Final

Due: December 18, 2024
CSCI 1510: Intro. to Cryptography and Computer Security

e The final exam is due at 11:59 PM on December 18th (Wednesday). No late days
or extensions will be granted.

e You may consult the course materials and textbooks, but you must write each answer
in your own words/structure. Apart from that, you may not collaborate or discuss
problems with the instructor or TAs.

e If you have any clarifying questions on the exam, please post a private post on
EdStem, and we will respond as soon as we can (within a day).
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https://edstem.org/us/courses/65030/discussion/

1 Warm-Ups (10 points)

a. (1 point) DDH assumption ‘ ‘ (does/does not) imply DLOG assump-
tion.

b. (1 point) CDH assumption’ ‘ (does/does not) imply DDH assumption.

c. (1 point) RSA assumption ’ ‘ (does/does not) imply the factoring as-
sumption.

d. (1 point) For public-key encryption schemes, semantic security‘ ‘ (does/does

not) imply CPA security.

®

(2 points) Suppose an eavesdropper adversary A observes two ElGamal encryptions
(under the same key): cq = (cqa,1,¢q,2) and ¢, = (¢p.1, Cp2), Where ¢, is an encryption
of (unknown) m, and ¢, is an encryption of (unknown) my. Without knowing the
secret key or the two messages m,, mp, A can construct a new ciphertext ¢ = (cl, cz)
that is an encryption of a new messages m = (m,-mp)?. How can A construct ¢ from
cq and ¢? In particular, define ¢; and ¢y that compose c.

e =|

7

e =| .

f. (2 points) What are the two steps in constructing a fully homomorphic encryption
(FHE) scheme?

Step 1: ‘ ‘;
Step 2: ‘ ‘

g. (2 points) What are the 4 properties that a group (G,-) must satisfy? Include math-
ematical descriptions.
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2 Decisional Diffie-Hellman Assumption and PRGs (11 points)
Let G be a cyclic group of prime order ¢ with generator g.

a. (8 points) Let w = p(n) where n is the security parameter and p(-) is some poly-
nomial. Prove that under the DDH assumption, the following two distributions are
computationally indistinguishable:

(g™,9", ..., g™, g™", g™, ... g™?)

ai a2

(&
N(.g 7g 7"‘7gaw796179627‘"7gcw)7

where a;, b, ¢; il Zg4 are sampled independently and uniformly at random.

b. (3 points) Using what you proved in part (a), construct a PRG G : ZZ}”” - G2V with
w defined in part (a). You do not need to provide a formal proof, but briefly explain
how your answer from (a) connects to your construction.
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3 Composing One-Way Functions (15 points)
Let f:{0,1}" —» {0,1}" be a one-way function. Define f(® :{0,1}" ~ {0,1}" as

FO(z) = f(f(2)).

We say that we can securely compose f if f(2) is also one-way.

a. (b points) Prove that if f is a one-way permutation, then @ ig also a one-way

permutation.
b. (5 points) In this part of the problem, we will construct a one-way function from a
pseudorandom generator.

For simplicity, assume n is even. Let G : {0,1}"? ~ {0,1}" be a pseudorandom
generator. Define f:{0,1}" — {0,1}" as f(z) := G(x1), where z; is the first n/2 bits
of x.

Prove that, if G is a PRG, then f is a one-way function.

c. (5 points) Prove that f constructed in part (b) can be securely composed, namely

f (2) is also a one-way function.
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4 Signatures from Bilinear Pairings (15 points)

Let G and Gp be two cyclic groups, both of prime order ¢, with generators g € G and
gr € Gr, respectively. A Type-1 bilinear pairing is an efficiently computable function
e: G x G — Gr satisfying the following properties:

e e(g,9) = gr;
e For any a,b e Z,, e(g% ¢°) = gr*’.
This makes the DDH problem in G easy. To see why, given a DH tuple (g2, ¢°, ¢°), one can

test if ¢ = a-b by checking if e(¢%, ¢°) < e(g¢, g). Nevertheless, we can still assume the CDH

problem is hard in G. That is, given (g, gb) for a,b bl Zg, it is computationally hard for
any PPT algorithm to find g®.

We construct a signature scheme using the bilinear pairing described above and a hash
function H : {0,1}* - G, modeled as a random oracle.

The initialization process first generates all the bilinear pairing parameters (G, Gr, q, g, g7, €).
The signature scheme is constructed as follows.

e Gen(1™): Sample x bl Zg. Output sk = z and pk = ¢g°.

e Signgy (m) for m e {0,1}*: Compute h = H(m), and output o = bk,

e Vrfy, (m,o): Compute h = H(m), and verify if e(h, pk) = e(o,g).

a. (3 points) Prove the correctness of this signature scheme, i.e., an honestly computed
signature on a message will always verify.

b. (12 points) Assuming the CDH problem is hard in G, prove that this signature scheme
is secure in the random oracle model.
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5 Zero-Knowledge Proof for 3SAT (15 points)

Recall the NP-complete language 3SAT. A Boolean formula over variables z1,...,x, is
3-CNF if we can write ¢ = g1 A2 A... Ay, where each ¢; = y; 1 Vy;2VYy; 3, and each y; ; is a
literal over x1,...,xy, i.e., it is in the set of formulas {x1,...,zy,Z1,...,T,}. For example,

(x1 Voo VvE3) A(ZaVayVTs)is a3-CNF formula over (z1,x9,x3, 24, T5).

A Boolean formula ¢ is satisfiable if there exists an assignment (a1, ...,ay) to its variables
such that ¢(ay,...,a,) =1. More formally, consider the language

3SAT = { 3-CNF formula ¢ | 3aq,...,a, such that ¢(a1,...,a,) =1}

Construct a zero-knowledge proof system for 3SAT. Prove that the proof system you give
is complete and sound. Additionally, start the proof for the zero-knowledge property by
providing the construction of a simulator (you do not need to finish the proof).

You may use commitment schemes, but may not reduce this problem to any other NP-
complete problem.
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6 Oblivious Transfer (8 points)

Let F = {f;: D; > R;}ex be a trapdoor permutation with a hard-core predicate hc. Let Gen
be the sampling algorithm and Inv be the invert algorithm for F. Consider the following
oblivious transfer protocol.

Sender A’s Input: (mg,m1) where mg,mq € {0,1}. Both messages are single bits.

Receiver B’s Input: ce {0,1}.

A runs (i,t) < Gen(1™) and sends i to B.

B samples z ﬁ D; and computes y. := f;(x). B also samples yi_ i R;, and sends
(Y0, 91) to A.

A computes z; := he;(Inv(i,t,y;)) @ m; for j € {0,1}, and sends (29, 21) to B.

B outputs m. := hc;(x) @ 2.

Start the proof of semi-honest security by providing constructions of the simulator for both
parties. You do not need to finish the proof.

a. (4 points) Construct a simulator that simulates the view for the sender A.

b. (4 points) Construct a simulator that simulates the view for the receiver B.
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7 Discussion (6 points)

a. (3 points) Describe an arbitrary potential application of secure two-party or multi-

party computation.

b. (3 points) Describe an arbitrary potential application of somewhat or fully homo-

morphic encryption.
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