CS148 - Building Intelligent Robots Lecture 6: Learning for Robotics

Instructor: Chad Jenkins (cjenkins)

Administrivia: good news

- No class next Tuesday 10/12
 - you can show up, but I will not be here

Rudy, you are like a robotics teacher out of the country

A robotics teacher out of the country?

Yeah, no class!

Administrivia: bad news

- Someone left the Lego lab open and unattended yesterday!!!
- This is a huge problem and can lead to disaster for the class
 - if the kits were to disappear, how would you implement the labs and projects
- This situation must be taken seriously
 - thus, I will deduct a 1% from the final grade of ALL students in the standard track if lab is left open and unattended again
 - next infraction will be 2%, then 4%, 8%,

Machine learning (from Wikipedia)

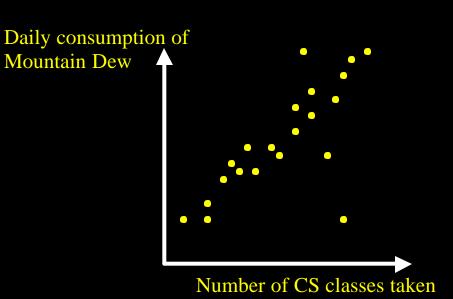
- Machine learning is an area of artificial intelligence involving developing techniques to allow computers to "learn".
 - More specifically, machine learning is a method for creating computer programs by the analysis of data sets, rather than the intuition of engineers.
 - Machine learning overlaps heavily with statistics, since both fields study the analysis of data.
 - Applications: medical diagnosis, detecting credit card fraud, stock market analysis, classifying DNA sequences, speech and handwriting recognition, game playing and robot locomotion.

Machine learning taxonomy

- Machine learning groups into the following categories
 - supervised learning: an algorithm generates a function that maps inputs to desired outputs
 - given data for x and y, find f(x) = y
 - classification, regression
 - unsupervised learning: an algorithm generates a model for a set of inputs
 - given x, find models underlying x
 - feature extraction, density estimation
 - reinforcement learning: an algorithm learns a policy of how to act given an observation of the world
 - find a policy u such that expected outcomes o = u(x,actions)
 - learning to learn: an algorithm learns its own inductive bias based on previous experience.

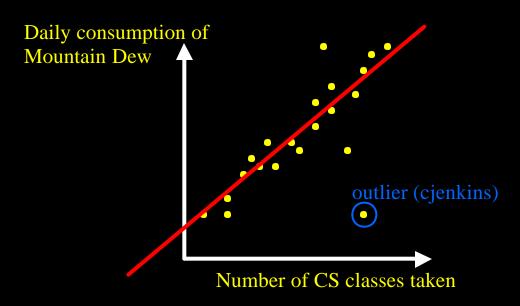
Supervised learning: regression

- Ask N students:
 - x: # of CS classes taken
 - y: typical Mountain Dew consumption
- Supervised problem:
 - function of MD consump.
 w.r.t. CS background
 - f(x) = y



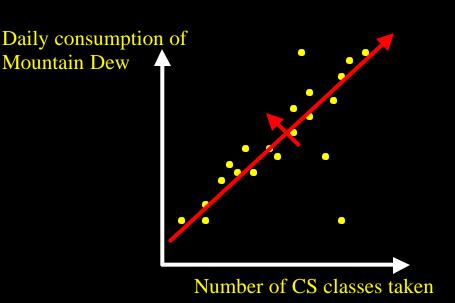
Supervised learning: regression

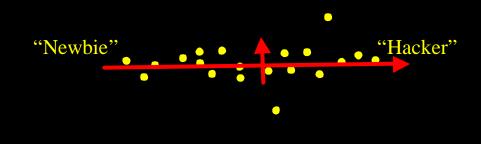
- Ask N students:
 - x: # of CS classes taken
 - y: typical Mountain Dew consumption
- Supervised problem:
 - function of MD consump.w.r.t. CS background
 - f(x) = y
- Linear regression
 - fit a line: f(x) = ax + b = y



Unsupervised learning: dimension reduction

- Ask N students:
 - x1: # of CS classes taken
 - x2: typical Mountain Dew consumption
- Unsupervised problem:
 - find underlying coordinate system
- Principal Components Analysis
 - find linear system that best expresses data



