Partner	1
Partner	2
Partner	3

Due: April 10th, 2025

Remember to show your work for each problem to receive full credit.

Problem 1 (30 points)

1. Let X_1, X_2, \ldots , be a sequence of independent exponential random variables, each with mean 1. Given a positive real number k, let N be defined by

$$N = \min\left\{n : \sum_{i=1}^{n} X_i > k\right\}.$$

That is, N is the smallest number for which the sum of the first N of the X_i is larger than k. Use Wald's inequality to determine E[N].

Solution: It is easy to see that $\mathbb{E}(N)$ is finite. Therefore, we can apply Wald's inequality, and obtain that

$$\mathbb{E}\left(\sum_{i=1}^{N} X_{i}\right) = \mathbb{E}(N)\mathbb{E}(X) = \mathbb{E}(N)$$

Let $y = k - \sum_{i=1}^{N-1} X_i > 0$. Since the sum of X_1, \ldots, X_N is greater than k, we have that $X_N = y + \tilde{X}$, where \tilde{X} represents how much the sum is greater than k, i.e. $\tilde{X} = \sum_{i=1}^{N} X_i - k$. Conditioning on the fact that X_N is greater than y, we have that \tilde{X} is still distributed as a exponential random variable with mean 1 due to the memoryless property of exponentials. Therefore, we have that

$$\mathbb{E}(N) = \mathbb{E}\left(\sum_{i=1}^{N} X_i\right) = \mathbb{E}\left(\sum_{i=1}^{N-1} X_i + y + \tilde{X}\right) = k + \mathbb{E}(\tilde{X}) = k + 1$$

2. Let X_1, X_2, \ldots , be a sequence of independent uniform random variables on the interval (0, 1). Given a positive real number k, with 0 < k < 1, let N be defined by

$$N = \min\left\{n : \prod_{i=1}^{n} X_i < k\right\}.$$

That is, N is the smallest number for which the product of the first N of the X_i is smaller than k. Determine E[N]. (Hint: Prove that $\log 1/X_i$ has an exponential distribution.)

Partner 1		
Partner 2		CSCI 1550 / 2540
Partner 3	Homework 4	March 20th, 2025

Solution: We can rewrite N as

$$N = \min\left\{n : \prod_{i=1}^{n} X_i < k\right\} = \min\left\{n : \sum_{i=1}^{n} \ln(1/X_i) > \ln(1/k)\right\}$$

This equality immediately follows by taking the logarithm of both sides of the equation. Consider $Y_i = \ln(1/X_i)$. We have that

$$\Pr(Y_i \le x) = \Pr(\ln(1/X_i) \le x) = \Pr(X_i \ge e^{-x}) = 1 - e^{-x}$$

Therefore Y_i is distributed as a exponential random variable with mean 1. By using the result of (a), we have that

$$\mathbb{E}(N) = \ln(1/k) + 1$$

Problem 2 (40 points)

A random graph $G_{n,m}$ has *n* vertices and *m* edges. The *m* edges are chosen uniformly at random (without repetition) among all the possible $\binom{n}{2}$ edges. Consider a random graph $G_{n,m}$, where m = cn for some constant c > 0. Let X be the number of isolated vertices (i.e., vertices of degree 0).

1. Compute E(X)

Solution: Consider a vertex v. The number of graphs where v is disconnected is equal to $\binom{\binom{n-1}{2}}{m}$. The total number of random graphs is equal to $\binom{\binom{n}{2}}{m}$. Therefore, the probability of v being isolated is:

$$\frac{\binom{\binom{n-1}{2}}{m}}{\binom{\binom{n}{2}}{m}}$$

By linearity of expectation, the expected number of isolated vertices is

$$n\frac{\binom{\binom{n-1}{2}}{m}}{\binom{\binom{n}{2}}{m}}$$

2. For any $\lambda > 0$, show that $\Pr(|X - E(X)| \ge 2\lambda\sqrt{cn}) \le 2e^{-\lambda^2/2}$ (*Hint*: Use a martingale that reveals the locations of the edges in the graph, one at a time).

