CS148 - Building Intelligent Robots Advanced Track Class Project

Instructor: Chad Jenkins (cjenkins)

Getting started

- Meet with me to discuss potential projects
 - we should have met by 10/14
 - it would help me to know your interests ahead of time

Project ideas

- autonomous control projects
 - articulated robot control (e.g., humanoids, Puma arm)
 - groups of simpler robots (e.g., robocup, SLAM)
 - learning approaches (e.g., learning robot tasks or skills)
 - implementation of a paper
- robot construction
- new sensors and sensor data processing
 - time of flight, etc.

Advanced track milestones

- 10/14: Completion of labs
- 10/21: Project proposal
- 11/2: Peer-reviewing and project workshop
- 11/18: Prototype
- 12/7: Final demonstration
- 12/9: Final paper

Project proposals

- Format
 - ICRA conference
 - http://www.icra2005.org
 - 4 sections
- Objectives
 - goals for the project
 - scope for implementation
 - or scope for a survey paper
- Approach
 - design/architecture methodology
 - technical implementation plan (details)

- Discussion
 - related work
 - papers, websites, projects
 - challenges and potential problems
 - outline for alternatives
 - Plan B, C, ...
- Evaluation
 - how will you validate your implementation
- Multiple people can collaborate on a project

Project peer-reviewing

 Each student will review two project proposals other than their own

- Review criteria
 - clarity of project objectives and approach
 - technially interesting problem
 - likely challenges and potential problems are addresses
- Review format
 - 1-2 pages (single column, single space, ascii)
 - summarize proposal, address criteria, provide suggestions

Project workshop

- 5-7 minute pitch for your project
 - additional 3-5 minutes for questions and comments
- 6 slides maximum
- The goal: get feedback from peers to improve your project
- Emphasize high-level objectives and interestingness

Implementation prototype

- In-class demonstration
 - open to questions and comments from class
- Prototype is a "proof-of-concept" that demonstrates the feasibility of the project
- Be preparted to state
 - progress made in implementation
 - remaining issues and features for implementation

Final presentation

- In-class demonstration and brief presentation
 - 5-7 slides, 10-15 minutes
 - open to questions, comments, and testing from class
- Final implementation is a working system that meets or exceeds reasonable expectations set in the proposal
- Be preparted to roughly state
 - features and robustness of the implementation
 - features not implemented and shortcomings of the approach
 - significant issues of large importance not addressed will result in score deduction

Final paper

- Format
 - ICRA conference format
 - 5 sections and a conclusion
- Introduction/Motivation
 - short summary of work
 - why the project is interesting
- Approach/Implementation
 - design/architecture methodology
 - technical details of implementation

Discussion

- related work
 - papers, websites, projects
- challenges and problems addressed
- strengths and shortcomings
- potential extension

Evaluation

- how implementation was tested
- how well did it perform
- Workload breakdown
 - clearly state individual contribution for collaborations