps
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Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

E, |: sup ( 1 Z f(z) — ED[f]>:| =E, [ sup <% ; f(zi) — E, |:% z f(z,’):| )] Linearity of Expectation

fer = i=1
;o
<E,, |sup — f(z) — f(2]) Jensen’s Inequality
[@m; —
m
=E 0 |:fs€"'g__ - Z o (f(zl) - f(z ):| Symmetry
1 m
< Eg, sup — oif(z)| +E,/ sup —— oif(z Subadditivity
Za|:f€.7—""";’ ' 7\ feF mZ
1 & 1 &
=E; o | sup — Z oif(zi)| +E, | sup Z oif(z Pr(o) = Pr(—o)
fer m ‘=] | feFr m A
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Symmetrization Inequality: Proof

Function family: F C Z — R; samples: z,z' ~ D™,
o ~ Rademacher™ = {—1,1}". Pr(—1) = Pr(1) =1/2.

E, |: sup ( 1 Z f(z) — ED[f]>:| =E, [ sup <% ; f(zi) — E, |:% Z f(z,’):| )] Linearity of Expectation

fer i= i=1
<E Ly f f(z Jensen’s | lit
N fseug__ - ;( () (z )) ensen’s Inequality
m
=E . |:5'-'P - Z Ti (f(zl) - f(z ):| Symmetry
feF m
1 m
<Ezo {fsg; p. ; 0,f(z,):| +Ey o {fség: . Z oif(z :| Subadditivity
1 m
:EZ,,|:sup 7er,ﬂf(z;):| +EZ/10|:sup 7201( :| Pr(c) = Pr(—o)
fer m i—1 feFr m pay
1
=2E, , |:sup =3 a,-f(z,-)] = 2Ry (F, D) 2,z ~ D"
fer mi4

15 /1



Deviation Bounds

Theorem
Let S = {z,...,z,} be a sample from D and let § € (0,1). If all
f € F satisfy Ar < f(z) < Ar + ¢, then

@® Bounding the estimate error using the Rademacher
complexity:

Pr(?ug(Ep[f(z)] = % > f(z1)) > 2Rm(F) +€) < o—2me?/c?
< i=1

® Bounding the estimate error using the empirical Rademacher
complexity:

Pr(sup(Ep[f(2)]— . Em: F(2)) > 2Rm(F)+2¢) < 2¢72m/<
< Mo

16 /1



McDiarmid’s Inequality

Applying Azuma inequality to Doob’s martingale:

Theorem

Let Xi,...,X, be independent random variables and let
h(x1,...,xn) be a function such that a change in variable x; can
change the value of the function by no more than c;,

sup  |h(X1, .y Xise ooy Xn) — h(X1, X xa)| < i
X17"'7XH7X,'/

For any ¢ > 0

Pr(h(Xy, ..., Xn) — E[h(X1, ..., Xp)]| > €) < e 2/ Eia e,

17 /1



Proof

The generalization error:
Let g(z1.....2n) = supser(Ep[f(2)] — L 3°7, f(z)) We want to
bound

g(z1,...,2z0) — Elg(z1,...,2n)] < g(z1,...,2n) — 2Rm(F)

g(z1,...,z,) is a function of independent zi, ..., z,. Assume that
we change z; to y;.

If the argsups. » doesn’t change then the value of the function
changes by no more than c¢/m.

Assume that argsups. » changes from h to h'.

h(z1,...,z0) > W (z1,...,20) > W (z1,.. ., Yir- -y 2Zn) — C/m

and a change is again no more than ¢/m.

19 /1



The estimation error:
We want to bound

Ron(F,S) — Rn(F, S).

The Empirical Rademacher Average

- 1 &
Rm(F,S) = E, |sup — oif(z
(79) = s 23
is a function of m random variables, z, ..., z,, and any change in

one of these variables can change the value of R,(F,S) by no
more than ¢/m.

10 /1



Why Data Dependent Bounds?

