Partner 1
Partner 2 CSCI 1550 / 2540
Partner 3 Homework 4 March 20th, 2025

Due: April 10th, 2025
Remember to show your work for each problem to receive full credit.

Problem 1 (30 points)

1. Let X1, Xs,..., be a sequence of independent exponential random variables, each with
mean 1. Given a positive real number k, let N be defined by

N:min{n:iX,->k}.

i=1
That is, N is the smallest number for which the sum of the first NV of the X, is larger
than k. Use Wald’s inequality to determine E[N].

Solution: It is easy to see that E(N) is finite. Therefore, we can apply Wald’s in-
equality, and obtain that

E (i Xl-) = E(N)E(X) = E(N)

Let y = k — ZZ]\SI X; > 0. Since the sum of Xy,..., Xy is greater than k, we have
that Xy = y + X, where X represents how much the sum is greater than k, i.e.
X = Zf\il X, — k. Conditioning on the fact that Xy is greater than y, we have that X
is still distributed as a exponential random variable with mean 1 due to the memoryless
property of exponentials. Therefore, we have that

E(N)_E<iXi> —IE(NZ_IXﬂrerX) —k4+EX)=Fk+1

i=1

2. Let X1, Xs,..., be a sequence of independent uniform random variables on the interval
(0,1). Given a positive real number k, with 0 < k£ < 1, let N be defined by

N:min{n:ﬁXi<k}.

i=1

That is, N is the smallest number for which the product of the first N of the X;
is smaller than k. Determine E[N]. (Hint: Prove that log1/X; has an exponential
distribution.)
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Solution: We can rewrite N as
N = min {n : HXi < k} = min {n : Zln(l/Xi) > ln(l/k)}
i=1 i=1

This equality immediately follows by taking the logarithm of both sides of the equation.
Consider Y; = In(1/X;). We have that

Pr(V; <z)=Pr(ln(1/X;) <z)=Pr(X; >e*)=1—¢"

Therefore Y; is distributed as a exponential random variable with mean 1. By using the
result of (a), we have that

E(N) = In(1/k) + 1
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Problem 2 (40 points)

A random graph G, ,, has n vertices and m edges. The m edges are chosen uniformly at

random (without repetition) among all the possible (;L) edges. Consider a random graph

Gnm, where m = cn for some constant ¢ > 0. Let X be the number of isolated vertices (i.e.,
vertices of degree 0).

1. Compute E(X)

Solution: Consider a vertex v. The number of graphs where v is disconnected is

equal to (<n§nl)) The total number of random graphs is equal to ((T%LL)) Therefore, the
probability of v being isolated is:

("2))
(&)

By linearity of expectation, the expected number of isolated vertices is

~—

2)

//~
—

2. For any A > 0, show that Pr(|X — E(X)| > 2\y/cn) < 2¢~*'/2 (Hint: Use a martingale
that reveals the locations of the edges in the graph, one at a time).

Solution: Consider the edges Fi,..., E,, of the random graph G, Let f(G) denote
the number of the isolated vertices in G. We construct the edge-exposure martingale
Zi = [f(G)|Ey, ..., E, fori =1,...,m. Note that Z,, = X is equal to the number
of isolated vertices. Let Zy = [f(G)] = exp(X) be the expected number of isolated
vertices. Now, we can observe that for any i = 1,...,m, we have that |7, — Z; 1| < 2,
as revealing an edge can decrease the number of non-isolated vertices by at most 2
(why? an edge can only connect to at most 2 unvisited vertices, then these 2 vertices
cannot be isolated anymore). By Azuma-Hoeffding inequality, we have that:

Pr(|X — E(X)| > 2\v/en) = Pr(|Zn — Zo| > 2\v/n)

< 2exp(—4X’cn/(2) 4))

i=1

= 2exp(—A?/2)
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Problem 3 (25 points)

Consider a random walk on the infinite two dimension integer grid:
G = {($,y) | S {_00700}7 Yy € {_00700}} :

The random walk starts at (0,0), and if the walk is at (zy,y;) at time ¢, then with equal
probabilities the walk moves to one of the adjacent nodes (x; — 1, y;), (x4, y: — 1), (x¢ + 1,y),
or (zy,yr +1). Le.