Solution: Consider the edges E_1, \ldots, E_m of the random graph G, Let f(G) denote the number of the isolated vertices in G. We construct the edge-exposure martingale $Z_i = [f(G)|E_1, \ldots, E_i]$, for $i = 1, \ldots, m$. Note that $Z_m = X$ is equal to the number of isolated vertices. Let $Z_0 = [f(G)] = \exp(X)$ be the expected number of isolated vertices. Now, we can observe that for any $i = 1, \ldots, m$, we have that $|Z_i - Z_{i-1}| \leq 2$, as revealing an edge can decrease the number of non-isolated vertices by at most 2 (why? an edge can only connect to at most 2 unvisited vertices, then these 2 vertices cannot be isolated anymore). By Azuma-Hoeffding inequality, we have that:

$$\Pr(|X - E(X)| \ge 2\lambda\sqrt{cn}) = \Pr(|Z_m - Z_0| \ge 2\lambda\sqrt{cn})$$
$$\le 2\exp(-4\lambda^2 cn/(2\sum_{i=1}^{cn} 4))$$
$$= 2\exp(-\lambda^2/2)$$

Homework 4

Problem 3 (25 points)

Consider a random walk on the infinite two dimension integer grid:

$$G = \{(x, y) \mid x \in \{-\infty, \infty\}, \ y \in \{-\infty, \infty\}\}.$$

The random walk starts at (0,0), and if the walk is at (x_t, y_t) at time t, then with equal probabilities the walk moves to one of the adjacent nodes $(x_t - 1, y_t)$, $(x_t, y_t - 1)$, $(x_t + 1, y)$, or $(x_t, y_t + 1)$. I.e.

$$Pr((x_{t+1}, y_{t+1})) \mid (x_t, y_t)) = \begin{cases} 1/4 & \text{if} \quad (x_{t+1}, y_{t+1}) = (x_t - 1, y_t) \\ 1/4 & \text{if} \quad (x_{t+1}, y_{t+1}) = (x_t + 1, y_t) \\ 1/4 & \text{if} \quad (x_{t+1}, y_{t+1}) = (x_t, y_t - 1) \\ 1/4 & \text{if} \quad (x_{t+1}, y_{t+1}) = (x_t, y_t + 1) \end{cases}$$

Prove that for $\lambda > 0$

$$Pr\left(|x_t + y_t| \ge \lambda\sqrt{t}\right) \le 2e^{-\lambda^2/2}$$

Solution: Let $z_t = x_t + y_t$. We first show that z_t is a martingale with respect to itself. Clearly $\mathbb{E}[|z_t|] \leq t$. Furthermore,

$$\mathbb{E}[z_{t+1}|z_t] = (z_t+1)Pr(z_{t+1} = z_t+1|z_t) + (z_t-1)Pr(z_{t+1} = z_t-1|z_t)$$
$$= (z_t+1)\frac{1}{2} + (z_t-1)\frac{1}{2}$$
$$= z_t$$

(there is an abuse of notation: z_t represents both a random variable and some fixed integer) Also notice that $|z_{t+1} - z_t| \leq 1$, which allows us to use Corollary 13.5 on the book. $\forall \lambda > 0$ and $t \geq 0$, we have

$$Pr(|z_t - z_0| \ge \lambda \sqrt{t}) \le 2e^{-\lambda^2/2}$$
$$Pr(|x_t + y_t| \ge \lambda \sqrt{t}) \le 2e^{-\lambda^2/2}$$

where we have the last inequality because $z_0 = 0$.

Homework 4

Problem 4 (25 points)

Let $f(X_1, X_2, \ldots, X_n)$ satisfy the Lipschitz condition so that, for any *i* and any values x_1, \ldots, x_n and y_i ,

$$|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n) - f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)| \le c.$$

We set

$$Z_0 = \mathbb{E}(f(X_1, \dots, X_n))$$

and

$$Z_i = \mathbb{E}(f(X_1, \dots, X_n) \mid X_1, \dots, X_i).$$

Give an example to show that, if the X_i are not independent, then it is possible that $|Z_i - Z_{i-1}| > c$ for some *i*.