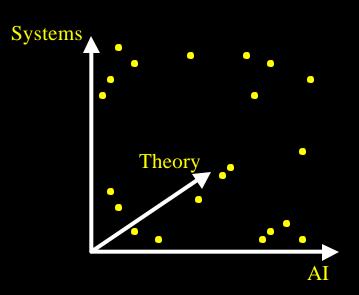


Examples for robotics

- Inverse dynamics
 - f(desired states) = control commands
 - collect control commands and states from robot teleoperation
- Inverse kinematics
 - f(endeffector position) = joint angles

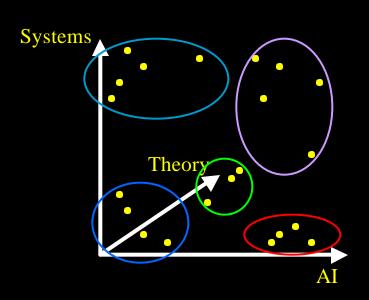
Unsupervised learning: clustering

- Ask N CS students:
 - x1: # of systems classes taken
 - x2: # of AI classes taken
 - x3: # of theory classes taken
- Unsupervised problem:
 - find categories of students
 - sets of students C1, C2, etc.



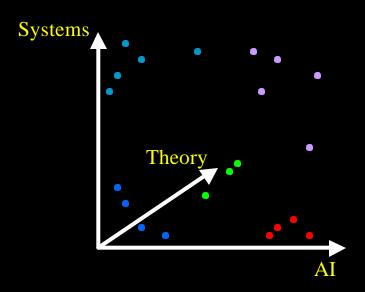
Unsupervised learning: clustering

- Ask N CS students:
 - x1: # of systems classes taken
 - x2: # of AI classes taken
 - x3: # of theory classes taken
 - 3 dimensional data
- Unsupervised problem:
 - find categories of students
 - sets of students C1, C2, etc.
- Clustering
 - estimates cluster associations

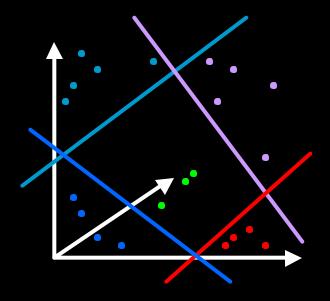


- K-means clustering
 - assume K clusters with initial locations
 - find cluster nearest to each point
 - move cluster to centroid

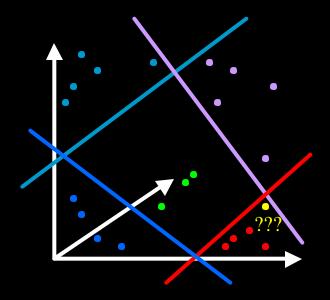
- From clustering we know:
 - x: classes taken
 - y: category (AI, systems, ...)



- From clustering we know:
 - x: classes taken
 - y: category (AI, systems, ...)
- Find f(x) = y
 - decision boundaries

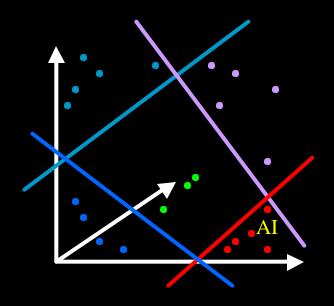


- From clustering we know:
 - x: classes taken
 - y: category (AI, systems, ...)
- Find f(x) = y
 - decision boundaries
- Classify new point x_new



- From clustering we know:
 - x: classes taken
 - y: category (AI, systems, ...)
- Find f(x) = y
 - decision boundaries

using decision boundaries



Examples for robotics

- Behavior arbitration
 - f(sensor readings) = behavior selection
- Landmarking for robot navigation
 - f(sensor readings) = landmark category
- Neural navigation of mobile robots
 - f(brain readings) = controller states

Reinforcement learning (from Wikipedia)

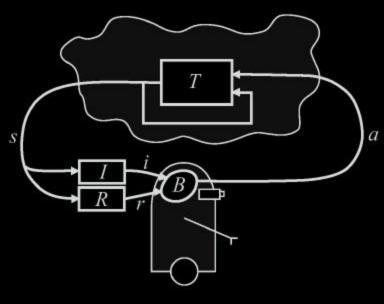
- A class of problems in machine learning which postulate an agent exploring an environment in which the agent perceives its current state and takes actions
- The environment, in return, provides a reward (which can be positive or negative).
- Reinforcement learning algorithms attempt to find a policy for maximizing cumulative reward for the agent over the course of the problem.

Reinforcement learning (from Wikipedia)

- RL differs from supervised learning in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.
- RL focuses on on-line performance
 - balance between
 - exploration (of uncharted territory)
 - exploitation (of current knowledge).

