CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy

Instructor: Chad Jenkins (cjenkins)

What is robotics?

- Robot: a machine with a physical embodiment that produces actuation based on its sensory information
 - sensing, actuation, control
- A simple robot: a thermostat, 1DOF robot

Robot examples:

NASA Robonaut

ActivMedia Pioneer

LOTR: Return of the Kina

Robots, machines, and agents

- Another definition: a robot is a situated agent with embodiment
- Agent: one that acts or has the power or authority to act

Robots, machines, and agents

Embodiment

- a robot's embodiment is its medium to interact (sensing and actuation) with its environment
- embodiement constrains a robot (michael jordan)

Situatedness

 robots are strongly affected by the environment and deal with its immediate demands directly

Situated intelligence

- observed behavior resulting from interaction between a robot and its environment
- cannot be attributed to a single source, model, or rationale

Robots, machines, and agents

Autonomy

- a robot is a machine with autonomy
 - the robot acts based on its own decision making
- engineering robotics versus autonomous robotics
- robots are motivated to achieve some goal... but what goal?

Uncertainty

- an inherent property of the real world
- Physical sensors and actuators provide limited, noisy, and inaccurate information and force generation
- The certainty of physical sensors and effectors cannot be well characterized, so robots have no available a priori models

What is not robotics?

- Battlebots
 - actuation only
 - teleoperated

www.robodojo.com

• "Robot" toys

- Segway?
 - sensing, actuation, and control
 - who is doing the driving?

segway.com

NASA Segwanaut

Teleoperation

- A machine externally controlled by an operator is "tele"-"operated"
 - segwaynaut + teleoperator
 - engineering robotics

Autonomous robotics

- segwaynaut teleoperator
- robot decides itself
- can listen or not listen to human
- program robot with "good" behavior

Miller, Jenkins, Kallmann, Mataric

Asimov's three laws of robotics

- One idea for robot's being on "good behavior"
 - A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
 - A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
 - A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
- Science fiction and science fact

The larger view

- Robotics is a vast interdisciplinary field
 - thus, characterizing what is "not robotics" may not be fair
- Core technical areas of robotics
 - mech. engineering, electrical engineering, computer science
- Philosophical areas of robotics
 - cognitive science, ethics, psychology,
- Inspiration for robotics research
 - neuroscience, biology, biomechanics
- Foundation for robotics
 - physics, mathematics, materials science

Robotics and computation

Engineering robotics
 Computer hardware development

 Control theory/ signal processing

- Operating systems
- Autonomous control ← Software/ application development

NASA Opportunity

Robot learning and adaptation
 Self-healing systems

hardware platforms are less mature

lesser degree of uncertainty

Applications for robotic technology

- Robots are designed to automate services:
 - Industrial/assembly/inspection
 - Search and rescue
 - Hazardous operation (demining, defusing, chemical)
 - Medical (surgery...)
 - Entertainment
 - Space and underwater exploration and development
 - Assistive/rehabilitation
 - Education
 - Transportation
 - Ecology, geoscience

- Engineering robotics:
 - constructing physical embodiment and physical dynamics
 - mechanical engineering
- Control theory/ Signal processing
- Autonomous control
- Learning/Adaptation

- Engineering robotics (at bottom):
- Control theory/ Signal processing
 - producing appropriate control signals
 - interpreting/processing the world from sensory data
 - mechanical and electrical engineering
- Autonomous control
- Learning/Adaptation

- Engineering robotics (at bottom):
- Control theory/ Signal processing
- Autonomous control
 - programs for producing control signals from sensory data
 - computer science and electrical engineering
- Learning/Adaptation

- Engineering robotics (at bottom):
- Control theory/ Signal processing
- Autonomous control
- Learning/Adaptation
 - extending the robot's autonomy beyond what is explicitly programmed
 - computer science

A brief history of robotics

- The term "robot" was popularized by Czech playwright Karel Capek, combining
 - "rabota" meaning "obligatory work"
 - "robotnik" meaning "serf"
- Traditional notions of robots
 - clever mechanical devices or automatons
 - player pianos, animatronics

Disney's General Electric Carousel of Progress www.parnasas.com

 Advancement in computation has redefined these notions

Fields leading to robotics

- Control theory
 - mathematical study of automated control systems
 - feedback control
- Cybernetics (Norbert Wiener, 1940s)
 - study of biological systems for robot control
 - focus on the interaction of an organism and its environment
 - Tortoise, Braitenberg Vehicles
- Artificial intelligence (Dartmouth Conference, 1956)
 - methods for endowing intelligence to machines
 - internal modeling, search for solutions, sequential execution
 - Shakey

Grey Walter's Tortoise

- Acknowledged as the first robot (1953)
- Inspired by cybernetics
- Exhibited emergent behavior from reactive control

Braitenberg vehicles

- Valentino Braitenberg's thought experiments
- simple robots that exhibit animal- or life-like behavior
- Photophilic or photophobic behavior
- Results from exhibitory or inhibitory connections between light sensors and motors

Shakey

- One of the first AI-inspired robots
- mobile robot with contact and camera sensors
- lived in a specially constructed world
- Shakey name derived from how it executed it plans

Other early AI-inspired robots

• HILARE

Moravec's CART/Rover

Engineering and Philosophy (slide in progress)

Robot hardware

(PUMA)

Robot arms Sony Aibo

Biologically inspired robots (B. Full)

Battlebots

Automated machines

Autonomous

robotics

Industrial robotics

Asimov's 3 laws Robot ethics

Roomba

Localization and

mapping

DARPA Grand

Challenge

Segway

Robot soccer, Assistive Robotics Behavior-based

Subsumption,

Engineering

Philosophy

Kitano's robocup challenge

 Team of robots will be able to defeat a team of humans by 2050

DARPA Grand Challenge

