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c. Alice and Bob are arguing in class. Bob insists that an encryption scheme with
message space M is perfectly secure if and only if for every probability distribution
over M and every pair of ciphertexts cy,cq € C, it is the case that any computed
ciphertext C' must be equally likely to be ¢y or ¢y, i.e. that Pr[C =¢y] = Pr[C = ¢1].

If you think Bob is correct, help him out by writing a proof of the statement. Oth-
erwise, help Alice convince him that he is wrong by providing a counterexample.
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c. Suppose that € : N - [0, 1] is not a negligible function. Is the following statement
true: There exists a polynomial p where p(k) > 0 for all k, and some kg > 1, such
that (k) > 1/p(k) for all k& > kg. In other words, is € necessarily asymptotically
greater than some inverse polynomial? If you think the statement is true for every
non-negligible function ¢, prove it. Otherwise, provide a counterexample.
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3 GGM and Prefix-Constrained PRF's

A PRF F:{0,1}* x {0,1}* = {0,1}* is said to be a prefix-constrained PRF if, given the
PRF key, it is possible to generate a constrained PRF key K, which lets you evaluate the
PRF only at inputs which have a specific prefix 7. More precisely, a prefix-constrained
PRF has the following algorithms:

Setup: Setup(1¥) outputs a key K <« {0,1}*
Constrain: For any string 7 such that |7| < k, Constrain(K, ) outputs a key K

Evaluate: Eval(K,,z) outputs Fi (z) iff. =7t for some ¢ € {0,1}*717 else outputs L

The security notion for a constrained PRF key K is that it should reveal no information
about the PRF evaluation at points that do not have the prefix 7. For any string 7 such
that || < k, let X, denote the set of all z € {0,1}* that do not have 7 as their prefix. We
say F: {0,1}% x {0,1}* v {0,1}* is a spring-break-secure prefix-constrained PRF if for all
PPT A, there exists a negligible function v(-) such that

|Pr[.A(1k) outputs b’ = 0 in Exp 1] - Pr[A(1%) outputs b’ = 0 in Exp 2]| < v(k)
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Exp 1 Exp 2

Choose key K < Setup(1¥) Choose key K « Setup(1¥)
Choose random function R: {0,1}* » {0,1}*

A chooses a prefix 7 with |7| < k A chooses a prefix 7 with || < k
and obtains K = Constrain(K, ) and obtains K = Constrain(K, )
A adaptively queries Fi(+) A adaptively queries R(-)

on any inputs z1,...,74 € Xz on any inputs x1,...,24€ Xz

and obtains values Fi (x;) for 1 <i<¢q | and obtains values R(x;) for 1<i<q

A outputs a guess b’ A outputs a guess b’

In this problem, we will prove that the Goldreich-Goldwasser-Micali (GGM) PRF is also
a prefix-constrained PRF. The GGM PRF is obtained as follows: Start with a length-
doubling PRG G : {0,1}* - {0,1}?*. So G(s) for any s € {0,1}* outputs a string of length
2k; we call the first half Go(s) and second half G1(s). Let the input be z = z125... 21
where each x; € {0,1}. Then, the PRF, with key K is defined as follows:

FK(:L‘l;EQ...Ik) = sz(Gm(Gm(K)))

a. For the GGM PRF, what could be the constrained key Ky that lets you evaluate
Fg(z) for all = starting with a 0?7 How will you evaluate the PRF with this con-
strained key?

b. Design the Constrain(K, ) algorithm for any prefix = with || < k for the GGM PRF.
c. Describe the corresponding Eval( K, z) algorithm.

d. Prove that your prefix-constrained PRF is spring-break-secure. You may assume that
the GGM PRF Fi(z):{0,1}Fx{0,1}¢ > {0,1}* is secure for any depth d = poly(k),
not just d = k.
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4 Leaky PRF

Construct a PRF F: {0,1}**! x {0,1}" ~ {0,1}" with the property that, if an adversary
learns the first bit of the secret key of the PRF, then F' is distinguishable from random.
Prove that your construction of F'is a PRF and show how the adversary can distinguish F'
from random if it knows the first bit of the secret key. You may assume that PRFs exist,
and use another PRF in your construction.
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1 CPA Security from PRFs and PRGs

Let F': {0,1}" x {0,1}" - {0,1}"™ be a PRF and G : {0,1}" - {0,1}"*! be a PRG with
expansion factor £(n) =n + 1. Consider the following encryption schemes based on F' and
GG, where in each case, the secret key is a uniform k€ {0,1}".

For each scheme, state 1) whether the scheme is semantically secure and 2) whether it is
CPA-secure. Explain your answer for each security definition - if you think the scheme
is secure under some definition, prove it; otherwise, give an attack.

a. To encrypt a message m € {0,1}"*!, choose a uniform r € {0,1}" and output the
ciphertext (r, G(r) & m).

b. To encrypt m € {0,1}", output the ciphertext m & Fj(0").

c. To encrypt m € {0,1}?", parse m as mq||ms with |m| = |ms|, then choose uniform
r €{0,1}" and output the ciphertext (r,mi & Fy(r),ma ® Fi(r +1)).

CTR wmode



4 Secure Arbitrary-Length CBC-MAC

Consider the following modification of the basic CBC-MAC construction. First, Macy(m)
computes ky = Fj(¢), where F' is a PRF and /¢ is the length of m. Then, compute the tag
using basic CBC-MAC with key k. Verify is canonical verification.

Prove that this modification gives a secure MAC for arbitrary-length messages. For sim-

plicity, assume all messages have length a multiple of the block length. You may assume
fixed-length CBC-MAC is secure.
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