1/4 if (It+1,yt+1) = (l't - 17yt)

1/4 if (2441, = (2 + 1,
Petaascse) | Gan) = 4 1 (et = et b

1/4 it (241, Ye41) = (T, 0 + 1)

Prove that for A > 0
Pr (]:ct + | > Aﬂ) < 2eN/2,

Solution: Let z; = x; + y;. We first show that z; is a martingale with respect to itself.
Clearly E[|z|] < t. Furthermore,

Elzii1]ze) = (2o + 1) Pr(zeer = 20+ 1z) + (20 — D) Pr(zq = 2 — 1|z)
1 1

:Zt

(there is an abuse of notation: z; represents both a random variable and some fixed integer)
Also notice that |z;11 — 2| < 1, which allows us to use Corollary 13.5 on the book. YA > 0
and t > 0, we have

Pr(|z — 2| = MWt) < 2¢772
Pr(|z + g > MWt < 2e/

where we have the last inequality because zg = 0.
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Problem 4 (25 points)

Let f(X1,Xs,...,X,) satisfy the Lipschitz condition so that, for any ¢ and any values
1, ...,T, and y;,

‘f($1> ey L1, Ty Tijg 1y - - - >$n) - f(l“l, ooy Li—1, Y Tt 1y - - 7xn)’ <c

We set
Zo=E(f(X1,..., X))

and
Zi=E(f(X1,. s Xa) | Xiyeoo, Xy).

Give an example to show that, if the X; are not independent, then it is possible that |Z; —
Zi_1| > ¢ for some i.

Solution: Let X be a random variable that takes value 0 with probability 1/2 and 1 with
probability 1/2. Let Xy = X3 =...=X,, = Xj. Let

f(Xl,...,Xn):ZXi

Because each X; is a 0/1 -random variable, f satisfies the Lipschitz condition with Lipschitz
constant ¢ = 1. Because f (X1,...,X,) takes value 0 with probability 1/2 and value n with
probability 1/2 we have Zy = E (f (X1,...,X,)) = n/2. But Z; is either 0 or n, because all
the X; are determined by the value of X;. So, for n > 2, we have |Z; — Zy| =n/2 > c.
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Problem 5 (30 points)

Consider a bin with N > 1 balls. The balls are either black or white. Let X, = % <1 be the
fraction of black balls in the bin at time 0. Let X; be the fraction of black balls at time i. At
step ¢ > 1 one ball, chosen uniformly at random, is replace with a new ball. With probability
X; the new ball is black, otherwise it is white. All random choices are independent.

Consider the stopping time 7 := inf;{X; € {0,1}}. That is, the process stops when all balls
have the same color.

(a) Show that X, Xy, ... is a martingale with respect to itself.
Solution: We see that
a(l—a),f=a—1/N
PX,n=0|X,=a)=1 a*+(1—a)? 8 =a, when a € (0,1),
(1-a)o,f=a+1/N

and

P(Xnt1 =8| Xn=0a) =1.(8)
Checking manually, we see that E[X,1|X,] = X,,. As X,, € [0,1], we conclude that
{X,} is a martingale.

(b) Show that E|[7] < oc.
Hint: Show that at any step there is probability > (ﬁ)N/ 2 to terminate in the next
N/2 steps. Conclude that E[r] < (2N)N/2. N/2.

Solution: Let us divide the process into time blocks of size N/2. Regardless of the value
of X,, min(X,,1 — X,) < 1/2. We add an additional ball of a given color by choosing
distinct colors for the old and new ball. Before stopping, this occurs with probability at
least w > ﬁ Choosing N/2 balls of a certain color will stop the process, and by
independence of our choices, we will terminate with probability at least #N/ ? = ﬁ in
each block. Then we will not have terminated after ¢ blocks with probability at most

(1 — %%)". Then taking the expectation over blocks:

‘N 1 N
ZPT>Z <Z T>—<Z (1_W):Em:5*]\m

- NN
Why'? N

which is finite.

(c) Calculate P(X, =1)
Solution: By part (b), we can apply the Stopping Theorem, so that
m

P(X, = 1) = E[X,] = B[X;] =