® The Vapnik-Chervonenkis Dimension:
® Applies only to binary classification

® Complicated generalizations for regression or multi-class
classification

® Combinatorial bound
® |gnores data distribution (worst-case over all distributions)

® Can be hard to compute

® Rademacher Averages:
® Handles general learning problems

® Only need a loss function
® (lassification, regression, clustering, data mining

® Sensitive to data distribution (distribution-dependent)
® Approximated with training sample (data-dependent)

® Always at least as good bound as the VC-dimension

® Still hard to compute

20 /1



Bounding Rademacher Averages: Massart's
Inequality

Theorem (Massart’s Finite Class Inequality)

Assume that |F| is finite. Let S = {z1,...,zy} be a sample. Then
. \/2I F
Rm(F,S) < supi2 n\ |
feFr .4

Corollary

Therefore, if F C X — [—1,1], then

2In|F
supi2 z)) <+/m , thus Ry, (F,D) < nl7| :
feF i (i

21 /1



Massart's Inequality: Proof Volume |

For any A > O:

m
exp()\mr?m(}",s)):exp AEs | sup E oif(z) Definition
fer iq

77 /1



Massart's Inequality: Proof Volume |

For any A > O:

m
exp(Amﬁm(f,S)):exp AEs | sup E oif(z) Definition
fer iq

e [ex,,(A w3 U,,f(zi)ﬂ exp(EL]) < Elexp()]

fer 7 Jensen's Inequlity

77 /1



Massart's Inequality: Proof Volume |

For any A > O:
exp(AmRm(F, S)) = exp ()\EG Lseu,jr 2:1: a,-f(z,-)D Definition
<t [on(3 s 3o | e
e [ eS| el ot

77 /1



Massart's Inequality: Proof Volume |

For any A > O:

exp()\mR (F, S)) = exp ()\EG |:sup Z oif(z :|) Definition
exp(EL]) < Elexp()]
< Eo |:EXP (A fseup}_ Z oif(zi >:| Jensen's Inequlity

e, [ (z )} Bl ) S woleunl )

< Z o |:e><p (Z Aol z,)>:| Fsgg: Z( ) when positive

fer fer

77 /1



Massart's Inequality: Proof Volume |

For any A > O:

exp()\mR (F, S)) = exp ()\EG |:sup Z oif(z :|) Definition
<t oo (3 g 3o | =i 5 el

fer
= E, |:sup exp (Z Noif(z) )} sup(exp(+)) :sznr;(tsgl':(ag
< Eo |:e><p (Z Aol z,)>:| sup ( Z( ) when positive

fer rex fer

= E, |:H exp(Aofl (z,)):| Properties of the Exponent
feF i=1
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Massart's Inequality: Proof Volume |

For any A > O:

exp()\mR (F, S)) = exp ()\EG |:sup Z oif(z :|)
< Es |:exp<)\fseup}_Zo' f(z; >:|
=Es [fsg;_exp (Z Aoif(z;) ):|

<> Es |:exp<z Aoif(z) ]

fer

=Y Es {H exp(Aa/-f(z,-))]

fer i=1

= Z H Eo [exp(Aoif(z))]

feF i=1

Definition

exp(E[-]) < E[exp(-)]
Jensen's Inequlity

sup(exp(+)) = exp(sup(-))
Monotonicity

E (+) when positive

fer

Properties of the Exponent

Independence

77 /1



Massart's Inequality: Proof Volume Il

m
Take B? = sup Z 2(z) . For any A > 0:
fer i1
exp(/\mlim(]-', S)) = Z H Es [exp(Aoif(z;))] Previous Slide

feF i=1
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Massart's Inequality: Proof Volume Il

Take B? —supi (zi) . For any A > O:
fer i1
exp(/\mlim(]-', S)) Z H Eo [exp(Aoif(z))] Previous Slide
feF i=1
= Z H exp(A () + exp(= A (=) Definition of Expectation

2

I
A

feF i

72 /1



Massart's Inequality: Proof Volume Il

Take B? = sup E f (zi) . For any A > O:
feF
e><|;:(/\mRm F, S Z H Es [exp(Aoif(z;))] Previous Slide
feF i=1
= H exp(A () + exp(= A (=) Definition of Expectation
feF i=1 2
< H exp (— £2 (zi)> Hyperbolic Cosine Inequality
- 2
ferF i=1
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Massart's Inequality: Proof Volume Il

Take B? = sup E f (zi) . For any A > O:
feF 5
e><|;:(/\mRm F, S Z H Es [exp(Aoif(z;))] Previous Slide
feF i=1
= H exp(A () + exp(= A (=) Definition of Expectation
feF i=1 2
< H exp (— £2 (zi)> Hyperbolic Cosine Inequality
- 2
ferF i=1

p LI
= exp > Z <(zj) Exponent Laws
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Massart's Inequality: Proof Volume Il

