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CSCI 1550 / 2540
February 6th, 2025

Due: February 20th, 2025
Remember to show your work for each problem to receive full credit.

Problem 1 [60 points]

Consider the following algorithm for finding the k-smallest element in a set S:

Procedure Select(S, k);
Input: A set S, an integer k ≤ |S| = n.
Output: The k smallest element in the set S.

1. If |S| ≤ 24 sort S and return the k smallest element. STOP.

2. Choose a random element y uniformly from S.

3. Compare all elements of S to y. Let S1 = {x ∈ S | x ≤ y} and S2 = {x ∈ S | x >
y}.

4. If k ≤ |S1| return Select(S1, k) else return Select(S2, k − |S1|).

Answer the following questions for |S| = n (you can ignore the cost of step 1 which is O(1)):

1. We say that a call to Select(S, k) was successful if both |S1| ≤ 2n/3 and |S2| ≤ 2n/3.
Prove that the algorithm terminates after no more than log3/2 n successful calls.

2. Prove that a call to the algorithm if |S| = n ≥ 24 is successful with probability ≥ 1/4.
[Hint: 2n/3 may not be an integer. ]

3. Let Ỹi be the number of calls between the i-th successful call (excluded) and the i+ 1-
th (inluded). Let Yi be a geometric random variable with parameter p = 1/4. Argue
(formally or informally) that for the analysis of the algorithm’s runtime we can use Yi

as an upper bound on Ỹi

[Hint: We say that Ỹi is stochastically bounded by Yi, if for any j in the domain
of Yi we have

Pr(Ỹi ≤ j) ≥ Pr(Yi ≤ j).

Show that this is the case here, and that it implies that E[Ỹi] ≤ E[Yi].]

We continue the analysis assuming that for all i, the number of calls between the i-
th successful call (excluded) and the i + 1-th successful call (included) is distributed
according to Yi.
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4. Let Xi be the number of comparisons between the i-th successful call (excluded) and
the i + 1-th (inluded). Argue that for the analysis of the algorithm’s performance, Xi

is bounded by n(2/3)iYi, and that E[Xi] ≤ n(2/3)iE[Yi] = 4n(2/3)i.

We continue the analysis assuming that Xi = n(2/3)iYi.

5. Let X =
∑

i≥1Xi. Prove that E[X] is bounded by 12n.

6. Derive upper bounds for V ar[Yi] and V ar[Xi].

7. Prove that V ar[X] ≤
∑log3/2 n

i=0 n2(2/3)2iV ar[Yi] ≤ 21.6n2

8. Apply Chebyshev’s inequality to prove that with probability ≥ 0.85 the algorithm
executes no more than 24n comparisons.
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Problem 2 [25 points]

Suppose that we have an algorithm that takes as input a string of n bits. We are told that
if the input bits are chosen independently and uniformly at random, the expected running
time is O(n2) . What can Markov’s inequality tell us about the worst-case running time of
this algorithm on inputs of size n? [Hint: What is the sample space? What is the smallest
probability of any event in that sample space?]
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Problem 3 [15 points]

We have a standard six-sided die. Let X be the number of times that a 6 occurs over n
throws of the die. Let p be the probability of the event X ≥ n/4. Compare the best upper
bounds on p that you can obtain using Markov’s inequality, Chebyshev’s inequality, and the
Chernoff bound.
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Problem 4 [25 points]

Suppose that we can obtain independent samples X1, X2, ... of a random variable X and that
we want to use these samples to estimate E[X]. Using t samples, we use 1

t

∑t
i=1Xi for our

estimate of E[X]. We want the estimate to be within εE[X] from the true value of E[X] with
probability at least 1−δ. We may not be able to use Chernoff’s bound directly to bound how
good is our estimate is if X is not a 0-1 random variable, and we do not know its moment
generating function. We develop an alternative approach that requires only having a bound

on the variance of X. Let r =

√
V ar(X)

E[X]
.

a. Show that O( r2

ε2δ
) samples are sufficient to solve the problem using Chebyshev’s inequality.

b. Suppose that we only need a weak estimate that is within εE[X] of E[X] with probability
at least 3

4
. Show that O( r

2

ε2
) are enough for this weak estimate.

c. Show that by taking the median of O(log(1
δ
)) weak estimates, we can obtain an esti-

mate within εE[X] of E[X] with probability at least 1 − δ. Conclude that we need only

O(
r2 log( 1

δ
)

ε2
) samples. How much smaller is the sample, for δ = 0.01, compared to just using

the Chebyshev’s inequality?

Hint: Let Yi be the i
th weak estimate and let Y be the median of all the weak estimates.

Show that |Y − E[X]| ≥ εE[X] implies that at least half of the Yi’s satisfy |Yi − E[X]| ≥
ϵE[X]).
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