Formal RL model

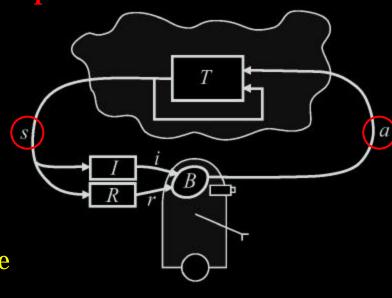
- A RL model consists of
 - a discrete set of S states
 - models describing the robot's environment
 - a discrete set of A actions
 - actions the robot can take to change state
 - a set of scalar reinforcement signals R
 - functions evaluating short-term and long-term reward
 - a robot control policy P
 - given state s at time t, selects action a to maximize rewards r
 - what we are trying to learn



Formal RL model

- A RL model consists of
 - a discrete set of S states
 - models describing the robot's environment
 - a discrete set of A actions
 - actions the robot can take to change state
 - a set of scalar reinforcement signals R
 - functions evaluating short-term and long-term reward
 - a robot control policy P
 - given state s at time t, selects action a to maximize rewards r
 - what we are trying to learn

Does anyone see a problem with this?



Issues for reinforcement learning

- Estimation of states and state transitions
- Partial observability
 - robot observes noisy or incomplete information about the world
- Discretization of states
 - make assumptions or use domain knowledge
- Discretization of actions/behaviors
 - hand coded robot controllers or
 - learn them automatically (this is my research)

Approaches to reinforcement learning

- Find policies as the utility or value of actions with respect to outcomes
- Two general approaches to learning policies
 - Search
 - search over the space of actions to find their utility
 - techniques: breadth-first, depth-first, genetic algorithms
 - Statistical modeling
 - probabilistically model the utility of taking actions
 - use statistical techniques with dynamic programming
 - techniques: Markov Decision Processes

Genetic algorithm procedure

- Randomly generate "DNA" of an initial population M(0)
 - an individual has a genotype that encodes a control policy
- Compute and save the fitness u(m) for each individual m in the current population M(t)
 - users defines the fitness function
- Define selection probabilities p(m) for each individual m in M(t) so that p(m) is proportional to u(m)
- Generate new population M(t+1) by probabilistically selecting individuals from M(t) to produce offspring
 - genetic operators: crossover, mutation, ...
- # Repeat step 2 until satisfying solution is obtained.

Constraint optimization

- Genetic algorithms are related to constraint optimization
- Constraint optimization consists of
 - an objective function to be minimized (fitness function)
 - a set of constraint functions to be maintained

Markov Decision Processes (MDPs)

- a set of states S
- a set of actions A
- a function of expected reward R(s,a) -> real numbers
- a state transition function $T(s,a) \rightarrow \Pi(S)$
 - a member of $\Pi(S)$ is a probability distribution over the set S
 - $\Pi(S)$ maps states to probabilities
- T(s,a,s') is the probability of making a transition from state s to state s' using action a.

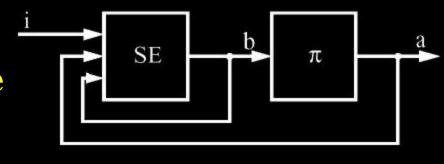
The Markov Property

- A system is Markovian
 - if the state transitions are independent of previous state transitions or agent actions
- The Markov property allows for future states to be estimated using only the current state
- The past and the future are independent given the present

This Markov will be hitting the ground regardless of previous situations or actions

Partially Observable MDPs (POMDPs)

- Robots rarely have complete information
- A robot can only estimate the current state of the environment



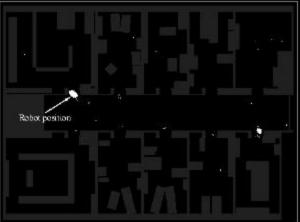
- state estimation for robot belief b
- Incorporate into MDP
 - finite set of observations I
 - the probability of observing w and ending in state s' after taking action a
 - observation probability O(s',a,w)

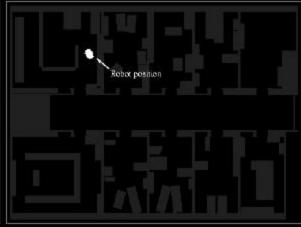
Hidden Markov Models (HMMs)

Petri-nets

State estimation: localization

- Estimate the distribution of probable robot locations
 - Each particle is a hypothesis of a probable robot location
- By navigating the world, impossible hypotheses are eliminated
- Over time, the particle distribution indentifies robot location