Take B? = sup E f (zi) . For any A > O:
feF i
m
e><|;:(/\mRm F, S Z H Es [exp(Aoif(z;))] Previous Slide
feF i=1
m
A (z; —Xf(z
= H exp(A(2)) + exp( (z)) Definition of Expectation
feF i=1 2
< Hexp(—fz(z,')> Hyperbolic Cosine Inequality
feF i=1 2
p LI
= exp > Z <(zj) Exponent Laws
feFr i=1
A28 2 2 >
< exp( P > Vﬁe}::zfi(Zi)steuprf(Zi):B
fer i=1 i=1
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Massart's Inequality: Proof Volume Il

Take B? = sup E f (zi) . For any A > O:
feF ‘=
m
exp(/\mlim(]-', S)) = Z H Es [exp(Aoif(z;))] Previous Slide
feF i=1
m
Af(z; —Xf(z
= H exp(A(2)) + exp( (z)) Definition of Expectation
feF i=1 2
< Hexp(—fz(z,)> Hyperbolic Cosine Inequality
feF i=1 2
= e><p< > Exponent Laws
feFr i=1
2 2 m m
2 2 2
< exp( > Ve F: Zfi(z,')gfseup}zf(z;):B
fer i=1 i=1
)\2 2
< |F| exp( 5 ) Summation

272 /1



Massart's Inequality: Proof Volume IlI

Take B? —supi z) . For any A > O:
fer i1

\2B?
Previously: exp()\mRm(}", 5)) < |F| exp( > >

\/2In|F
Take logarithms, rearrange, and minimize with A = n‘ |
1 |n\f\ ABZ B\/2\n\]~' “ \/2In\]~"

Rm(F,S) < ( = ,feuff S R) «

=1

Takeaways
® |ots of steps; all very simple
® Proof similar to Azuma-Hoeffding inequality

® Often loose, but lays foundation for better bounds
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Application: Learning a Binary Classification

Let C be a binary concept class defined on a domain X, and let D
be a probability distribution on X. For each x € X let c(x) be the
correct classification of x.

For each hypothesis h € C we define a function f,(x) by

fi(x) = { 1 if h(x) = c(x)

—1 otherwise

Let 7 = {f, | h € C}. Our goal is to find h" € C such that with
probability at least 1 — ¢

E[fy] < inf E[fi] + .

We give an upper bound on the required size of the training set
using Rademacher complexity.

27 /1



For each hypothesis h € C we define a function f,(x) by

1 if h(x) = c(x)
—1 otherwise

fa(x) = {

Let S be a sample of size m, then

and

To use

Pr(sup(Ep[f(z)] — = Z F(z7)) > 2Rn(F) + 2€') < 2e72m€°/€
feF

We need ¢ < ¢/4, \/W < ¢ and De2me?/64 < 5.

26 /1



Relation to VC-dimension

We express this bound in terms of the VC dimension of the
concept class C.
Each function f, € F corresponds to an hypothesis h € C.
Let d be the VC dimension of C.
The projection of the range space (X,C) on a sample of size m has
no more than m? different sets.
Thus, the set of different functions we need to consider is bounded
by m9, and

2dInm

R S < .
Rm(F,S) < p

27 /1



To have

Pr(sup(Ep[f(z)] — % 3" (21)) > 2Rm(F) +2¢) < 2e72m/¢ <5
feF i—1

We need F?m(]:, S) < \/M'% < ; and De—2me?/64 < ¢, which

requires
d d 1 1
m—0<62|n2+62|n5>

€

Using VC-dimension e-sample we had

32d . 64d 16 1
Tln—qt—ln

m > —
- €2 )

€

Exercise: compare the the bounds obtained using the
VC-dimension and the Rademacher complexity methods.
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Application: Frequent Itemsets Mining (FIM)?

Frequent Itemsets Mining: classic data mining problem with many
applications

Settings:
Each line is a transaction, made of items from an
Dataset D alphabet 7
. An itemset is a subset of Z. E.g., the itemset
bread, milk )
bread {bread,milk}
milk, eggs The frequency p(A) of A C Z in D is the fraction of

transactions
of D that A is a subset of. E.g.,
fp({bread,milk}) = 3/5 = 0.6

bread, milk, apple
bread, milk, eggs

Problem: Frequent Itemsets Mining (FIM)

Given ¢ € [0,1] find (i.e., mine) all itemsets A C 7 with
fp(A) > 6

l.e., compute the set FI(D,0) = {ACZ : fp(A) >0}
There exist exact algorithms for FI mining (Apriori, FP-Growth,

)
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How to make FI mining faster?

