CS148
Building Intelligent Robots

Week 2 : Sensors and Debugging Out: 28 Spt 2004

Preliminary Tasks before 30 Spt 2004, 9am

This week’s lab will introduce you to the rest of the standard sensors you will be using on your robot
to interact with the world. There is no preliminary reading but as always, the brickOS section of
the website will be your friend. Everything in this lab you can also find in the HOWTO, command
reference, and code samples pages in the brickOS section of the website. Read it; understand it,
live by it.

Lab 2: Sensors and Debugging 30 Spt 2004

Done during lab; please see Evan or Chris for checkoff after each part.

0.1

The MindStorms light sensors measure light intensity (for the most part). The light sensor can
be activated in two modes: active and passive. In active mode, the light sensor also emits a red
light, enhancing the range and accuracy of the sensor quite a bit. In passive mode, the red light
is not activated. The active mode is usually much more accurate and stable. One thing to note
is that at close distances to objects (let’s say, a playing field of some sort), using active mode will
return readings that correspond more to reflectivity rather than intensity. The boundary between
reflectivity and intensity seems to be about 4-5 inches away from whatever object you're trying to
read.

To set the mode, active or passive, of a light sensor, use the commands:

e ds_active(&SENSOR_X); and ds_passive(&SENSOR_X) where X is the number of the sensor
(1, 2, or 3).

e To read the light sensor values, access sensor number X as a constant directly using LIGHT X.
This value is set approximately every quarter millisecond by brickOS.

Task:

e First, write a program that will display the value of a light sensor connected to the RCX
brick (pick an input slot, any slot). Choose a suitable time interval between updates and use
the 1cd_int (int) command to display the value read in by the light sensor.

e You will be given a sheet with three color-coded regions: black, green, and white. Write a
second program that will determine the correct color of the regions and output either “black”,
“green”, or “white” to the LCD. Again, mount the light sensor on any input you like.

e As with all sensors, the light sensor is highly vulnerable to changes in the ambient environment
and thus experimental values should almost never be used as a good indicator. Augment the
program you just wrote with a calibration phase. When the new program starts, it should
determine the average value of the black, green, and white areas and then run. Your program
should be able to correctly identify the three colors in various ambient light conditions.

0.2

Touch sensors will almost always be used as binary values. To access the value of a touch sensor
as a Boolean, use the constant TOUCH_X (where X is the sensor number). This will return a 1 if the
sensor is pressed and 0 if the sensor it not.

Task: Write a program that recognizes touches on the bump sensor. Your program should give
some indication (beep, LCD print out, spins its motors wildly) that a connected touch sensor has
been depressed.

0.3

Since there are only three inputs on the RCX, we must use them as efficiently as possible. One
way to do this is to put a touch and light sensor on the same input. Access the input as you would
a light sensor. You will find that when the touch sensor is depressed, the light sensor reading will
read a certain range of values outside the norm of a light sensor. In fact, the readings will also vary
with the strength of the depression of the touch sensor.

Task: Find out the exact value (or value range) of the light/touch sensor input when the touch
sensor is depressed. Use this value range to improve upon your program so that is recognizes all
three colors in various conditions and will also display “bump” on the LCD if the touch sensor is
depressed.

0.4

The MindStorms rotation sensors can sense rotation in steps of 1/16th of a revolution. Thus,
for most applications, you will probably want to gear up what you’re measuring to improve the
resolution.

To initialize an input to be read for rotation, call the function ds_active(), just as you would
do with a light sensor. Use ds_rotation_set(&SENSOR_X, int position). This will set sensor
X to an arbitrary position. The default value is 0. ds_rotation_on(&SENSOR_X) must then be
called to turn on the sensor.

To access the sensors, use ROTATION X (where x is the input number). The number returned is
the number sixteenth of revolutions the sensor has turned. The value will increment one way and
decrement the other way.

Task: Write a program that will initialize and then output the number of revolutions the sensor
has turned.

Project 2: Sensors and Debugging due 7 Oct 2004, in class

Specification: The purpose of this project is to become more familiar with the many quirks of
the light sensor, as it is the most important—and annoying—sensor you will be using. You must
build a robot that will follow a line on the floor. The line will be about 1” wide and of a significantly
different color than the floor. You cannot assume the line is darker than the floor, or vice-versa.
Your robot should have a calibration phase that takes into account this fact and ambient conditions
so that your robot could work on any line in any room with any lighting conditions.

When the robot gets to the end of a line, it should not travel along the same line in the opposite
direction. Your robot may or may not start on a line after the calibration phase. If it doesn’t start
on a line, it should go straight forward. If it hasn’t found a line within 7 seconds of dead time at
any point during its task, it should stop.

Some problems you might run into:

e How many light sensors should you use?
e How should you design the calibration phase?

e How can you shield the light sensor so a minimal amount of light leaks into it? (Note: good
shielding is extremely helpful!)

e Should you design your robot so the line takes precedence or the floor takes precedence? In
other words, should your robot follow only the line you tell it to follow or any line that is
different from the floor? (Both are perfectly acceptable.)

Note: Light sensors introduce a lot of inconsistencies that can’t easily be predicted. The only
way to catch and fix them is by trial and error. Heed this warning. You do not want to pull a
Wednesday night all-nighter in the Lego lab.

Paper Handin: Please staple your individual written report and write your group
number on the front page. Be sure to discuss the following items in your writeup:

e A description and drawings (or pictures) of key design elements of your robot. This would
also include the number and type of sensors used and how you used them.

e An explanation your line-following algorithm. Pseudocode is not necessary for this explana-
tion, but recommended.

e Calibration procedure, including how it gathers data and what it does (statistically) once it
gathers it. Note whether your robot follows all lines that are different from the floor or just
the line it is told to follow in the calibration phase.

e Finally, describe any major failed attempts (bad sensor setup, poor shielding, unsuccessful
gearing, etc). If your first design was perfect, please state so!

Please electronically hand in your code, as well (/course/cs148/bin/cs148 handin sensors).
One copy of your (nicely commented) code will be sufficient for the group.

Grading: Both your lab write-up and your actual robot will determine your grade.

Your robot will be scored in the following manner:

Follows line 30%
Robust in various ambient conditions 15%
Technical design (does not break, etc.) | 5%

Total | 50%

Your report will be graded as follows:

Design explanations and diagrams | 15%

Line-following algorithm 15%
Calibration 15%
Design process 5%

Total ‘ 50%