Solution: Let X_1 be a random variable that takes value 0 with probability 1/2 and 1 with probability 1/2. Let $X_2 = X_3 = \ldots = X_n = X_1$. Let

$$f(X_1,\ldots,X_n) = \sum_{i=1}^n X_i$$

Because each X_i is a 0/1 -random variable, f satisfies the Lipschitz condition with Lipschitz constant c = 1. Because $f(X_1, \ldots, X_n)$ takes value 0 with probability 1/2 and value n with probability 1/2 we have $Z_0 = E(f(X_1, \ldots, X_n)) = n/2$. But Z_1 is either 0 or n, because all the X_i are determined by the value of X_1 . So, for n > 2, we have $|Z_1 - Z_0| = n/2 > c$.

Problem 5 (30 points)

Consider a bin with N > 1 balls. The balls are either black or white. Let $X_0 = \frac{m}{N} < 1$ be the fraction of black balls in the bin at time 0. Let X_i be the fraction of black balls at time *i*. At step $i \ge 1$ one ball, chosen uniformly at random, is replace with a new ball. With probability X_i the new ball is black, otherwise it is white. All random choices are independent.

Consider the stopping time $\tau := \inf_i \{X_i \in \{0, 1\}\}$. That is, the process stops when all balls have the same color.

(a) Show that X_1, X_2, \ldots is a martingale with respect to itself.

Solution: We see that

$$\mathbb{P}(X_{n+1} = \beta \mid X_n = \alpha) = \begin{cases} \alpha(1-\alpha), \beta = \alpha - 1/N \\ \alpha^2 + (1-\alpha)^2, \beta = \alpha, \\ (1-\alpha)\alpha, \beta = \alpha + 1/N \end{cases} \quad \text{when } \alpha \in (0,1)$$

and

$$\mathbb{P}\left(X_{n+1} = \beta \mid X_n = \alpha\right) = 1_{\alpha}(\beta)$$

Checking manually, we see that $\mathbb{E}[X_{n+1}|X_n] = X_n$. As $X_n \in [0,1]$, we conclude that $\{X_n\}$ is a martingale.

(b) Show that $E[\tau] < \infty$.

Hint: Show that at any step there is probability $\geq (\frac{1}{2N})^{N/2}$ to terminate in the next N/2 steps. Conclude that $E[\tau] \leq (2N)^{N/2} \cdot N/2$.

Solution: Let us divide the process into time blocks of size N/2. Regardless of the value of $X_n \min(X_n, 1 - X_n) \leq 1/2$. We add an additional ball of a given color by choosing distinct colors for the old and new ball. Before stopping, this occurs with probability at least $\frac{m(N-m)}{N} \geq \frac{1}{N^2}$. Choosing N/2 balls of a certain color will stop the process, and by independence of our choices, we will terminate with probability at least $\frac{1}{N^2} = \frac{1}{N^N}$ in each block. Then we will not have terminated after *i* blocks with probability at most $(1 - \frac{1}{N^N})^i$. Then taking the expectation over blocks:

$$\mathbb{E}[\tau] = \sum_{i=0}^{\infty} \underbrace{P(\tau \ge i)}_{\text{why?}} \le \sum_{i=0}^{\infty} \frac{N}{2} P(\tau \ge \frac{iN}{2}) \le \sum_{i=0}^{\infty} \frac{N}{2} \left(1 - \frac{1}{N^N}\right)^i = \frac{N}{2} \frac{1}{1 - \left(1 - \frac{1}{N^N}\right)} = \frac{N}{2} * N^N$$

which is finite.

(c) Calculate $\mathbb{P}(X_{\tau} = 1)$

Solution: By part (b), we can apply the Stopping Theorem, so that

$$P(X_{\tau} = 1) = \mathbb{E}[X_{\tau}] = \mathbb{E}[X_0] = \frac{m}{N}$$