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Due: April 10th, 2025
Remember to show your work for each problem to receive full credit.

Problem 1 (30 points)

1. Let X1, X2, . . . , be a sequence of independent exponential random variables, each with
mean 1. Given a positive real number k, let N be defined by

N = min

{
n :

n∑
i=1

Xi > k

}
.

That is, N is the smallest number for which the sum of the first N of the Xi is larger
than k. Use Wald’s inequality to determine E[N ].

Solution: It is easy to see that E(N) is finite. Therefore, we can apply Wald’s in-
equality, and obtain that

E

(
N∑
i=1

Xi

)
= E(N)E(X) = E(N)

Let y = k −
∑N−1

i=1 Xi > 0. Since the sum of X1, . . . , XN is greater than k, we have
that XN = y + X̃, where X̃ represents how much the sum is greater than k, i.e.
X̃ =

∑N
i=1Xi− k. Conditioning on the fact that XN is greater than y, we have that X̃

is still distributed as a exponential random variable with mean 1 due to the memoryless
property of exponentials. Therefore, we have that

E(N) = E

(
N∑
i=1

Xi

)
= E

(
N−1∑
i=1

Xi + y + X̃

)
= k + E(X̃) = k + 1

2. Let X1, X2, . . . , be a sequence of independent uniform random variables on the interval
(0, 1). Given a positive real number k, with 0 < k < 1, let N be defined by

N = min

{
n :

n∏
i=1

Xi < k

}
.

That is, N is the smallest number for which the product of the first N of the Xi

is smaller than k. Determine E[N ]. (Hint: Prove that log 1/Xi has an exponential
distribution.)
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Solution: We can rewrite N as

N = min

{
n :

n∏
i=1

Xi < k

}
= min

{
n :

n∑
i=1

ln(1/Xi) > ln(1/k)

}

This equality immediately follows by taking the logarithm of both sides of the equation.
Consider Yi = ln(1/Xi). We have that

Pr(Yi ≤ x) = Pr(ln(1/Xi) ≤ x) = Pr(Xi ≥ e−x) = 1− e−x

Therefore Yi is distributed as a exponential random variable with mean 1. By using the
result of (a), we have that

E(N) = ln(1/k) + 1
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Problem 2 (40 points)

A random graph Gn,m has n vertices and m edges. The m edges are chosen uniformly at
random (without repetition) among all the possible

(
n
2

)
edges. Consider a random graph

Gn,m, where m = cn for some constant c > 0. Let X be the number of isolated vertices (i.e.,
vertices of degree 0).

1. Compute E(X)

Solution: Consider a vertex v. The number of graphs where v is disconnected is

equal to
((n−1

2 )
m

)
. The total number of random graphs is equal to

((n2)
m

)
. Therefore, the

probability of v being isolated is: ((n−1
2 )
m

)((n2)
m

)
By linearity of expectation, the expected number of isolated vertices is

n

((n−1
2 )
m

)((n2)
m

)
2. For any λ > 0, show that Pr(|X −E(X)| ≥ 2λ

√
cn) ≤ 2e−λ2/2 (Hint : Use a martingale

that reveals the locations of the edges in the graph, one at a time).

Solution: Consider the edges E1, . . . , Em of the random graph G, Let f(G) denote
the number of the isolated vertices in G. We construct the edge-exposure martingale
Zi = [f(G)|E1, . . . , Ei], for i = 1, . . . ,m. Note that Zm = X is equal to the number
of isolated vertices. Let Z0 = [f(G)] = exp(X) be the expected number of isolated
vertices. Now, we can observe that for any i = 1, . . . ,m, we have that |Zi − Zi−1| ≤ 2,
as revealing an edge can decrease the number of non-isolated vertices by at most 2
(why? an edge can only connect to at most 2 unvisited vertices, then these 2 vertices
cannot be isolated anymore). By Azuma-Hoeffding inequality, we have that:

Pr(|X − E(X)| ≥ 2λ
√
cn) = Pr(|Zm − Z0| ≥ 2λ

√
cn)

≤ 2 exp(−4λ2cn/(2
cn∑
i=1

4))

= 2 exp(−λ2/2)
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Problem 3 (25 points)

Consider a random walk on the infinite two dimension integer grid:

G = {(x, y) | x ∈ {−∞,∞}, y ∈ {−∞,∞}} .

The random walk starts at (0, 0), and if the walk is at (xt, yt) at time t, then with equal
probabilities the walk moves to one of the adjacent nodes (xt − 1, yt), (xt, yt − 1), (xt +1, y),
or (xt, yt + 1). I.e.

