CSCI 1510

This Lecture:

- · Block Cipher Modes of Operation (Continued)
- · Practical Constructions of Hash Functions
- · Midterm Review
- · Selected Problems from Homework

Block Cipher Modes of Operation

 $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$

Assumed to be a pseudorandon permutation (PRP).

Groal: Construct a CPA-secure encryption scheme for arbitrary-length messages.

Electronic Code Book (ECB) Mode

CPA Secure? No! Deterministic Enc

Cipher Block Chaining (CBC) Mode

How to decrypt? Fr (Ci) O Cin > mi

CPA Secure? Yes!

Can we parallelize the computation? No for Enc. Yes for Dec.

Chained Cipher Block Chaining (CBC) Mode

CPA Secure? No!

How to decrypt? FK(IV+i) & Ci => mi

CPA Secure? Yes!

Can we parallelize the computation? Yes!

PRG from PRF G(s) = Fs(1) || Fs(2) || ...

Output Feedback (OFB) Mode

How to decrypt?

CPA Secure?

Can we parallelize the computation?

PRG from PRF G(5):= F5(0) || F5 (F5(0)) ||...

Compression Function from Block Cipher

Block Cipher Davies-Meyer > Compression Function Merkle-Damgård > Arbitrary-length

(fixed-length hash function) hash function

If F is model as an "ideal cipher", them Davies-Meyer Construction is Collision-resistent.

Practical Constructions of Hash Function

MD5: Output length 128-bit
best known attack 216
Collision found in 2004

Secure Hash Functions (SHA): Standardized by NIST.

• SHA-0: Standardized in 1993 Output length 160-bit best known attack 239

• SHA-1: Standardized in 1995
Output length 160-bit
best known attack 263
Collision found in 2017

Practical Constructions of Hash Function

Secure Hash Functions (SHA): Standardized by NIST.

- · SHA-2: Standardized in 2001 Output length 224, 256, 384, 512-bit
- · SHA-3: Competition 2007-2012

 Yeleased in 2015

 Output length 224, 256, 384, 512-bit

- · Symmetrie-Key Encryption
 - Syntax
 - Kerckhoff's Principle
- · Perfect Security
 - Definition
 - Construction: One-Time Pad
 - Limitations: |K| > |M|
- · Computational Security
 - Negligible function & Asymptotie approach

- · Computational Security for Message Secrecy
 - * Semantic Security
 - Definition
 - Construction: Pseudo-OTP from PRG
 - Proof by reduction
 - Limitations: Cannot reuse key
 - * CPA Security
 - Definition

Definition >=

- Construction from PRF
- Proof by hybrid argument + reduction
- Limitations: Cannot query for decryption
- * CCA Security

- · Message Integrity
 - * Message Authentication Code (MAC)
 - Syntax
 - Definitions: Secure / Strongly secure
 - Constructions

Fixed-length MAC of length n from PRF

Fixed-length MAC of length L(n)·n from PRF: CBC-MAC

Arbitrary-length MAE: extension of CBC-MAC

- * Unforgeability of Encryption Scheme
 - Definition
- · Authenticated Encryption: Secrety & Integrity
 - Definition: CCA Secure & Unforgeable
 - Constructions: CPA-secure encryption + MAC

- · Practical Constructions
 Block Cipher: PRP Definition

 - Construction: SPN/Feistel Network/DES/AES
 - Attacks on reduced rounds
 - Modes of Operation

- · Hash Function
 - Definition: Collision-Resistant
 - Birthday Attack & Implications
 - Merkle-Dangård Transform
 - Applications
 - Practical Constructions: Davies-Meyer/SHA

c. Alice and Bob are arguing in class. Bob insists that an encryption scheme with message space \mathcal{M} is perfectly secure if and only if for every probability distribution over \mathcal{M} and every pair of ciphertexts $c_0, c_1 \in \mathcal{C}$, it is the case that any computed ciphertext C must be equally likely to be c_0 or c_1 , i.e. that $\Pr[C = c_0] = \Pr[C = c_1]$. If you think Bob is correct, help him out by writing a proof of the statement. Otherwise, help Alice convince him that he is wrong by providing a counterexample.

Homework 1

Page 3 / 5

c. Suppose that $\varepsilon : \mathbb{N} \to [0,1]$ is *not* a negligible function. Is the following statement true: There exists a polynomial p where p(k) > 0 for all k, and some $k_0 \ge 1$, such that $\varepsilon(k) > 1/p(k)$ for all $k > k_0$. In other words, is ε necessarily asymptotically greater than some inverse polynomial? If you think the statement is true for every non-negligible function ε , prove it. Otherwise, provide a counterexample.