Exact algorithms for FI mining do not scale with |D| (no. of
transactions):

They scan D multiple times: painfully slow when accessing disk
or network

How to get faster? We could develop faster exact algorithms
(difficult) or. ..
. only mine random samples of D that fit in main memory

Trading off accuracy for speed: we get an approximation of
FI(D, 0) but we get it fast

Approximation is OK: FI mining is an exploratory task (the
choice of 0 is also often quite arbitrary)

Key question: How much to sample to get an approximation of
given quality?
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How to define an approximation of the Fls?

Fore,d € (0,1), a (¢, d)-approximation to FI(D,#) is a collection C
of itemsets s.t., with prob. > 1 — ¢:

Frequency —d_l

fo(4) Amustnot beinC A mustbein C

“Close" False Positives are allowed, but no False Negatives
This is the price to pay to get faster results: we lose accuracy

Still, C can act as set of candidate Fls to prune with fast scan of D
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What do we really need?

We need a procedure that, given ¢, §, and D, tells us how large
should a sample S of D be so that

Pr(3 itemset A : |fs(A) — ip(A)] >¢/2) < ¢

Theorem: When the above inequality holds, then FI(S.0 —¢/2) is
an (e, )-approximation

Proof (by picture):

Frequency

Ip(A)

Must not be in C May befinC Must bein C

fs(A) >|-<
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What can we get with a Union Bound?

For any itemset A, the number of transactions that include A is
distributed
|S|fs(A) ~ Binomial(|S|, fp(A))

Applying Chernoff bound
Pr(|fs(A) — fp(A)| > £/2) < 2e715I%/12

We then apply the union bound over all the itemsets to obtain
uniform convergence
There are 27| itemsets, a priori. We need

2e*‘3|€2/12 < 6/2‘I|

Thus

12 1
|S| > 2 <|I|+In2+|n6>
The sample size depends on Z| which can be very large. E.g., all
the products sold by Amazon
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Assume that we have a bound ¢ on the maximum transaction size.

There are >, (1) < 7|/ possible itemsets. We need
26—\8\52/12 < (S/‘IV

Thus,

12 1
S| > = <€Iog]I +In2+1In >
3 0

The sample size depends on log |Z| which can still be very large.
E.g., all the products sold by Amazon, all the pages on the Web,

Can we have a smaller sample size that depends on some
characteristic quantity of D
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How do we get a smaller sample size?

[R. and U. 2014, 2015]: Let’s use VC-dimension!
We define the task as an expectation estimation task:
® The domain is the dataset D (set of transactions)
® The family of sets is F = {74, A C 27}, where
Ta={7€D : AC 1} is the set of the transactions of D
that contain A
® The distribution 7 is uniform over D: 7(7) = 1/|D|, for each
Te€D

We sample transactions according to the uniform distribution,
hence we have:

Eellr] = - 17 (0)n(r) = 3 (r) s = fo(A)

T€D T€D

We then only need an efficient-to-compute upper bound to the
VC-dimension of range space (D, 74)
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Bounding the VC-dimesion

Theorem: The VC-dimension is less or the maximum transaction
size /.

Proof:
® |let t >/ and assume it is possible to shatter aset T C D
with | T| = t.
® Then any 7 € T appears in at least 28! ranges 7, (there are
2t=1 subsets of T containing 7)

® Any 7 only appears in the ranges T4 such that A C 7. So it
appears in 2° — 1 ranges

e But 2/ — 1 < 2¢ <271 50 7 can not appear in 2! ! ranges

® Then T can not be shattered. We reach a contradiction and
the thesis is true

By the VC =-sample theorem we need |S| > O(% (¢log/ + In 3))
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Better bound for the VC-dimension

Enters the d-index of a dataset D!

The d-index d of a dataset D is the maximum integer such that D
contains at least d different transactions of length at least d

Example: The following dataset has d-index 3

bread beer milk  coffee
chips  coke pasta

bread coke  chips

milk  coffee

pasta milk

It is similar but not equal to the h-index for published authors
It can be computed easily with a single scan of the dataset

Theorem: The VC-dimension is less or equal to the d-index d of D
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How do we prove the bound?

Theorem: The VC-dimension is less or equal to the d-index d of D
Proof:

Let ¢ > d and assume it is possible to shatter a set T C D
with [ T| = /.