Pr((xt+1, yt+1)) | (xt, yt)) =


1/4 if (xt+1, yt+1) = (xt − 1, yt)
1/4 if (xt+1, yt+1) = (xt + 1, yt)
1/4 if (xt+1, yt+1) = (xt, yt − 1)
1/4 if (xt+1, yt+1) = (xt, yt + 1)

Prove that for λ > 0
Pr
(
|xt + yt| ≥ λ

√
t
)
≤ 2e−λ2/2.

Solution: Let zt = xt + yt. We first show that zt is a martingale with respect to itself.
Clearly E[|zt|] ≤ t. Furthermore,

E[zt+1|zt] = (zt + 1)Pr(zt+1 = zt + 1|zt) + (zt − 1)Pr(zt+1 = zt − 1|zt)

= (zt + 1)
1

2
+ (zt − 1)

1

2
= zt

(there is an abuse of notation: zt represents both a random variable and some fixed integer)
Also notice that |zt+1 − zt| ≤ 1, which allows us to use Corollary 13.5 on the book. ∀λ > 0
and t ≥ 0, we have

Pr(|zt − z0| ≥ λ
√
t) ≤ 2e−λ2/2

Pr(|xt + yt| ≥ λ
√
t) ≤ 2e−λ2/2

where we have the last inequality because z0 = 0.
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Problem 4 (25 points)

Let f(X1, X2, . . . , Xn) satisfy the Lipschitz condition so that, for any i and any values
x1, . . . , xn and yi,

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn)| ≤ c.

We set
Z0 = E(f(X1, . . . , Xn))

and
Zi = E(f(X1, . . . , Xn) | X1, . . . , Xi).

Give an example to show that, if the Xi are not independent, then it is possible that |Zi −
Zi−1| > c for some i.

Solution: Let X1 be a random variable that takes value 0 with probability 1/2 and 1 with
probability 1/2. Let X2 = X3 = . . . = Xn = X1. Let

f (X1, . . . , Xn) =
n∑

i=1

Xi

Because each Xi is a 0/1 -random variable, f satisfies the Lipschitz condition with Lipschitz
constant c = 1. Because f (X1, . . . , Xn) takes value 0 with probability 1/2 and value n with
probability 1/2 we have Z0 = E (f (X1, . . . , Xn)) = n/2. But Z1 is either 0 or n, because all
the Xi are determined by the value of X1. So, for n > 2, we have |Z1 − Z0| = n/2 > c.
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Problem 5 (30 points)

Consider a bin with N > 1 balls. The balls are either black or white. Let X0 =
m
N

< 1 be the
fraction of black balls in the bin at time 0. Let Xi be the fraction of black balls at time i. At
step i ≥ 1 one ball, chosen uniformly at random, is replace with a new ball. With probability
Xi the new ball is black, otherwise it is white. All random choices are independent.

Consider the stopping time τ := infi{Xi ∈ {0, 1}}. That is, the process stops when all balls
have the same color.

(a) Show that X1, X2, . . . is a martingale with respect to itself.

Solution: We see that

P (Xn+1 = β | Xn = α) =


α(1− α), β = α− 1/N
α2 + (1− α)2, β = α,
(1− α)α, β = α + 1/N

when α ∈ (0, 1),

and
P (Xn+1 = β | Xn = α) = 1α(β)

Checking manually, we see that E[Xn+1|Xn] = Xn. As Xn ∈ [0, 1], we conclude that
{Xn} is a martingale.

(b) Show that E[τ ] < ∞.
Hint: Show that at any step there is probability ≥ ( 1

2N
)N/2 to terminate in the next

N/2 steps. Conclude that E[τ ] ≤ (2N)N/2 ·N/2.

Solution: Let us divide the process into time blocks of size N/2. Regardless of the value
of Xn min(Xn, 1 − Xn) ≤ 1/2. We add an additional ball of a given color by choosing
distinct colors for the old and new ball. Before stopping, this occurs with probability at
least m(N−m)

N
≥ 1

N2 . Choosing N/2 balls of a certain color will stop the process, and by

independence of our choices, we will terminate with probability at least 1
N2

N/2
= 1

NN in
each block. Then we will not have terminated after i blocks with probability at most
(1− 1

NN )
i. Then taking the expectation over blocks:

E[τ ] =
∑
i=0

P (τ ≥ i)︸ ︷︷ ︸
why?

≤
∑
i=0

N

2
P (τ ≥ iN

2
) ≤

∑
i=0

N

2

(
1− 1

NN

)i

=
N

2

1

1−
(
1− 1

NN

) =
N

2
∗NN

which is finite.

(c) Calculate P(Xτ = 1)

Solution: By part (b), we can apply the Stopping Theorem, so that

P (Xτ = 1) = E[Xτ ] = E[X0] =
m

N
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