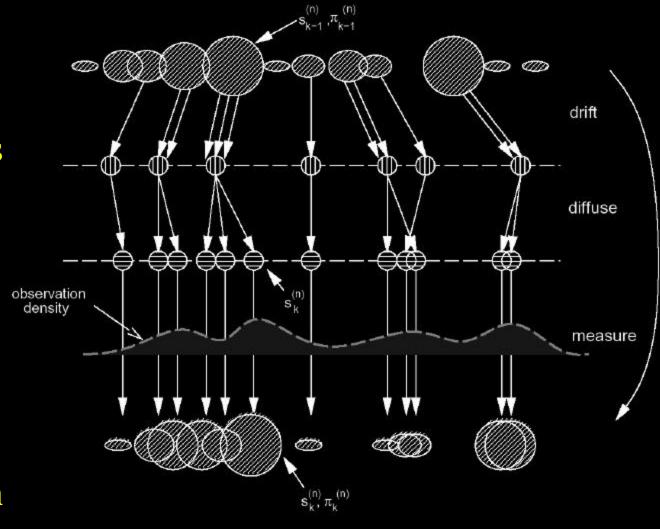




Fox et al.

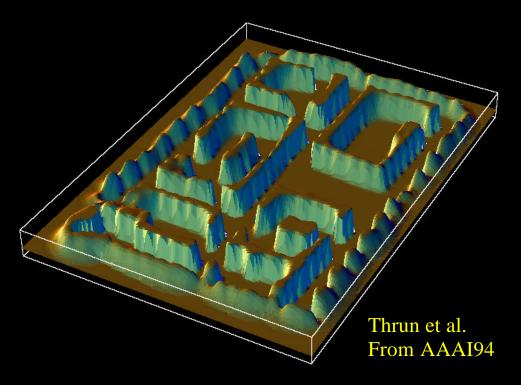
Particle filtering

- Condensation
- Distribution as particles
 - particle =hypothesis
- Evaluate
 distribution
 through
 observation on
 particles



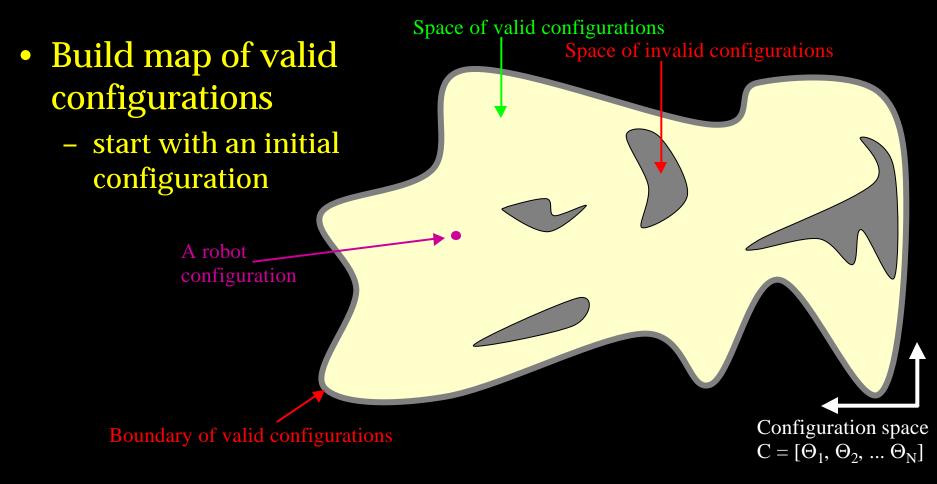
Mapping

- Represent environment as a distribution
- Estimate the probability of a position of the world being occupied



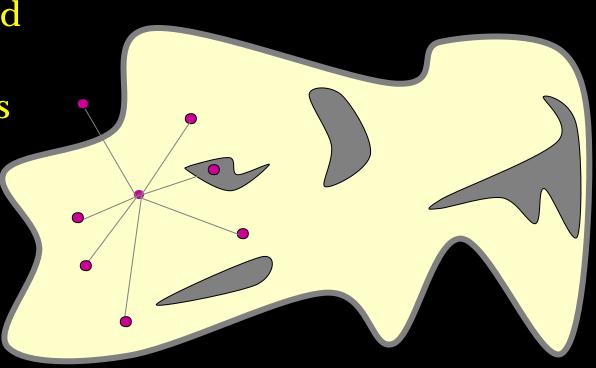
Learning from demonstration

- Humans and the natural world are working models of control and policy learning
- Leverage human tutelage and/or performance to build robot controllers