Homework 1 Page 4/5

3 GGM and Prefix-Constrained PRFs

A PRF $F: \{0,1\}^k \times \{0,1\}^k \mapsto \{0,1\}^k$ is said to be a prefix-constrained PRF if, given the PRF key, it is possible to generate a *constrained* PRF key K_{π} which lets you evaluate the PRF only at inputs which have a specific prefix π . More precisely, a prefix-constrained PRF has the following algorithms:

Setup: Setup(1^k) outputs a key $K \leftarrow \{0,1\}^k$

Constrain: For any string π such that $|\pi| \le k$, Constrain (K, π) outputs a key K_{π}

Evaluate: Eval (K_{π}, x) outputs $F_K(x)$ iff. $x = \pi \| t$ for some $t \in \{0, 1\}^{k - |\pi|}$, else outputs \bot

The security notion for a constrained PRF key K_{π} is that it should reveal no information about the PRF evaluation at points that do not have the prefix π . For any string π such that $|\pi| \leq k$, let X_{π} denote the set of all $x \in \{0,1\}^k$ that do not have π as their prefix. We say $F: \{0,1\}^k \times \{0,1\}^k \mapsto \{0,1\}^k$ is a *spring-break*-secure prefix-constrained PRF if for all PPT \mathcal{A} , there exists a negligible function $\nu(\cdot)$ such that

 $\left|\Pr[\mathcal{A}(1^k) \text{ outputs } b' = 0 \text{ in Exp } 1\right| - \Pr[\mathcal{A}(1^k) \text{ outputs } b' = 0 \text{ in Exp } 2]\right| \le \nu(k)$

Homework 2 Page 3 / 5

Exp 1

Choose key $K \leftarrow \mathsf{Setup}(1^k)$

 \mathcal{A} chooses a prefix π with $|\pi| \le k$ and obtains $K_{\pi} = \mathsf{Constrain}(K, \pi)$

 \mathcal{A} adaptively queries $F_K(\cdot)$ on any inputs $x_1, \ldots, x_q \in X_\pi$ and obtains values $F_K(x_i)$ for $1 \le i \le q$

 \mathcal{A} outputs a guess b'

Exp 2

Choose key $K \leftarrow \mathsf{Setup}(1^k)$ Choose random function $R : \{0,1\}^k \mapsto \{0,1\}^k$

 \mathcal{A} chooses a prefix π with $|\pi| \leq k$ and obtains $K_{\pi} = \mathsf{Constrain}(K, \pi)$

 \mathcal{A} adaptively queries $R(\cdot)$ on any inputs $x_1, \ldots, x_q \in X_{\pi}$ and obtains values $R(x_i)$ for $1 \le i \le q$

 \mathcal{A} outputs a guess b'

In this problem, we will prove that the Goldreich-Goldwasser-Micali (GGM) PRF is also a prefix-constrained PRF. The GGM PRF is obtained as follows: Start with a length-doubling PRG $G: \{0,1\}^k \to \{0,1\}^{2k}$. So G(s) for any $s \in \{0,1\}^k$ outputs a string of length 2k; we call the first half $G_0(s)$ and second half $G_1(s)$. Let the input be $x = x_1x_2...x_k$ where each $x_i \in \{0,1\}$. Then, the PRF, with key K is defined as follows:

$$F_K(x_1x_2...x_k) = G_{x_k}(...G_{x_2}(G_{x_1}(K))...)$$

- a. For the GGM PRF, what could be the constrained key K_0 that lets you evaluate $F_K(x)$ for all x starting with a 0? How will you evaluate the PRF with this constrained key?
- b. Design the Constrain (K, π) algorithm for any prefix π with $|\pi| \le k$ for the GGM PRF.
- c. Describe the corresponding $\mathsf{Eval}(K_\pi, x)$ algorithm.
- d. Prove that your prefix-constrained PRF is *spring-break*-secure. You may assume that the GGM PRF $F_K^d(x): \{0,1\}^k \times \{0,1\}^d \to \{0,1\}^k$ is secure for any depth $d = \mathsf{poly}(k)$, not just d = k.

4 Leaky PRF

Construct a PRF $F: \{0,1\}^{k+1} \times \{0,1\}^n \mapsto \{0,1\}^n$ with the property that, if an adversary learns the first bit of the secret key of the PRF, then F is distinguishable from random. Prove that your construction of F is a PRF and show how the adversary can distinguish F from random if it knows the first bit of the secret key. You may assume that PRFs exist, and use another PRF in your construction.

Homework 2

Page 4 / 5

$$F_{s}(x) := \begin{cases} S[0] || F_{s}(x)_{\Gamma_{1:n-1}} & \text{if } x = x^{*} \\ F_{k}(x) & \text{otherwise} \end{cases}$$

1 CPA Security from PRFs and PRGs

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF and $G: \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG with expansion factor $\ell(n) = n+1$. Consider the following encryption schemes based on F and G, where in each case, the secret key is a uniform $k \in \{0,1\}^n$.

For each scheme, state 1) whether the scheme is semantically secure and 2) whether it is CPA-secure. Explain your answer for each security definition - if you think the scheme is secure under some definition, prove it; otherwise, give an attack.

- a. To encrypt a message $m \in \{0,1\}^{n+1}$, choose a uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, G(r) \oplus m \rangle$.
- b. To encrypt $m \in \{0,1\}^n$, output the ciphertext $m \oplus F_k(0^n)$.
- c. To encrypt $m \in \{0,1\}^{2n}$, parse m as $m_1||m_2|$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.

CTR mode

4 Secure Arbitrary-Length CBC-MAC

Consider the following modification of the basic CBC-MAC construction. First, $\mathsf{Mac}_k(m)$ computes $k_\ell = F_k(\ell)$, where F is a PRF and ℓ is the length of m. Then, compute the tag using basic CBC-MAC with key k_ℓ . Verify is canonical verification.

Prove that this modification gives a secure MAC for arbitrary-length messages. For simplicity, assume all messages have length a multiple of the block length. You may assume fixed-length CBC-MAC is secure.

< Dutput mt of length l*