Then any 7 € T appears in at least 2! ranges T (there are
2/=1 subsets of T containing 7)

But any 7 only appears in the ranges 7, such that A C 7. So
it appears in 2/7l — 1 ranges

From the definition of d, T must contain a transaction 7* of
length |77 < ¢

This implies 2I7"1 — 1 < 271, so 7* can not appear in 2(~1
ranges

Then T can not be shattered. We reach a contradiction and
the thesis is true

This theorem allows us to use the VC e-sample theorem
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What is the algorithm then?

d < d-index of D

r<— 5% (d +1In %)

sample size

S« 10

fori«<1,...,rdo
T; <— random transaction from D, chosen uniformly
S+ Su {7‘,‘}

end

Compute FI(S,0 — £/2) using exact algorithm // Faster

algos make our approach faster!

Output FI(S,0 — £/2)

Theorem: The output of the algorithm is a (&, §)-approximation
We just proved it!
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How does it perform in practice?

Very well!

Great speedup w.r.t. an exact algorithm mining the whole dataset
Gets better as D grows, because the sample size does not
depend on |D|

Sample is small: 10° transactions for ¢ = 0.01, § = 0.1

The output always had the desired properties, not just with prob.
1—-90

Maximum error |fs(A) — fp(A)| much smaller than ¢

4.5E+06

‘ —&—Sample —#—Large ‘
4.0E+06 ‘*_—’__-/-
3.5E+06 -_/

— 3.0E+06

< 2.5E106
‘£ 2.06+06
1.5e+06
1.0E406
5.0E+05 >

0.0E+00

0.085 0.065 0.045 0.025 0.005
Minimum Frequency Threshold (8)
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Back to Frequent ltemsets [Riondato and U. - KDD'15]

We define the task as an expectation estimation task:
® The domain is the dataset D (set of transactions)

® The family of functions is F = {I4, A C 27}, where
Za(t) =1if AC 7, else Za(T) = 0.

® The distribution 7 is uniform over D: 7(7) = 1/|D|, for each
7e€D

Eofla] = Y Ia(r)(r) = 3 h(ﬂ,,ﬁ, — fo(A)

T€D T€D

Given a sample z, ..., z, of m transactions we need to bound the
empirical Rademacher average

Rm(F) = E{T [SUP l ZO’,’]IA(Z,')]

m
Ac2t i
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How can we bound the Rademacher average? (high
level picture)

Efficiency Constraint: use only information that can be obtained
with a single scan of &

How:
® Prove a variant of Massart's Theorem.
® Show that it's sufficient to consider only Closed Itemsets (Cls)
in S (An itemset is closed iff none of its supersets has the

same frequency)

©® We use the frequency of the single items and the lengths of
the transactions to define a (conceptual) partitioning of the
Cls into classes, and to compute upper bounds to the size of
each class and to the frequencies of the Cls in the class

@ We use these bounds to compute an upper bound to R(S) by
minimizing a convex function in R™ (no constraints)
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Experimental Evaluation

Greatly improved runtime over exact algorithm, one-shot sampling
(vc), and fixed geometric schedules. Better and better than exact
as D grows

1.6E+5
- 1.4E+5
£ 1.2e+5

g 1.0E+5 exact
= s---We--- vVC
S 8.0E+4 el — e S ——— - -p—:geom-2.0
= 6.0E+4 M T -— geom-2.5
© R T, L L . _
S 4.0E+4 _—_— - e ——— > - geom-3.0
= avg

2.0E+4

O0.0E+0O

0.008 0.01 0.012 0.014 0.016 0.018 0.02

epsilon

Figure: Running time for BMS-POS, ¢ = 0.015.

In 10K+ runs, the output was always an s-approximation, not just
with prob. > 1 -9

supact |fp(A) — fs(A)| is 10x smaller than & (50x smaller on
average)
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How does it compare to the VC-dimension
algorithm?

Given a sample S and some § € (0,1), what is the smallest ¢ such
that FI(S,0 — =/2) is a (£, 0)-approximation?

0.0 kosarak 0.04 accidents
c 0.06 e Ve S 0.03 s S [
S0, s, —%—This work = 0.02 —¥— This work
8_00 ~“_.‘._ a v 0“‘
L = i S
0.0E+0 2.0E+6 4.0E+6 0.0E+0 2.0E+6  4.0E+6
sample size sample size

Note that this comparison is unfavorable to our algorithm: as we
are allowing the VC-dimension approach to compute the d-index of
D (but we don't have access to D!)

We strongly believe that this is because we haven't optimized all
the aspects of the bound to the Rademacher average. Once we do
it, the Rademacher avg approach will most probably always be
better
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