Build map of valid configurations

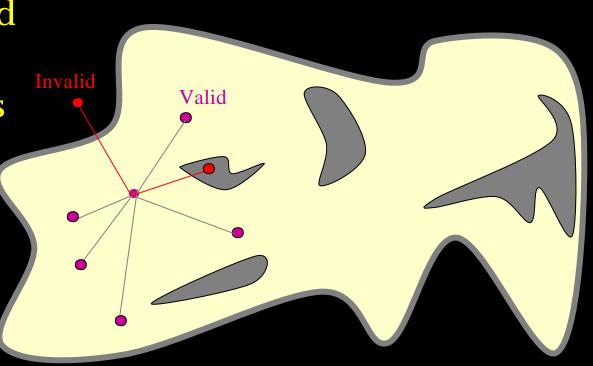
Sample neighbors of current config



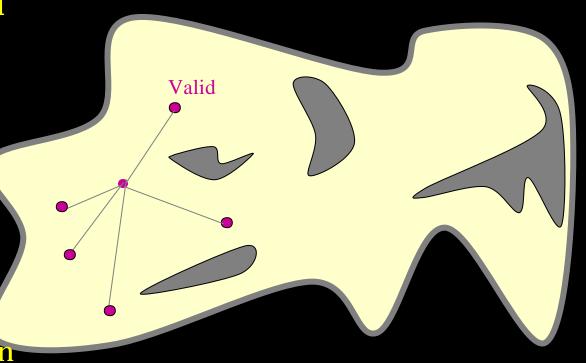
Build map of valid configurations

 Sample neighbors of current config

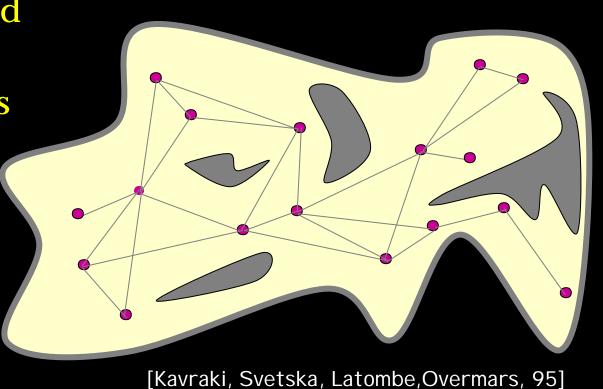
 Determine valid neighbors



- Build map of valid configurations
- Sample neighbors of current config
- Determine valid neighbors
 - remove invalid
 - place edge transitions between valid neighbors



- Build map of valid configurations
- Sample neighbors of current config
- Determine valid neighbors
- Continue exploration from valid neighbors

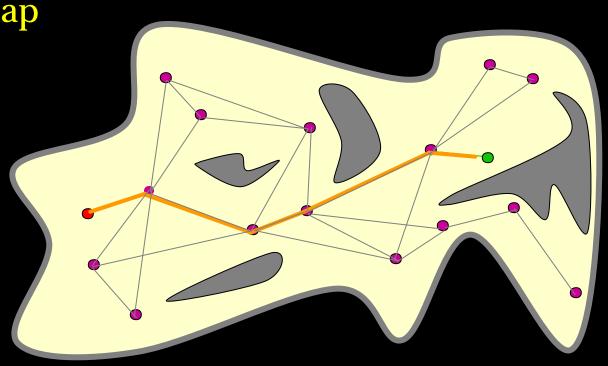


Probabilistic road maps: query phase

Given learned map

 Find a valid control path between two configurations

 Search on an undirected graph



Additional references

- Duda and Hart, "Pattern Classification"
- Bishop, "Neural Networks for Pattern Recognition"
- L. Kaelbling, M. Littman, A. Moore, "Reinforcement Learning: A Survey" Journal of Artificial Intelligence Research 4 (1996) pp. 237–285.
- Sutton and Barto, "Reinforcement Learning". MIT Press, 1998
- S. Thrun, "Is Robotics Going Statistics? The Field of Probabilistic Robotics", CACM, 2001.
- M. Isard, A. Blake, "CONDENSATION conditional density propagation for visual tracking", 1998.

Additional references

- L. Kavraki, P. Svestka, J. Latombe, M. Overmars, "Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces", IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996
- Read my papers (I command you... Muhuwahaha)
- O. Jenkins, M. Mataric, "Performance-Derived Behavior Vocabularies: Deriving Skills from Motion", Internation Journal of Humanoid Robotics, 2004.