
Homework 2

Due: September 27, 2024

CS 1510: Intro. to Cryptography and Computer Security

1 Two Indistinguishabilities

Fix two probabilistic sampling algorithms D1(1
k
) and D2(1

k
) which, on input 1k (security

parameter), output binary strings; both run in polynomial time.

Consider the following probabilities for any algorithm A that takes as input 1k and a

sample x from either D1(1
k
) or D2(1

k
).

Experiment a: Let i← {1,2} be chosen uniformly at random from {1,2}, and let

x←Di(1
k
) be sampled according to the sampling algorithm Di(1

k
).

The probability cA(k) is the probability that the algorithm A chooses the correct sampling

algorithm given a sample x from Experiment a; that is:

cA(k) = Pr[i← {1,2};x←Di(1
k
); i′ ← A(1k, x) ∶ i′ = i]

Experiment b1: Let x←D1(1
k
).

The probability zA,1(k) is the probability that the algorithm A outputs zero given a sample

from Experiment b1; that is:

zA,1(k) = Pr[x←D1(1
k
); i← A(1k, x) ∶ i = 0]

Experiment b2: Let x←D2(1
k
).

The probability zA,2(k) is the probability that the algorithm A outputs zero given a sample

from Experiment b2; that is:

zA,2(k) = Pr[x←D2(1
k
); i← A(1k, x) ∶ i = 0]

Consider the following two definitions of computational indistinguishability:

Definition 1 (CIA indistinguishability) Two sampling algorithms D1(1
k
) and D2(1

k
)

are CIA-indistinguishable (computationally indistinguishable, variant A) if there exists a

negligible function ν such that for all PPT algorithms A,

cA(k) ≤
1

2
+ ν(k).

We denote this by D1(1
k
) ≈a D2(1

k
).
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CIA indistinguishability says that two distributions are indistinguishable if no computa-

tionally bounded adversary can determine from which distribution a random sample was

chosen during Experiment a.

Definition 2 (CIB indistinguishability) Two sampling algorithms D1(1
k
) and D2(1

k
)

are CIB-indistinguishable (computationally indistinguishable, variant B) if there exists a

negligible function ν such that for all PPT algorithms A,

∣zA,1(k) − zA,2(k)∣ ≤ ν(k).

We denote this by D1(1
k
) ≈b D2(1

k
).

CIB indistinguishability says that two distributions are indistinguishable if no computa-

tionally bounded adversary can behave significantly differently on a sample chosen during

Experiment b1 versus a sample chosen during Experiment b2.

In this problem, you will prove that these two definitions of computational indistinguisha-

bility are equivalent. That is, D1(1
k
) ≈a D2(1

k
) if and only if D1(1

k
) ≈b D2(1

k
).

a. First, prove that D1(1
k
) ≈b D2(1

k
) implies D1(1

k
) ≈a D2(1

k
). We’ll prove this

through a contradiction by assuming that there exists a PPT adversary A that can

distinguish the two distributions by the CIA definition, and proving that we can con-

struct another PPT adversary out of this that can distinguish by the CIB definition.

(1) Let A be fixed. Assume without loss of generality that its only possible outputs

are 1 and 2. (Otherwise, you can trivially improve performance as follows: If A

outputs something that is not a 1 or a 2, turn it into a 1. This cannot make A’s

performance worse, and it might make it better.) Define:

cA,1(k) = Pr[x←D1(1
k
); i′ ← A(1k, x) ∶ i′ = 1]

In other words, cA,1(k) is the probability that A is correct given that x comes

from D1(1
k
). Similarly, define:

cA,2(k) = Pr[x←D2(1
k
); i′ ← A(1k, x) ∶ i′ = 2]

Express cA(k) in terms of cA,1(k) and cA,2(k).
(2) Define A′(1k, x) as follows: Run A(1k, x). Output 0 if A outputs 1, and output

−1 otherwise. Express zA′,i(k) in terms of cA,1(k) and cA,2(k).
(3) Express cA,1(k) and cA,2(k) in terms of zA′,i(k).
(4) Express cA(k) in terms of zA′,i(k).
(5) Conclude that if D1(1

k
) ≈b D2(1

k
), then D1(1

k
) ≈a D2(1

k
).

b. Next, prove that D1(1
k
) ≈a D2(1

k
) implies D1(1

k
) ≈b D2(1

k
). Specifically, assuming

there exists a PPT adversary A′ that can distinguish the two distributions under

the CIB definition, prove that we can construct another PPT adversary A that can

distinguish them under the CIA definition.
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2 PRGs

Let G1 ∶ {0,1}
n
→ {0,1}2n and G2 ∶ {0,1}

n
→ {0,1}2n be length-doubling PRGs for all n.

For each of the following, either prove that it is necessarily a PRG, or provide a counterex-

ample to show that it is not necessarily a PRG. In constructing a counterexample for this

problem, you can assume that a PRG G (with domain/codomain of your choice, provided

it depends upon n) exists. From such G, show that some contrived G1 and/or G2 can be

constructed such that they are themselves PRGs, but, when you plug them into Ga, Gb,

or Gc (whichever construction you’re showing is not a PRG), the result yields something

that is not a PRG.

a. Ga(s) = G1(s) ⊕G2(s).

b. Gb(s) = s1∥G1(s2) where s = s1∥s2 and ∣s1∣ = ∣s2∣ = n. (i.e. s1 is the first half of the

input s, and s2 is the second half). Note this means we have Gb ∶ {0,1}
2n
→ {0,1}3n.

c. Gc(s) = G1(s)⊕p s, where ⊕p denotes “padded XOR,” where if we’re XORing strings

of unequal length, we pad the shorter string with as many 0s on the right hand-

side as is needed to make it the correct length. For example, 1010 ⊕p 110011 =

101000⊕ 110011 = 011011.

3 GGM and Prefix-Constrained PRFs

A PRF F ∶ {0,1}k × {0,1}k ↦ {0,1}k is said to be a prefix-constrained PRF if, given the

PRF key, it is possible to generate a constrained PRF key Kπ which lets you evaluate the

PRF only at inputs which have a specific prefix π. More precisely, a prefix-constrained

PRF has the following algorithms:

Setup: Setup(1k) outputs a key K ← {0,1}k

Constrain: For any string π such that ∣π∣ ≤ k, Constrain(K,π) outputs a key Kπ

Evaluate: Eval(Kπ, x) outputs FK(x) iff. x = π∥t for some t ∈ {0,1}k−∣π∣, else outputs �

The security notion for a constrained PRF key Kπ is that it should reveal no information

about the PRF evaluation at points that do not have the prefix π. For any string π such

that ∣π∣ ≤ k, let Xπ denote the set of all x ∈ {0,1}k that do not have π as their prefix. We

say F ∶ {0,1}k × {0,1}k ↦ {0,1}k is a spring-break-secure prefix-constrained PRF if for all

PPT A, there exists a negligible function ν(⋅) such that

∣Pr[A(1k) outputs b′ = 0 in Exp 1] −Pr[A(1k) outputs b′ = 0 in Exp 2]∣ ≤ ν(k)
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where

Exp 1 Exp 2

Choose key K ← Setup(1k) Choose key K ← Setup(1k)

Choose random function R ∶ {0,1}k ↦ {0,1}k

A chooses a prefix π with ∣π∣ ≤ k A chooses a prefix π with ∣π∣ ≤ k

and obtains Kπ = Constrain(K,π) and obtains Kπ = Constrain(K,π)

A adaptively queries FK(⋅) A adaptively queries R(⋅)

on any inputs x1, . . . , xq ∈Xπ on any inputs x1, . . . , xq ∈Xπ

and obtains values FK(xi) for 1 ≤ i ≤ q and obtains values R(xi) for 1 ≤ i ≤ q

A outputs a guess b′ A outputs a guess b′

In this problem, we will prove that the Goldreich-Goldwasser-Micali (GGM) PRF is also

a prefix-constrained PRF. The GGM PRF is obtained as follows: Start with a length-

doubling PRG G ∶ {0,1}k → {0,1}2k. So G(s) for any s ∈ {0,1}k outputs a string of length

2k; we call the first half G0(s) and second half G1(s). Let the input be x = x1x2 . . . xk
where each xi ∈ {0,1}. Then, the PRF, with key K is defined as follows:

FK(x1x2 . . . xk) = Gxk
(. . .Gx2(Gx1(K)) . . . )

a. For the GGM PRF, what could be the constrained key K0 that lets you evaluate

FK(x) for all x starting with a 0? How will you evaluate the PRF with this con-

strained key?

b. Design the Constrain(K,π) algorithm for any prefix π with ∣π∣ ≤ k for the GGM PRF.

c. Describe the corresponding Eval(Kπ, x) algorithm.

d. Prove that your prefix-constrained PRF is spring-break-secure. You may assume that

the GGM PRF F d
K(x) ∶ {0,1}

k
×{0,1}d → {0,1}k is secure for any depth d = poly(k),

not just d = k.

4 Leaky PRF

Construct a PRF F ∶ {0,1}k+1 × {0,1}n ↦ {0,1}n with the property that, if an adversary

learns the first bit of the secret key of the PRF, then F is distinguishable from random.

Prove that your construction of F is a PRF and show how the adversary can distinguish F

from random if it knows the first bit of the secret key. You may assume that PRFs exist,

and use another PRF in your construction.
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5 Summary Question

Summarize the most important insights from this week’s material, including from the

lectures, notes, textbooks, homework problems, and other resources you find helpful, into

a one-page resource. We expect that these summary pages will help you with the take-

home midterm and final. Please note this question is graded based on completion—we will

not be checking it for correctness.
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